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ABSTRACT

The A-Train constellation of satellites provides a new capability to measure vertical cloud profiles
leading to more detailed information on ice-cloud microphysical properties than has been possible
up to now. A variational radar-lidar ice-cloud retrieval algorithm, VarCloud, takes advantage of the
complementary nature of the CloudSat radar and CALIPSO lidar to provide a seamless retrieval
of ice water content, effective radius and extinction coefficient from the thinnest cirrus (seen only
by the lidar) to the thickest ice cloud (penetrated only by the radar). In this paper, several
versions of the VarCloud retrieval are compared with the CloudSat standard ice-only retrieval
of ice water content, two empirical formulas that derive ice water content from radar reflectivity
and temperature, and retrievals of vertically integrated properties from the MODIS radiometer.
Typically the retrieved variables agree within a factor of 2, on average, and most of the differences
can be explained by the different microphysical assumptions. For example, the ice water content
comparison illustrates the sensitivity of the retrievals to assumed ice particle shape. If ice particles
are modeled as oblate spheroids rather than spheres for radar scattering then the retrieved ice water
content is reduced by on average 35% in clouds with a reflectivity factor larger than 0 dBZ. The
factor-of-2 difference between MODIS and VarCloud optical depth, on average, can be explained by
the different assumptions on particle mass and area; if VarCloud mimics the MODIS assumptions
then better agreement is found in both optical depth and effective radius. However, MODIS predicts
the mean vertically integrated ice water content to be around a factor-of-3 lower than VarCloud
for the same retrievals, because the MODIS algorithm assumes that its retrieved effective radius
(which is mostly representative of cloud top) is constant throughout the depth of the cloud. These
comparisons highlight the need to refine microphysical assumptions in all retrieval algorithms, and
also for future studies to compare not only the mean values but also the full probability density
function.

1. Introduction

The advent of satellite observations has provided ac-
cess to cloud data from across the globe and their statis-
tics allow for the creation of cloud climatologies (Warren
and Hahn 2002). These global cloud observations are vital
to set constraints on general circulation models (GCMs),
which show factors of 10 or more difference in ice water
path (IWP), but the current satellite cloud-ice retrievals of-
ten disagree due to varying footprints and instrument and
algorithm sensitivities (Waliser et al. 2009). The A-Train
constellation of satellites take various measurements of ice
clouds (Stephens et al. 2002), starting with the launch of
Aqua in 2002, carrying the Moderate Resolution Imaging
Spectroradiometer (MODIS), which retrieves cloud optical
properties using shortwave and infrared radiances. In 2006,
Aqua was joined by the CloudSat radar and the Cloud-
Aerosol Lidar and Infrared Pathfinder Satellite Observa-
tion (CALIPSO) (Winker et al. 2003), providing vertical
profiles of clouds around the globe on a daily basis. These

near-coincident measurements are ideal for combined re-
trieval techniques and to compare single-instrument cloud-
ice retrievals.

The synergy of coincident radar and lidar observations
is well documented (Intrieri et al. 1993; Donovan et al.
2001; Okamoto et al. 2003; Mitrescu et al. 2005; Tinel et al.
2005; Hogan et al. 2006a) and is already used to accurately
determine the occurrence of hydrometeor layers by Cloud-
Sat and CALIPSO (Mace et al. 2009). Delanoë and Hogan
(2008) developed an optimal estimation algorithm to re-
trieve cloud-ice properties from ground-based radar and
lidar observations and recently adapted it to CloudSat and
CALIPSO (Delanoë and Hogan 2010). A combined radar-
lidar algorithm can retrieve ice particle size and concentra-
tion independently, and better estimates of these variables
are obtained than if a single instrument were used (Hogan
et al. 2006a).

In this paper the coincident A-Train measurements are
used to study algorithm and instrument sensitivities for
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ice-cloud retrievals. The following methods are compared:

i. The combined radar-lidar optimal estimation retrieval
developed by Delanoë and Hogan (2010), hereafter
VarCloud ;

ii. The radar-only, ice-only version of the standard Cloud-
Sat product (Austin et al. 2009);

iii. Two empirical formulas for ice water content (IWC)
as a function of radar reflectivity factor Z and tem-
perature T , IWC(Z,T ) (Hogan et al. 2006b; Protat
et al. 2007);

iv. The MODIS Level-2 Cloud Product (King et al. 1997).

The first three of these products retrieve IWC using at
least two of the same inputs, namely the equivalent radar
reflectivity factor Ze observed by the CloudSat satellite
and temperature T along the CloudSat track provided by
the European Centre for Medium-Range Weather Forecasts
(ECMWF). A direct comparison of IWC retrievals is pos-
sible where the radar is sensitive to ice cloud, so that the
dependence of deviations in IWC on either temperature or
reflectivity can be analysed.

Cloud-ice retrievals strongly depend on the representa-
tion of ice particles in terms of their shape, size, and dis-
tribution (McFarquhar and Heymsfield 1998; Heymsfield
et al. 2008). With the introduction of the different prod-
ucts in Section 2, we will also provide an overview of the
ice particle assumptions made in each retrieval.

The results are presented fourfold, starting with Sec-
tion 3 in which the global distribution of ice clouds with
temperature will be discussed. A cloud classification using
CloudSat and CALIPSO data is used to compare ice-cloud
occurrence as observed by the radar and lidar individually
and jointly. The different IWC retrievals are compared in
Section 4 through the joint probability distribution of IWC
versus temperature. Where differences between retrievals
occur, the impact of instrument and algorithm sensitivities
is discussed, including the effect of different ice particle as-
sumptions. In Section 5, this comparison focuses on indi-
vidual IWC retrievals and the mean fractional difference of
IWC between the various methods.

Finally, vertically integrated ice-cloud retrievals are pre-
sented in Section 6. Since MODIS is not designed to pro-
vide vertical profiles, we compare it with the VarCloud
product using the in-cloud zonal averages of IWP. The
MODIS IWP is inferred from the retrieval of optical depth
τ and mean effective radius 〈re〉 (King et al. 2006), which
are retrieved by VarCloud and provide an additional com-
parison with MODIS.

2. Method

Here, we introduce the four different retrieval methods
that will be used for comparison in this paper. For a quick

overview of the satellite products, Figure 1 shows vertical
profiles and the optical depth of a single cloud observed
by the A-Train in the South Atlantic. The ice particle
assumptions for the variables of interest in this paper are
discussed below for each product and are summarised in
Table 1.

a. VarCloud

A variational retrieval algorithm using ground-based li-
dar and radar data was introduced by Delanoë and Hogan
(2008). This method has recently been adapted to ac-
commodate the measurements from the CloudSat radar
and CALIPSO lidar (Delanoë and Hogan 2010) and in the
present paper is referred to as VarCloud.

In this retrieval, the lidar and radar data are first merged
on to the same grid. The CloudSat radar provides a vertical
profile of Ze at approximately 1.5km horizontal and 240m
vertical resolution. The CALIPSO lidar provides attenu-
ated backscatter coefficient β at 333m horizontal resolution
and at a variable vertical resolution of 30 to 60m in the tro-
posphere. CloudSat reflectivities are linearly interpolated
from their 240m vertical resolution on to a regular 60m
grid, whilst the lidar signal is averaged horizontally on to
the CloudSat 1.5km horizontal grid before being averaged
up to the regular 60m vertical grid. A similar interpolation
is performed on the ECMWF temperature, pressure, and
humidity variables, which are from the short-range fore-
casts under the CloudSat track, so that the necessary in-
puts for the VarCloud algorithm are available on a regular
1.5km grid with 60m vertical resolution.

On this merged grid, the VarCloud target classification
is performed (Delanoë and Hogan 2010) using the CloudSat
cloud mask in the “2B-GEOPROF” product (Mace 2004)
and the “Lidar Level 2 Vertical Feature Mask” (Anselmo
et al. 2006). This classification scheme identifies a target as
cloud when the lidar mask has identified cloud or when the
radar mask reports a value of 30 or greater, which indicates
a high confidence in cloud detection. Once a cloud has been
determined, it is set to be ice phase when Tw < 0◦C, with
the occurrence of supercooled liquid identified by a strong
lidar backscatter signal. This cloud classification is used
in combination with the instrument flag (radar, lidar, or
both) to determine ice-cloud occurrence in Section 3.

The VarCloud method uses an optimal estimation for-
mulation, in which an initial estimate of the cloud variables
in a single vertical profile (the state vector) are used in a
forward model to predict the observed variables in that
profile (the observation vector). The state vector contains
an estimate of the visible extinction coefficient αv in the
geometric optics approximation at each vertical level, a ver-
tically constant lidar extinction-to-backscatter ratio S, and
variables describing the profile of the “normalised” number
concentration introduced by Delanoë et al. (2005). The for-
ward model then calculates at each vertical level the radar
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reflectivity factor Ze using a lookup table derived from rig-
orous scattering calculations, and the lidar backscatter co-
efficient β using a multiple-scattering model (Hogan 2006).
The difference between the forward modelled observations
and the actual observed variables is then used to refine
the state vector using the Gauss-Newton method (Rodgers
2002). This process is repeated until convergence follow-
ing a χ2 test. The retrieval can be further constrained
if additional measurements are available for forward mod-
elling, for instance infrared radiances or cloud visible opti-
cal depth retrieved during the day by shortwave radiances,
although this capability is not used in the present paper.

The VarCloud algorithm contains a rigorous treatment
of errors, in which errors are attributed to assumptions in
the forward model, to the error covariances of the a priori
(number concentration and S) as well as the observations.
The inclusion of the a priori allows for the retrieval to
proceed when only a single instrument is available. In the
absence of lidar observations, the retrieval tends to behave
similarly to a relationship for IWC as a function of Ze and
T , whilst in the absence of radar observations the a priori
ensures that the retrieval behaves similarly to a constrained
lidar-only retrieval, making use of the molecular return be-
low the cloud as an optical depth constraint, when avail-
able. This results in a seamless retrieval between optically
thin ice clouds only seen by lidar and deep ice clouds seen
by radar only, through cloud seen by both instruments.

To investigate the dependence of the retrievals on mi-
crophysical assumptions, three versions of the VarCloud re-
trieval method are used. The standard VarCloud product
(Delanoë and Hogan 2010) will be referred to as VarCloud-
OA (for “oblate aggregates”) and uses the T-matrix method
to perform scattering calculations assuming that ice par-
ticles can be approximated by horizontally aligned oblate
spheroids with an axial ratio of 0.6 (Hogan et al. 2010). The
VarCloud-SA (for “spherical aggregates”) assumes spheri-
cal shapes for radar scattering calculations using Mie the-
ory. Both VarCloud-OA and VarCloud-SA use the Brown
and Francis (1995) mass-diameter relationship for the ice
particle model and in their scattering calculations. This
relationship was found to provide a very accurate esti-
mate of radar reflectivity by Hogan et al. (2006b). The
VarCloud-BR (for “bullet rosette”) version is only intro-
duced as a potentially better match with the MODIS ice
particle assumptions, for which bullet rosettes dominate
the ice particle mixtures (King et al. 1997; Platnick et al.
2002; Baum et al. 2005a). In VarCloud-BR, Mie theory is
applied to perform radar scattering calculations, whilst the
ice particle model uses the Mitchell (1996) mass-area-size
relationship for bullet rosettes.

b. Standard CloudSat radar-only product

The “Level 2B Radar-Only Cloud Water Content” prod-
uct (2B-CWC-RO) is provided by the NASA CloudSat

project (Austin et al. 2009). This product makes use of
optimal estimation theory, in which a lognormal size dis-
tribution N(D) of ice particles is assumed,

N(D) =
NT√
2πωD

exp

[− ln2 (D/Dg)

2ω2

]

, (1)

with the particle number concentration (NT ), the width
of the distribution (ω), and the geometric mean diame-
ter (Dg) being the retrieved state variables at each radar
range-gate, all three with temperature-dependent a priori
assumptions. The forward model then simulates values of
the radar reflectivity factor Ze for comparison with the
observations using the three size distribution parameters.
First, (1) is used to calculate Rayleigh reflectivity, after
which Mie theory is applied in the form of a correction fac-
tor parameterized using the size distribution parameters ω
and Dg (Benedetti et al. 2003) to obtain Ze.

The radar-only CloudSat product provides IWC from
two versions of the algorithm. In the standard version,
separate ice and liquid retrievals are scaled linearly with
temperature between 0◦C and −20◦C by adjusting the re-
spective particle number concentrations, resulting in a pro-
file with ice-only retrievals at temperatures below −20◦C
and a smooth transition to liquid-only retrievals at tem-
peratures above 0◦C. A second version (with subscript IO,
for “ice-only”) assumes that the radar reflectivity is dom-
inated by the contribution from ice particles and does not
attempt to estimate liquid water content below 0◦C. This
is consistent with assumptions in VarCloud and should pro-
vide a better comparison between the two products. It is
also supported by observational evidence that Ze is dom-
inated by ice in mixed phase clouds (Hogan et al. 2003;
Zuidema et al. 2005). Therefore, the ice-only CloudSat
product rather than the standard version is used in this
paper to compare IWC retrievals and will be referred to as
“CloudSat ice-only”.

c. Empirical formula for IWC as a function of reflectivity and

temperature

For empirical formulas relating IWC to Ze using air-
craft measurements, the size distribution is provided by the
measurements and no assumptions on its shape need to be
made. Hogan et al. (2006b) derived the following empirical
relationship for the expected value of IWC as a function of
94 GHz radar reflectivity factor Z and temperature T

log
10

(IWC) =0.000580ZT + 0.0923Z (2)

− 0.00706T − 0.992 ,

which will be referred to as H06. Here, IWC is given in
g m−3; radar reflectivity factor Z is in dBZ; and T in ◦C.
The CloudSat products assume a different calibration for
the 94 GHz radar than the empirical formulas IWC(Z,T ).
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A conversion from the CloudSat observed Ze to the Z in (2)
is done by

Ze =
0.93

|Kw(T0)|2
Z , (3)

where 0.93 is the dielectric factor of liquid water at cm-
wavelengths used in the empirical formulas IWC(Z,T ) (Hogan

et al. 2006b; Protat et al. 2007) and |Kw(T0)|2 = 0.75 is
the value used to calibrate the CloudSat radar, which is the
dielectric factor of liquid water at 10◦C at 94 GHz (Tanelli
et al. 2008).

The formula (2) was derived using the Brown and Fran-
cis (1995) mass-diameter relationship and the Mie theory
for radar scattering, which assumes that particles are mod-
elled as spheres. Formulas such as (2) provide a best fit for
IWC(Z,T ) given the observations from which they are de-
rived, which is a different approach from the VarCloud and
CloudSat retrievals, even though the latter uses no more
or less data than (2). The fractional error for IWC derived
using (2) is +55%/− 35% between −20◦C and −10◦C and
+90%/ − 47% for T < −40◦C (Hogan et al. 2006b).

The inputs for the empirical formula (2) are the temper-
atures from ECMWF and the equivalent radar reflectivity
factor Ze from the CloudSat product 2B-GEOPROF, con-
verted using (3). In this estimation of IWC the 2-way gas
attenuation down to 0◦C will be ignored, for this is typi-
cally less than 0.5 dB (Hogan and Illingworth 1999).

The formula IWC(Z,T ) in (2) was derived using an air-
craft measurement data set for northern hemisphere mid-
latitudes only. Protat et al. (2007) evaluated this formula
against data that included tropical cirrus and found that
IWC estimates from (2) had fractional errors of +80% and
−44% compared to the IWC calculated from the true size
distribution. The IWC(Z,T )-relationship derived by Pro-
tat et al. (2007) for the global data set produced fractional
errors of +69%/−41%. Since the a priori for VarCloud is
derived from the same data set used by Protat et al. (2007),
we will include their empirical formula in our comparison
of the mean root-mean-squared (rms) difference between
the different products. This relationship is

log10 (IWC) =0.000491ZT + 0.0939Z (4)

− 0.0023T − 0.84 ,

which will be referred to as P07. Similar to H06, this for-
mula is derived using Mie theory for radar scattering in
the non-Rayleigh regime. The Brown and Francis (1995)
mass-diameter relationship is also applied, but using Dmax

as the diameter rather than Dmean, which leads to an over-
estimate in IWC of about 50% (Hogan et al. 2010).

d. Standard MODIS product

MODIS measures reflectances at 36 wavelengths, in-
cluding visible and near-infrared bands. For each cloudy
pixel the MODIS retrieval determines the thermodynamic

phase (ice, liquid, mixed, uncertain), with the remainder
of pixels flagged “clear” (King et al. 2004).

Ice-cloud optical depth τ and mean effective radius 〈re〉
in the MODIS products are derived through the best fit of
the reflectance for a given observation to library calcula-
tions assuming plane-parallel homogeneous clouds (King
et al. 1997). The ice reflectance library is generated from
a database of 1117 ice particle size distributions from dif-
ferent field campaigns in the midlatitudes and in the trop-
ics (Baum et al. 2005a). The reflectance functions are cal-
culated at the MODIS visible and near-infrared wavelength
bands for each size distribution and a range of optical thick-
nesses τ , providing a look-up table for comparison with
measured reflectance. Through a χ2 test of the calculated
reflectance and the measured reflectances, the combination
of the size distribution and the optical thickness providing
the best fit for all wavelength bands is retrieved.

The retrieval of 〈re〉 through the use of radiometer ob-
servations is heavily weighted to the cloud top (McFar-
quhar and Heymsfield 1998; Platnick 2000). For instance in
the near-infrared 2.2 µm channel, using a radiative trans-
fer code McFarquhar and Heymsfield (1998) argued that
only the uppermost four or five optical depths of the cloud
contribute to the reflectance. Therefore, 〈re〉 retrievals for
optically thick ice clouds will be dominated by particles
near cloud top. In the retrieval of τ and 〈re〉, re and IWC
are assumed constant with height, so that IWP is derived
from optical thickness and 〈re〉 (King et al. 2006), using

IWP =
4

3

ρiceτ〈re〉
Qext(re/λ)

, (5)

with Qext(re/λ) the extinction efficiency at the reference
wavelength for τ (λ = 0.66µm).

3. Ice-cloud occurrence

Prior to a comparison of the different products by their
retrieval of IWC, the radar and lidar are compared by the
fraction of ice clouds that they observe. The VarCloud
target classification contains a flag indicating whether the
observation was made by radar, lidar, or both. This way,
the cloud occurrence measured by the radar and lidar com-
bined can easily be determined, as well as the fraction of
that portion observed by a single instrument. This will
give us a first estimate on the fraction of ice clouds missed
by a single instrument (compare Stephens et al. (2008)).

We restrict ourselves to tropospheric ice clouds, that
is ice cloud observed at temperatures below 0◦C and lo-
cated below the tropopause height, which is provided in
the CALIPSO data set and determined by NASA’s Global
Modeling and Assimilation Office as the first minimum
above the surface of the function 0.03T (p) − log10 p, with
pressure p between 550 and 40 hPa. This range will be re-
ferred to as the subzero troposphere. The ice-cloud occur-
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rences presented should therefore be interpreted in relation
to this subzero troposphere.

The data are gathered into bins of 2◦ latitude, indicated
by φk, with the extreme latitudes of a typical A-Train or-
bit at 81.8◦ north and south; occurrences that depend on
temperature are binned per ◦C, indicated by Tj; and j and
k are indices to the bins. The following probabilities are
then calculated for each latitude and within the subzero
troposphere:

• Pk(C ∧ Tj): Probability of ice-cloud occurrence and
temperature Tj at latitude φk;

• Pk(Tj): Probability of temperature Tj at latitude φk;

• Pk(C | Tj): Probability of ice-cloud occurrence given
temperature Tj and at latitude φk,

where the “∧” denotes a joint occurrence, the “|” signifies a
conditional probability, and “C” is an ice-cloud observation
as classified in VarCloud.

Using Bayes’ theorem, the ice-cloud occurrence for a
given temperature is obtained from the observations as fol-
lows

Pk(C | Tj) =
Nk(C ∧ Tj)

Nk(Tj)
, (6)

where the “N” indicates the number of individual observa-
tions of the given temperature and/or cloud scene. These
occurrences, shown in Figure 2(a–d), reveal a similar ver-
tical structure of the zonal average as that which has been
presented in previous studies that make use of CloudSat
and/or CALIPSO data (Bodas-Salcedo et al. 2008; Mace
et al. 2009; Wu et al. 2009). The distinction between
radar-only, lidar-only, and radar-lidar observations, how-
ever, highlights the advantages of the combined product.
The radar does not capture many of the optically thinner
ice clouds at lower temperatures (usually higher altitudes)
for which the lidar shows higher ice-cloud occurrence. On
the other hand, the lidar signal is often extinguished be-
fore it reaches the melting layer and observes less than 5%
ice-cloud occurrence per ◦C for most temperatures warmer
than −10◦C where the radar regularly observes more than
10% occurrence. The ice-cloud occurrence observed by
both radar and lidar (Figure 2(d)) shows some of the cloud
climatological features that can be expected for the month
of July. The intertropical convergence zone has shifted on
average about 8◦ north of the equator; a higher ice-cloud
occurrence has formed in the southern polar region; and
the descending branches of the Hadley cell result in lower
ice-cloud occurrences at about 30◦ either side of the equa-
tor.

The very high ice-cloud occurrences at the coldest tem-
peratures in Figure 2(d) are deceptive, which is indicated
using the temperature layer depth, that is the variation of

height with temperature, given by

Lk(Tj) =
Nk(Tj)

Vk

∆z , (7)

with Vk the total number of vertical profiles at latitude
φk and ∆z the VarCloud vertical resolution of 60m. Thus,
Lk(Tj) has the dimensions m ◦C−1, or the inverse of a lapse
rate and low values of Lk(Tj) occur at the cold tempera-
tures near the tropopause, where the lapse rate increases.
When these cold temperatures do occur in the subzero tro-
posphere, they tend to be associated with cloud as indi-
cated by the relatively high occurrences. In the Antarctic,
this combination of low temperature layer depth and high
cloud occurrence could be due to poor determination of
the polar tropopause (Zängl and Hoinka 2001) and subse-
quent inclusion of polar stratospheric clouds, whereas in
the tropics it may be linked to overshooting convection.

In Figure 3, the probabilities Pk(C ∧ Tj) and Pk(C |
Tj) (given by (6)) are averaged over the latitude bins to
obtain the global ice-cloud occurrence. For each bin k the
probability is weighted by the area Ak of a sphere between
the appropriate latitudes, thus giving a larger weight to
cloud occurrences in the tropics than at midlatitudes. To
obtain a measure of volume, Ak is multiplied by the mean
depth of the subzero troposphere per profile at latitude φk,
given by

〈Lk〉 =
∑

j

Lk(Tj) . (8)

In addition, probabilities conditional on temperature Tj

such as (6) are weighted by the temperature occurrence
at that latitude given by Pk(Tj). The globally averaged
probability of the ice-cloud occurrence conditional on the
occurrence of Tj, is then calculated from (6) as

P(C | Tj) =

∑

k Ak〈Lk〉Pk(Tj)Pk(C | Tj)
∑

k Ak〈Lk〉Pk(Tj)
, (9)

where the combined weight of area, mean number, and
temperature occurrence appears in the denominator and
the subscript k is dropped on the left-hand side to denote
the global probability.

The globally averaged conditional ice-cloud occurrences
in Figure 3(a) peak at temperatures colder than −70◦C
when they include all lidar observations, similar to Fig-
ures 2(c–d). Assuming that the ice-cloud occurrence ob-
served from all radar and lidar observations is the total ice-
cloud occurrence, in Figure 3(a) the fraction of ice clouds
observed coincidentally by both instruments reaches over
50% at temperatures between −30.0◦C and −48.0◦C, pro-
viding a large range of temperatures over which a combined
radar-lidar ice-cloud retrieval is applicable. The radar de-
tects at least 50% of the ice clouds observed by the com-
bination of the two instruments at temperatures warmer
than −51.0◦C, whilst the lidar detects over 50% at tem-
peratures colder than −25.0◦C.
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The global averages for the joint ice-cloud and temper-
ature occurrence P(C ∧ Tj) are shown in Figure 3(b). The
weighted global average ice-cloud occurrence in the subzero
troposphere can be obtained by integrating P(C ∧Tj) over
temperature, which for July 2006 gives 13.3% for all radar
and lidar observations. Using only observations where at
least the lidar is available (lidar-only and radar-lidar) this
reduces to 8.7% whereas for the radar (radar-only and
radar-lidar) it is 8.8%. If we assume the combined product
to give the “true” ice-cloud occurrence, we can conclude
that radar and lidar observe 65.9% and 65.0% of tropo-
spheric ice clouds, respectively, for July 2006, with 31.0%
observed by both the radar and the lidar.

4. Ice water content distribution versus tempera-
ture

The deviation between different ice water content (IWC)
retrievals from radar or radar-and-lidar observations is stud-
ied in this section using the joint probability density dis-
tribution of IWC versus temperature.

Figure 4 displays the all-sky joint distribution of IWC
versus temperature for CloudSat ice-only, H06 IWC(Z,T ),
and the VarCloud-OA retrievals. Probabilities are calcu-
lated for each latitude, temperature, and IWC bin as fol-
lows

Pk(IWCx ∧ Tj) =
Nk(IWCx ∧ Tj)

Nk

, (10)

with x denoting logarithmic bins for IWC. These probabil-
ities are subsequently weighted by Ak and 〈Lk〉 to obtain
the globally averaged joint distributions of IWC versus T .

The contour plots in Figure 4 show several differences
between the various products in terms of the joint proba-
bility distribution of IWC and T . First of all, the empiri-
cal formula of H06 given by (2) may be directly compared
with the CloudSat ice-only retrieval as both products use
only radar reflectivity and temperature to obtain IWC. At
temperatures colder than −20◦C the two products show a
similar distribution of IWC, disregarding the tail at lower
IWC values beyond the CloudSat ice-only minimum IWC
of 10−6 kg m−3.

The complete VarCloud-OA IWC retrieval is shown in
Figure 4(e), the distribution including all radar observa-
tions is shown in Figure 4(c), and the distribution includ-
ing all lidar observations is shown in Figure 4(d). The
inclusion of lidar observations extends the IWC distribu-
tion to higher occurrences at lower IWC values and colder
temperatures compared to the radar-only retrievals in Fig-
ures 4(a), 4(b), and 4(c). Figures 4(f–h) show the IWC
from VarCloud-OA where ice clouds are observed by (f)
radar-only, (g) lidar-only, and (h) radar-and-lidar. In these
panels, the H06 retrieval at the CloudSat sensitivity thresh-
old of −28 dBZ roughly separates the lidar-only IWC re-
trievals from the retrievals that include radar observations
(dashed line). Instrument sensitivities to different ranges

of IWC emerge from these figures as the highest IWC are
retrieved where only the radar is available. These occur-
rences are closest to the melting layer and are likely to be
the furthest removed from cloud top, where the lidar sig-
nal will have been extinguished. The lowest IWC values
are retrieved where only the lidar is available, for low IWC
is associated with smaller ice particles, which do not lead to
high enough reflectivities at 94 GHz beyond the CloudSat
threshold of −28 dBZ.

In Figures 4(a–e) we also show the in-cloud median and
mean IWC versus temperature, that is the median and
mean IWC for a given temperature only including values
of IWC > 0. The domination of the in-cloud mean by the
highest IWC values is apparent from Figure 5, which shows
the cumulative in-cloud IWC distribution versus tempera-
ture. For all retrievals and at all temperatures, the in-cloud
mean IWC lies between the 95th and 99th percentile. A
comparison between the VarCloud retrieval for all (radar
and/or lidar) observations with the CloudSat ice-only re-
trieval in Figure 5(a) reveals a similar distribution shape
at temperatures warmer than −50◦C, but a shift towards
lower in-cloud IWC percentiles for the VarCloud retrieval
at colder temperatures due to the inclusion of lidar-only
retrievals of IWC, as seen in Figure 4(g).

When the lidar-only retrievals are excluded from the
VarCloud distribution in Figure 5(b), the CloudSat ice-
only and VarCloud distributions are very similar for tem-
peratures colder than −10◦C and between the 25th and
90th percentiles. The in-cloud means of the two distribu-
tions, however, still differ by up to a factor 4, indicating
that the mean IWC is highly sensitive to the top 5% of the
IWC distribution, which is where the mass-size relation-
ships and radar scattering models are most uncertain. In
radar retrievals, high IWC values are obtained only when
high Ze is observed. High Ze involve non-Rayleigh scatter-
ing, which is treated differently by the retrievals as sum-
marised in Table 1 and will result in differences in retrievals
of high IWC. Ice-cloud radiation depends on the full IWC
distribution and not just on the most optically thick ice
clouds where the dependence of radiation on IWC has sat-
urated. It is therefore important to report the full IWC
probability distribution and not just the means, which are
dominated only by the top 5% of IWC values.

The CloudSat ice-only IWC has its 95th and 99th per-
centiles at considerably lower IWC than the other retrievals,
with the in-cloud mean deviating up to a factor 7 from
VarCloud-OA in Figure 5(b). Austin et al. (2009) acknowl-
edge possible violations in the CloudSat retrieval of their
assumptions for large particle sizes that are generally asso-
ciated with high Ze values (Ze > 20 dBZ), which may affect
the high end of IWC values retrieved. The highest in-cloud
mean IWC is retrieved by H06, followed by VarCloud-SA
(“spherical aggregates”), with the H06 mean 50% higher
than VarCloud-SA near the melting layer. The VarCloud-
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OA and VarCloud-SA retrievals have very similar distribu-
tions, although the latter appears to retrieve consistently
higher IWC, with the in-cloud mean up to 50% higher than
VarCloud-OA.

5. Mean ratio between different ice water content
retrievals

The discussion of the IWC distribution in the previ-
ous section focused on differences between IWC retrievals
through their overall statistics. This section instead focuses
on the statistics of the differences in IWC between simulta-
neous retrievals. This provides an additional comparison,
whilst its results relate to the findings in the previous sec-
tion.

For the purpose of this discussion, we set the “control”
product to be H06 and define the logarithmic difference

D = ln

[

IWCR

IWCcontrol

]

, (11)

where “R” is one of VarCloud-OA, VarCloud-SA, CloudSat
ice-only, or P07. The rms difference in ln(IWC) is then
formulated as

S =
√

〈D2〉 − 〈D〉2 . (12)

Since the CloudSat products are on a 240 m grid as op-
posed to the 60 m grid for the VarCloud derived products,
D and S are calculated only when both the CloudSat ice-
only product retrieves IWC > 0 and the products on the
60 m vertical grid retrieve IWC > 0 at the vertical level
nearest to the CloudSat level. To ensure a like-with-like
comparison, statistics are only gathered when all prod-
ucts simultaneously retrieve IWC > 0, which effectively ex-
cludes VarCloud lidar-only retrievals. The means of (11)
and (12) are gathered for each temperature Tj (per ◦C)
and latitude φk (per 2◦) and subsequently weighted by Ak,
〈Lk〉, and P(Tj) following (9). In Figure 6 we then show
the mean ratios in IWC, given by

R = exp〈D〉 . (13)

The variations with temperature of the mean ratio in IWC
in Figure 6 relate more to the differences in the in-cloud
median rather than the in-cloud mean of the IWC distri-
butions in Figures 4 and 5. Although large differences be-
tween the in-cloud means appear in Figure 5, they will
have a small impact on the mean ratio in retrieved IWC
between products due to their low occurrence indicated by
their location beyond the 90th percentiles. The mean ra-
tio between the VarCloud-OA IWC retrieval and H06 is
less than 1 at all temperatures, although it is within the
rms difference from R = 1. The slightly higher IWC re-
trievals from VarCloud-SA compared to VarCloud-OA in
Figure 5(c) are echoed in Figure 6(a), where both products
display a similar variation with temperature in their mean

ratios with respect to H06, but the VarCloud-SA mean
ratio is consistently higher than the VarCloud-OA mean
ratio.

The CloudSat ice-only mean ratio with respect to H06
in Figure 6(b) is larger than that for the VarCloud re-
trievals at most temperatures and exceeds R = 1 between
−10◦C and −50◦C. The proximity of the CloudSat ice-
only mean ratio with respect to H06 to R = 1 for temper-
atures warmer than −20◦C is surprising given the consid-
erably different distributions displayed in Figure 4(a) and
4(b). However, the relatively large rms differences indi-
cate a large spread of the IWC ratios between these two
products.

The mean ratio variation with temperature shows a
large difference between P07 and H06 in Figure 6(b). From
the formulas for H06 and P07, given by (2) and (4), this dif-
ference appears from the coefficients for the temperature-
only dependence, which are −0.00706 and −0.0023 respec-
tively, both in units of log10

(

kg m−3
)

◦C−1. Accounting
for the joint temperature-reflectivity coefficients in these
formulas, for a fixed reflectivity, H06 will estimate IWC
values that increase more rapidly as temperature decreases
than P07 estimates of IWC. For the coldest temperatures,
lower IWC with P07 could be due to the inclusion of tropi-
cal cirrus in its data set, whereas for warmer temperatures,
higher IWC retrievals with P07 are likely due to the ap-
plication of the Brown and Francis (1995) mass-diameter
relationship with Dmax rather than Dmean.

As with the ice-cloud occurrences shown in Figure 3,
the mean ratios in IWC may depend on regional differ-
ences in ice-cloud distribution. In particular, H06 is derived
from aircraft measurements in northern hemisphere midlat-
itudes, whereas P07 includes IWC distributions measured
in the tropics. The mean ratio comparison between dif-
ferent latitude bands is provided in Figure 7 using H06 as
the control. The mean ratios with respect to H06 look
similar for all three regions at temperatures warmer than
−50◦C where the radar observes at least 50% of the ice
clouds used for the retrieval. For the southern hemisphere
midlatitudes, however, the VarCloud-OA and VarCloud-
SA mean ratios with respect to H06 have both increased
at the coldest temperatures (below −50◦C) compared to
the other two regions. It should be noted that very little
ice cloud is observed by the radar at these colder temper-
atures in general, but also that the aircraft measurements
from which H06 has been derived do not contain any mea-
surements from southern hemisphere midlatitudes. A simi-
lar comparison using P07 as the control showed no different
behaviour from Figure 7 apart from the strong difference
in temperature variation that is apparent from Figure 6(b)
and is therefore not shown.

In Figure 8, the mean ratio in retrieved IWC given
by (11) is shown with control H06, but now versus the radar
reflectivity factor Ze, which is obtained from the CloudSat
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observations using (3). The mean ratio variation with re-
flectivity shows only a slight difference between the H06
and P07, as their coefficients for the reflectivity-only de-
pendence in (2) and (4) are similar, namely 0.0923 and
0.0939 log10

(

kg m−3
)

dBZ−1. CloudSat ice-only and Var-
Cloud show good agreement with H06 for lower reflectivi-
ties (Ze < −10dBZ) and are separated from a mean ratio
of 1 with H06 within their mean rms differences. At these
low reflectivities the CloudSat ice-only IWC retrieval has a
maximum mean ratio of 1.5 compared to the VarCloud-OA
retrieval.

Reflectivity dependence is shown for reflectivities up
to 10 dBZ, for only few reflectivities larger than 10 dBZ
occur in the data set from which H06 has been derived
(Hogan et al. 2006b). At high reflectivities (Ze > 0dBZ),
the VarCloud-SA product shows the best agreement with
H06, which can be expected since both retrievals explicitly
assume that all particles are spheres and they apply the
same mass-size relationship. The VarCloud-OA product
models ice particles as oblate spheroids for radar scattering,
which in the non-Rayleigh scattering regime implies a lower
IWC for the same reflectivity. This can be seen in Figure 8
as a shift to lower ratios compared to the VarCloud-SA ra-
tios for higher reflectivities where non-Rayleigh scattering
is likely to occur. The CloudSat ice-only product deviates
from H06 most notably at these high reflectivities, which
is likely due to the difference in treatment of non-Rayleigh
scattering.

6. Vertically integrated ice-cloud properties

In this section, VarCloud profiles of IWC and αv are
compared with MODIS retrievals of IWP and τ , as well as
〈re〉, although some precautions are necessary to ascertain
a like-with-like comparison.

Firstly, MODIS only retrieves cloud-ice properties for
a 1 km observation pixel when it has determined an ice-
cloud phase. The full cloud column is then assumed to
consist of ice, so that the measured reflectances associated
with the cloud column are attributed to ice-cloud optical
depth and ice water path. VarCloud, however, can dis-
tinguish liquid clouds and rain underneath ice clouds and
will only retrieve ice properties for the part of the cloud
it determines to be ice-phase. Furthermore, profiles that
only contain subvisual cirrus are likely to be detected as
ice-only by VarCloud, but may be missed by MODIS. The
occurrence of these possible mismatches in ice-cloud deter-
mination are summarised by their cumulative fraction of
all profiles versus latitude for daytime observations in Fig-
ure 9. Only the fraction of profiles indicated by the solid
black line in this figure (MODIS and VarCloud both deter-
mine ice-only cloud) will be used to generate the statistics
in this section.

Secondly, MODIS estimates IWP from its τ and 〈re〉

retrievals using (5), where 〈re〉 is dominated by the top 4
or 5 optical depths, so that any differences emerging from
the IWP comparison may be due to the application of this
method in contrast with the full IWC profile. This section
will therefore include a comparison between IWP estimated
using the MODIS method (5) with the VarCloud τ and
〈re〉, the latter restricted to cloud top, and IWP obtained
from the VarCloud IWC profiles.

Figure 10 shows the zonal mean of τ , 〈re〉, and IWP,
for VarCloud-OA, VarCloud-BR, and MODIS, using only
jointly observed ice-only values. A factor of 2 difference
between MODIS and VarCloud-OA estimates of mean τ is
apparent throughout nearly all latitudes in Figure 10(a).
Zhang et al. (2009) reported substantial differences be-
tween ice-cloud optical depth derived from MODIS and
from POLDER (“POLarization and Directionality of the
Earth’s Reflectances”), which is aboard another satellite
in the A-Train constellation. The POLDER optical depths
were found to be lower than MODIS with the mean ratio
between the two products being 0.81. Adjusting the ice
particle model to that used by the MODIS product (Baum
et al. 2005a,b), a much better agreement of mean opti-
cal depth between the two products was achieved (Zhang
et al. 2009). Similarly, a change in the VarCloud ice par-
ticle model affects the optical depth. To illustrate this,
we consider the VarCloud-BR retrieval, which assumes a
bullet rosette shape for ice particles instead of the Brown
and Francis (1995) assumption in VarCloud-OA. This re-
sults in higher retrievals of the visible extinction coefficient
αv with factors of 2 and higher differences in radar-only
observations (Delanoë and Hogan 2010), which are most
prevalent in deep ice clouds where the lidar signal is extin-
guished long before it reaches cloud base. Since the highest
τ retrievals from deep ice clouds dominate the zonal av-
erage, the change to the VarCloud-BR product leads to a
closer match with the MODIS average in Figure 10(a). The
VarCloud-BR product is introduced in this section to stress
the sensitivity of ice-cloud retrievals to the ice particle
model, not as a more appropriate method than VarCloud-
OA. Indeed, the assumption of bullet rosettes throughout
the ice-cloud profile would not provide a good fit to radar
observations from H06 in the temperature range from 0 to
−40◦C, while Brown and Francis (1995) performed very
well (Hogan et al. 2006b).

The VarCloud microphysical model consists of the Brown
and Francis (1995) mass-diameter relationship. Particle
size can be described by the effective radius (Foot 1988),
given by

re =
3

2

IWC

ρiceαv

, (14)

where ρice = 917 kg m−3 is the density of ice. VarCloud-
BR IWC and αv retrievals are affected differently by the
new ice particle assumption, depending on whether the
retrieval includes radar and/or lidar observations. How-

8



ever, from the direct comparison between VarCloud-OA
and VarCloud-BR retrievals of IWC and αv by Delanoë
and Hogan (2010), and using (14), lower re retrievals can
be expected from VarCloud-BR compared to VarCloud-
OA. Indeed, this difference between the two VarCloud re

retrievals appears from the zonal averages of mean effective
radii in Figure 10(b). The VarCloud-BR zonal average of
〈re〉 is comparable to the MODIS average in the tropics,
but they differ by a factor of 2 or higher for the midlati-
tudes. The VarCloud-OA zonal average of 〈re〉 appears to
be consistently about 10µm higher than the VarCloud-BR
retrieval.

The differences between the products observed for the
in-cloud zonal averages of τ and 〈re〉 do not simply trans-
late to the IWP comparison of Figure 10(c). From the
MODIS IWP retrieval (5) one may expect that the good
match between the VarCloud-BR and MODIS retrievals
of 〈re〉 and τ , particularly in the tropics, would lead to a
similarly good comparison between the two for IWP. How-
ever, the VarCloud-BR in-cloud zonal average of IWP, cal-
culated from the integral of IWC with height, is higher
than the MODIS average with typically a factor 2–4 differ-
ence in the tropics. VarCloud-OA instead provides good
agreement with MODIS in Figure 10(c), despite the poor
agreement in τ and 〈re〉.

Differences between products as observed through the
zonal averages of Figure 10 cannot immediately be at-
tributed to instrument and algorithm sensitivities. Fig-
ures 11(a–f) display histograms of joint probability distri-
butions of τ , 〈re〉, and IWP between MODIS and either
VarCloud-OA or VarCloud-BR. The shape of the distribu-
tion in Figure 11(a) is aligned with a fixed ratio between the
MODIS and VarCloud-OA retrievals of τ , with peak occur-
rences indicating that MODIS τ are consistently a factor
2 higher than VarCloud-OA, which explains the difference
in zonal mean τ from Figure 10(a). For VarCloud-BR, the
peak occurrences in the joint distribution in Figure 11(b)
spread from retrievals of τ that are a factor 2 lower than
MODIS to retrievals a factor 2 higher than MODIS. This
indicates that a cancellation of difference in retrievals of
high τ has led to a reasonable agreement in zonal mean τ
in Figure 10(a). Differences in high τ retrievals between
the two VarCloud products is consistent with the differ-
ences in αv for radar-only retrievals illustrated by Delanoë
and Hogan (2010). The joint distribution of the VarCloud
and MODIS τ retrievals shows a larger tail towards higher
τ for VarCloud-BR compared to VarCloud-OA, whereas at
the low τ end — where radar-only retrievals are less likely
— the two joint distributions show a similar spread.

A direct comparison between MODIS and the VarCloud
retrievals of 〈re〉 does not provide a consistent difference
between the products in Figures 11(c), and 11(d) that can
explain the differences in zonal averages from Figure 10(b).
For VarCloud-BR, the joint distribution with MODIS of

individual 〈re〉 retrievals has its peak stretched towards
a ratio of 1 between the two products in Figure 11(d)
compared to the distribution with VarCloud-OA in Fig-
ure 11(c), but the overall shape of the distributions indicate
a tendency of MODIS retrievals to lie between 20µm and
40µm, whereas both VarCloud products regularly retrieve
〈re〉 above 50µm. MODIS retrievals of 〈re〉 are dominated
by cloud top, yet a restriction of VarCloud 〈re〉 to the top 5
ice-cloud optical depths leads to a slight improvement only
for large 〈re〉 (not shown), whilst the shape of the distribu-
tion of joint 〈re〉 remains similar to that in Figures 11(c)
and (d), hence the sensitivity to cloud top does not explain
the basic difference between the two retrievals.

The differences in zonal averages of IWP in Figure 10(c)
are reflected in the joint distributions of IWP retrievals be-
tween MODIS and the VarCloud retrievals in Figures 11(e)
and (f). The VarCloud-OA joint distribution with MODIS
IWP in Figure 11(e) is centered around a ratio of 1, with
slightly higher MODIS retrievals of low IWP, which do not
contribute much to the zonal averages. Interestingly, the
VarCloud-BR IWP distribution stretches to lower values
than VarCloud-OA. VarCloud-BR generally retrieves lower
IWC values compared to VarCloud-OA for lidar-only ob-
servations of ice cloud (Delanoë and Hogan 2010), so that
cloud observed completely by the lidar, will have a lower
IWP retrieval from VarCloud-BR compared to a VarCloud-
OA IWP retrieval. Peak occurrences in the joint distribu-
tion of MODIS IWP with VarCloud-BR now appear at
higher values than for VarCloud-OA, where VarCloud-BR
IWP is more than a factor 2 higher than MODIS, which
explains the higher zonal averages for VarCloud-BR in Fig-
ure 10(c).

For the VarCloud retrievals it is possible to derive IWP
from τ and 〈re〉 using (5), simulating the method used by
MODIS. For liquid water clouds in the boundary layer,
a similar method to (5) exists to derive liquid water path
from optical depth and effective radius (derived from cloud
top), but an adjusted model is used to account for vari-
ations of liquid water content and effective radius with
height (Wood and Hartmann 2006). Such adjustments for
ice clouds to (5) could improve the IWP comparison be-
tween MODIS and VarCloud, and in Figures 11(g) and (h)
we show the difference between a retrieval using (5) and
IWP as the integral of IWC, both from VarCloud profiles
only, to investigate whether this difference in IWP retrieval
method can explain the differences in IWP seen in Fig-
ures 11(e) and (f). When applying (5) with Qext = 2, 〈re〉
is restricted to re retrievals from the top 5 optical depths of
ice clouds, whilst τ is restricted to a maximum value of 100
as in the MODIS retrievals, thus applying the MODIS sen-
sitivity restrictions. Both VarCloud retrievals show that
for τ up to about 10, the two methods for IWP retrieval
agree with a mean ratio that is within one rms difference of
1. The IWP method using (5) retrieves on average lower
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values than the integral over IWC for τ larger than 10,
reaching a mean factor of 2 or larger difference between
the two methods once τ exceeds 100. Such retrievals are
associated with deep ice clouds, where re can range from
10 µm at cloud top to 80 µm near the melting layer, so that
a restriction of 〈re〉 retrieval to the top of the cloud leads to
an underestimate of the IWP contribution from the lower
part of the cloud. The assumption in the IWP estimate us-
ing (5) of ice-cloud profiles with constant re breaks down
when cloud-ice properties vary over a wide range of scales
within the profile, which follows from the inequality below

IWP =
∑

[IWC × ∆z] =
2

3
ρice

∑

[reαv × ∆z] (15)

6= 2

3
ρice〈re〉τ .

Thus, for τ > 10, the difference in IWP retrieval methods
explains the difference in high IWP estimates seen in Fig-
ures 11(e) and (f) and consequently the large differences
in zonal mean IWP in Figure 10(c). For thin ice clouds,
however, the differences in Figures 11(e) and (f) for low
IWP estimates are not explained by the difference in IWP
retrieval methods, for 〈re〉 is a better characterization of
mean particle size for the full cloud-ice column and Fig-
ures 11(g) and (h) show that the two methods agree well.

7. Conclusions

A combined radar-lidar cloud-ice retrieval using Cloud-
Sat and CALIPSO measurements (Delanoë and Hogan 2010),
VarCloud, has been compared with coincident cloud-ice re-
trievals from the A-Train satellites. The advantages of a
multi-instrument algorithm have been illustrated by the
larger fraction of ice cloud observed by the combination
of radar and lidar compared to the single instruments, as
well as the greater range of IWC values obtained due to
the different sensitivities of each instrument.

The radiative impact of ice clouds depends on their full
IWC distribution, not just the mean or integrated values
(IWP), which will be weighted by the most optically thick
(parts of the) ice clouds. The retrievals that provide IWC
profiles have been shown to produce similar IWC distri-
butions with temperature, with typical differences of the
in-cloud median IWC at less than 50%. Factors of 2–7 dif-
ference in mean IWC values between the retrievals were
shown to be dominated by retrievals of high IWC with
low occurrence, due to differences between the methods in
the treatment of non-Rayleigh scattering for observations
of high Ze. Further evaluation of radar scattering models
with in situ measurements will be necessary to constrain
high IWC values.

Retrievals from passive and active satellite observations
were compared using MODIS and VarCloud for joint obser-
vations with ice-only cloud profiles. A change in the Var-
Cloud ice particle model did not explain the large spread

in the joint distribution of 〈re〉. A restriction of VarCloud
retrievals of 〈re〉 to the top 5 optical depths of ice cloud re-
duced the occurrence of high 〈re〉, but again had no impact
on the large spread of the distribution. The IWP com-
parison of MODIS with VarCloud-BR indicated a larger
spread in IWP from the latter retrieval, which was ex-
plained by underestimates of IWC for lidar-only observa-
tions and overestimates for radar-only observations when
bullet rosettes are used compared to oblate aggregates. A
direct comparison of different IWP retrieval methods using
the VarCloud profiles showed that an IWP retrieval using
τ and 〈re〉 was in good agreement with the IWC profile for
τ < 10, but was reduced by a factor of 2 or more when
τ > 100.

The sensitivity of VarCloud to its ice particle model
indicated that these assumptions partly explain differences
with MODIS retrievals, whereas differences in IWP for high
τ were also affected by the IWP retrieval method. The
poor agreement in 〈re〉 between MODIS and VarCloud in-
dicated a large uncertainty for this variable arising from
the satellite and algorithm sensitivities, with MODIS as-
suming a constant multiple-habit ice particle distribution
throughout the profile, determined by particle size mea-
surements near the cloud top; and VarCloud assuming a
single-habit ice particle distribution with sizes that may
vary throughout the cloud column. The lack of agreement
in 〈re〉 for thin ice cloud, where MODIS reflectances can be
assumed to come from the entire cloud column and where
the MODIS IWP retrieval method for VarCloud shows
good agreement with the full IWC profile, indicated that
further cross-validation of these satellite retrievals requires
a greater flexibility to test with different ice particle models
within each algorithm.
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Product Mass-area-size relationship Radar scattering model Particle size distribution
VarCloud-OA (Delanoë and Hogan 2010) Aggregates Oblate spheroids (T-matrix) “Normalised”
VarCloud-SA Aggregates Spheres (Mie scattering) “Normalised”
VarCloud-BR Bullet rosettes Spheres (Mie scattering) “Normalised”
Formula IWC(Z,T )
(Hogan et al. 2006b; Protat et al. 2007) Aggregates Spheres (Mie scattering) Fit to aircraft distributions
CloudSat IWC (Austin et al. 2009) Equivalent volume Spheres (Parameterized Mie) Lognormal
MODIS IWP (King et al. 2006) Habit mixture N/A Gamma distribution

Table 1. A summary of the products used for comparison and their ice particle assumptions for calculating scattering properties. Products with
“aggregates” make use of the Brown and Francis (1995) mass-diameter relationship and Francis et al. (1998) area-size relationship. “Habit mixture”
stands for size-dependent distributions of plates, hollow columns, bullet rosettes, and aggregates as formulated by Baum et al. (2005a). “Bullet
rosettes” employs the Mitchell (1996) mass-area-size relationship. “Equivalent volume” assumes the equivalent spherical volume for the ice crystal
(Stephens et al. 1990). The radar scattering model is most relevant to retrievals with high Ze and relates to the shape assumption for large particles
in the non-Rayleigh scattering regime. For the CloudSat product, “Parameterized Mie” uses Mie theory with a correction factor and is derived from
Benedetti et al. (2003). The “normalised” size distribution used in the VarCloud retrievals is described in Delanoë et al. (2005).
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Fig. 1. CloudSat observations from orbit 01126 and collocated MODIS and CALIPSO data, 14th July 2006, 16:36:23–
16:39:04 UTC. (a) Attenuated backscatter coefficient observed by the lidar. (b) Radar reflectivity factor Ze observed by
the CloudSat radar. (c) IWC retrieved by VarCloud-OA. (d) IWC from the CloudSat ice-only product. (e) Optical depth
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Fig. 2. (a–d) Probability of observing ice cloud in the subzero troposphere for a given temperature Tj and latitude k, i.e.
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Fig. 4. IWC versus T frequency distribution for all skies, that is P(IWCx ∧ Tj). Values are weighted averages over
orbits and latitudes and are represented as the probability density per ◦C per log
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(
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)

. For (a–e) we also show
the in-cloud median (solid) and weighted mean (dashed) IWC at each temperature. For (f–h) the dashed line indicates
the IWC retrieved by H06 at the CloudSat sensitivty threshold of −28 dBZ. Data are from July 2006.
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Fig. 11. (a–f) An ice-cloud-only comparison between MODIS and VarCloud for joint ice-cloud retrievals in terms of τ
with (a) VarCloud-OA and (b) VarCloud-BR; in terms of 〈re〉 with (c) VarCloud-OA and (d) VarCloud-BR; in terms of
IWP with (e) VarCloud-OA and (f) VarCloud-BR. (g–h) A comparison between IWP retrievals showing the ratio between
IWP retrieved using (5) with 〈re〉 for the top 5 cloud optical depths and max(τ) < 100, divided by IWP as the integral
over IWC, versus VarCloud retrievals of τ , for (g) VarCloud-OA and (h) VarCloud-BR. Data are from July 2006 and only
joint observations of ice-only profiles are included. Dashed lines in (a–f) indicate the 1 : 1 ratio. Solid lines in (g–h) show

the mean ratio and dashed lines show rms differences. Probability densities are per [log10]
2

for τ , per [µm]
2

for 〈re〉, per
[

log10 kg m−2
]2

for IWP, and per [log10 log2] for mean IWP ratio versus τ .
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