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Calculating the millimetre-wave scattering phase function
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Exploitation of millimetre-wave radiometer and radar observations of ice clouds and snow
requires the ability to model the scattering properties of snowflakes. This article extends
the Self-Similar Rayleigh–Gans Approximation (SSRGA) for rapid computation of the
backscatter cross-section of ice aggregates, to compute the full scattering phase function,
the scattering and absorption cross-sections and the asymmetry factor. We also show that
the Rayleigh–Gans Approximation (RGA) may be improved to represent the enhanced
scattering and absorption when the monomers from which the aggregate is composed are
non-spherical. The new model is shown to perform well when compared to benchmark
94 and 183 GHz Discrete Dipole Approximation (DDA) calculations of the scattering by
simulated unrimed aggregates of maximum dimension up to 1 cm that have a mass–size
relationship in the range observed from aircraft. For denser particles, such as would result
from riming, the validity of the underlying RGA becomes questionable and both the
backscatter and scattering cross-sections can be underestimated by a factor of 2.
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1. Introduction

Recent years have seen increasing use of both passive and
active millimetre-wave observations of ice clouds and snow from
space. Cloud-affected millimetre-wave radiometer observations
with frequencies up to 183 GHz are shortly to be operationally
assimilated into a numerical weather prediction (NWP) model
(Geer et al., 2014), with sub-millimetre instruments under active
consideration for future deployment (e.g. Buehler et al., 2007).
In terms of active observations, the 94 GHz CloudSat radar has
been used to evaluate ice clouds and snow in NWP models
(Delanoë et al., 2011) and has been assimilated into models
(Janisková et al., 2012). Such measurements will be continued with
the Dopplerized 94 GHz radar on the forthcoming EarthCARE
satellite (Illingworth et al., 2015). Radars with frequencies up to
220 GHz have been proposed for future ground-based and satellite
deployment (Hogan and Illingworth, 1999; Battaglia et al., 2014).

Correct interpretation of such measurements in a variational
retrieval or data assimilation scheme requires a fast ‘forward
model’ which takes as input a profile of estimated atmospheric
properties, and predicts the corresponding radiance or apparent
radar reflectivity. Strong scattering of millimetre wavelengths by
ice particles means that a good estimate of their scattering cross-
section is required, along with a measure of the preference for

forward over backward scattering. For example, the ‘RTTOV-
SCATT’∗ radiance model (Bauer et al., 2006), used in operational
data assimilation, characterizes the scattering pattern by the
fraction of scattered radiation that is in the backward hemisphere.
The multi-sensor cloud and precipitation retrieval algorithm for
EarthCARE (Illingworth et al., 2015) represents radar multiple
scattering with the Hogan and Battaglia (2008) model, which
characterizes the scattering pattern by the asymmetry factor g,
equal to the average of the cosine of the scattering angle.

The state-of-the-art approach to estimate the scattering
properties of snowflakes is to apply the Discrete Dipole
Approximation (DDA; Draine and Flatau, 1994) to a large number
of realistic 3D particles, but this is very computationally costly. For
the radar backscatter problem, much cheaper alternatives exist.
For particles no larger in size than the wavelength of the radiation,
Matrosov et al. (2005) and Hogan et al. (2012) demonstrated
that they may be treated as oblate, horizontally oriented ‘soft
spheroids’ with an aspect ratio of around 0.6, composed of a
homogeneous mixture of ice and air. For larger ice particles
the internal structure becomes important, and soft spheres or
spheroids give an increasingly poor estimate of the scattering

∗RTTOV = Radiative Transfer model for TIROS Operational Vertical Sounder.
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properties as the particles get larger (e.g. Petty and Huang,
2010; Tyynelä et al., 2011; Geer and Baordo, 2014). However,
since the density of large aggregates is low, the Rayleigh–Gans
Approximation (RGA) has been found to be valid (Matrosov,
1992; Westbrook et al., 2006; Tyynelä et al., 2013; Leinonen et al.,
2013). In this approximation, the electric field experienced at any
point in the particle is approximated by the incident field, thereby
neglecting interaction between dipoles. The backscatter cross-
section may then be estimated numerically from a 1D description
of the structure of the particle in the direction of the incident
wave.

Hogan and Westbrook (2014) showed that, for realistic
aggregates, this 1D function has a self-similar structure, and
hence that its power spectrum can be represented by a power
law. They referred to this as the Self-Similar Rayleigh–Gans
Approximation (SSRGA). It leads to an analytic function for the
average backscatter of an ensemble of particles of a particular
size, in which their structure is described by just four parameters:
their aspect ratio, a kurtosis parameter describing the extent to
which the ice is concentrated in the centre of the particle, and
two parameters describing the power law. Hogan and Westbrook
(2014) estimated these parameters for snowflakes generated by
the aggregate model of Westbrook et al. (2004).

In this article, the SSRGA is extended to predict the full
scattering pattern of snowflakes at millimetre wavelengths,
enabling it to be used in both radar multiple-scattering and
radiance models. Section 2 describes the theoretical basis for
this extension, including an improvement to the underlying
RGA to represent the enhanced scattering and absorption by
aggregates composed of non-spherical monomers. In section 3,
the five parameters used by the new SSRGA to describe the
spatial structure of aggregates are computed for synthetic particles
generated by the Westbrook et al. (2004) and Nowell et al. (2013)
models. Then in section 4, the scattering properties predicted by
SSRGA are compared to benchmark DDA calculations performed
on the same aggregates.

2. Theory

2.1. The Rayleigh–Gans approximation

The Rayleigh–Gans approximation is applicable when a particle
interacts only weakly with the incident radiation such that
the electric field experienced at any point in the particle
may be approximated by the incident field. Essentially each
volume element behaves as an independent Rayleigh scatterer,
and the scattered field in any direction may be found by
coherently summing the contributions from all volume elements
in the particle. For particles whose geometries can be described
analytically, this leads to analytic forms for the scattering
properties. In the backscatter direction, we write the backscatter
cross-section as a modification of Rayleigh scattering:

σb = 9

4π
k4|K|2V2φ(x), (1)

where V is the volume of the particle (in the case of an ice
particle it is the volume of ice excluding air) and k = 2π/λ is the
wavenumber where λ is the wavelength in vacuum. (Note that
(1) gives the ‘radar’ backscatter cross-section with units of m2,
but in some conventions there is an extra factor of 4π in the
denominator to yield cross-section per unit solid angle with units
m−2 sr−1.) Two terms lead to a deviation from classical Rayleigh
theory:

• The term φ(x), where x = kD, expresses the deviation from
Rayleigh scattering due to the particle size in the direction
of propagation, D, no longer being small compared to the
wavelength. For small particles, φ � 1 and (1) reverts to
the expression for Rayleigh scattering (e.g. van de Hulst,
1957, section 20.42). When the size of the particle becomes

significant compared to the wavelength, then destructive
interference from the nearest and furthest parts of the
particle leads to a reduction in the backscatter, and φ drops
below 1. For ice aggregates, it may be represented using the
SSRGA, described in section 2.2.

• The K term expresses the polarizability of the medium, and
traditionally the RGA follows Rayleigh scattering and uses
the Claussius–Mossotti factor

KCM = ε − 1

ε + 2
, (2)

where ε is the complex dielectric constant of solid ice.
However, this formula makes the implicit assumption
that the aggregate is composed of spherical monomers.
Section 2.3 describes how to compute K for more realistic
non-spherical ice monomers, leading to systematically
more scattering and absorption for the same volume of
ice; a formula for the absorption cross-section is also
provided.

After describing how the modified terms in (1) are derived to get
an accurate estimate of the backscatter cross-section, section 2.4
then describes how the full scattering phase function may be
computed, and from that the scattering cross-section. Section 2.5
then outlines the limited extent to which SSRGA can predict
polarization properties.

2.2. The self-similar Rayleigh–Gans approximation

The exact form of φ(x) depends on the internal structure of the
particle. In the case of ‘soft spheres’ consisting of a homogeneous
mixture of ice and air, Eq. 2 of Hogan and Westbrook (2014) can
be rearranged to obtain

φsphere(x) = 9

(
sin x − x cos x

x3

)2

. (3)

This expression has minima at regular intervals in x where the
backscattering falls to exactly zero due to perfect destructive
interference from different parts of the particle. Only a small
modification is required to represent scattering by homogeneous
spheroids.

Various studies (e.g. Petty and Huang, 2010; Tyynelä et al.,
2011) have found that, for realistic ice particles at millimetre
wavelengths, the spherical or spheroidal approximation embodied
in (3) underestimates backscatter to an increasing extent as
x increases. This is because real ice particles have structure
at all scales, so there is much less destructive interference in
the backscatter direction. Hogan and Westbrook (2014) found
that the internal structure of irregular ice aggregates could be
characterized statistically by three parameters, leading to an
expression for the mean backscatter of an ensemble of particles of
the same size with statistically similar properties. In the context
of (1), this leads to the SSRGA:

φSSRGA(x) =π2

4

[
cos2(x)

{(
1 + κ

3

)( 1

2x+π
− 1

2x−π

)

−κ

(
1

2x+3π
− 1

2x−3π

)}2

+ β sin2(x)
n∑

j=1

ζj(2j)−γ

×
{

1(
2x+2π j

)2 + 1(
2x−2π j

)2

} ]
. (4)

The physical interpretation of the three parameters of Hogan
and Westbrook (2014) is as follows.
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• The kurtosis parameter, κ , describes the mean structure
of the particle and specifically the extent to which ice
is concentrated toward the centre. Thus a positive value
indicates mass concentrated toward the centre with only
tenuous outer parts, while a negative value indicates a more
uniform distribution.

• The power-law prefactor, β, describes the amplitude of the
random fluctuations in structure relative to the amplitude
of the mean structure.

• The power-law exponent, γ , describes the extent to which
smaller-scale structures in the particle have a smaller
amplitude.

Hogan and Westbrook (2014) analyzed realistically simulated
aggregates from the Westbrook et al. (2004) model to suggest
typical values for these numbers. In practice, two further
parameters are required in order to apply SSRGA optimally:

• The effective aspect ratio, αeff = D/Dmax is the ratio of
particle size in the direction of propagation, D, to the
maximum dimension of the particle in any direction,
Dmax. In the case of horizontally aligned ice aggregates
being observed by vertically pointing radar, this becomes
the actual aspect ratio α, and Hogan et al. (2012) showed
that a value of 0.6 was reasonable. In the case of simulating
radiances observed at arbitrary angles, or radar multiple
scattering, it is more appropriate to treat the particles
as being randomly oriented with respect to the incident
radiation, in which case we would expect α < αeff < 1.

• In (4) we have introduced an additional parameter ζj that
adds the flexibility for the amplitude of the structure at a
particular wavenumber index j to be modified from that
predicted by the power law. This is because in practice we
find the amplitude of the first component of the power law
to be significantly less than that predicted by the power law.
The fractional reduction is described by the parameter ζ1,
while for all other wavenumbers no reduction is required
(i.e. ζj = 1 for j > 1).

The five parameters affect scattering behaviour in different ways,
and their relative importance changes depending on the size of
the particle relative to the wavelength, i.e. the value of x. For
particles of a similar size to the wavelength, non-Rayleigh effects
are governed by destructive interference between scattering from
one side of the particle and the other. This is determined by
the concentration of mass in the centre of the particle, which
is affected in equal measure by the αeff and κ parameters. For
much larger particles, the degree of scattering is dominated by
the amount of structure within the particle at a scale similar to
the wavelength. This is proportional to the energy in the power
spectrum over a range of wavenumbers centred at j � x/π . The
power spectrum is described by β and γ , so both are important
for large-particle scattering. The final term, ζ1, only affects one
point in the power spectrum that is only really important for
intermediate sizes.

2.3. Representing non-spherical monomers

If we use the Claussius–Mossotti value of K in (1), then in the
limit of a small particle compared to the wavelength (i.e. when
the ‘aggregate’ is reduced to just a single monomer crystal), the
backscatter cross-section will be the same as that predicted by
Rayleigh theory. However, Rayleigh theory is applicable only for
spheres, so this is implicitly making the assumption that the
monomer crystals are spherical, which of course they are not.
The extension of Rayleigh theory to non-spherical particles that
are nonetheless much smaller than the wavelength is commonly
attributed to Gans and leads to a different value of K depending on
the shape and orientation of the particle. We make the assumption
that, if an isolated ice crystal scatters according to Gans theory
with a particular value of K, then a larger aggregate composed of a

number of ice crystals of the same shape will scatter according to
Rayleigh–Gans theory with the same value of K. This assumption
is tested in section 4.

Gans theory describes the polarizability of a particle such that
the effective dielectric factor along a primary axis x of the particle
may be written as

Kx = (ε − 1)/3

1 + (ε − 1)Lx
, (5)

and similarly for the other axes y and z, where Lx, Ly and Lz are
geometric factors characterizing the shape of the particle. For a
sphere, L = 1/3 for all axes and it can be seen that Kx returns to
the Claussius–Mossotti value in (2). Equations for the L terms
were provided by van de Hulst (1957) for oblate and prolate
spheroids as a function of their aspect ratio, and more recently
Westbrook (2014) provided equations for hexagonal columns
and plates:

Lx = Ly =1

4

(
1 − 0.5α−0.9

1 + 0.5α−0.9
+ 1

)
,

Lz =1

2

(
1 − 3α

1 + 3α
+ 1

)
,

⎫⎪⎪⎬
⎪⎪⎭ (6)

where α is the aspect ratio using the convention that numbers
greater than 1 correspond to columns (note that this is the
opposite convention to that used by Westbrook, 2014). Here, z
is the axis of rotational symmetry in the case of spheroids and
the axis of sixfold rotational symmetry in the case of hexagonal
columns and plates. The geometric factors are the same in the x
and y directions, and so Lx = Ly and Kx = Ky.

Gans theory has been applied in radar meteorology to compute
the backscatter cross-section to horizontally and vertically
polarized radiation of horizontally aligned oblate raindrops
(Seliga and Bringi, 1976) and ice particles (Westbrook, 2014). In
the present article we consider the individual monomer crystals
within the aggregate to be randomly oriented. Therefore each
axis contributes equally to the average dielectric factor of non-
spherical particles, KNS, defined as:

K2
NS = 1

3

(
K2

x + K2
y + K2

z

)
= 2

3
K2

x + 1

3
K2

z . (7)

The backscatter cross-section (1) and scattering cross-section
are each proportional to |KNS|2, so we may define a non-
spherical scattering enhancement factor |KNS|2/|KCM|2, where
KCM is the Claussius–Mossotti value for spheres. This is plotted
in Figure 1(a) for 94 GHz, where it can be seen that randomly
oriented non-spherical particles scatter systematically more than
spheres of the same volume. This is because the increase in
polarizability along the longest axes of non-spherical particles is
larger than the decrease in polarizability along their shortest axes,
leading to a net increase in the induced dipole moment, and
hence in the intensity of the scattered radiation.

The dielectric factor K appears in a different way in the case of
absorption cross-section, which in the Rayleigh approximation
(e.g. van de Hulst, 1957) may be rewritten in terms of particle
volume as

σa = 3kV Im(−K), (8)

where Im denotes the imaginary part. Since in the RGA the electric
field at any point in the particle is approximated by the incident
field, the absorption cross-section is the same as predicted by
Rayleigh theory, although with the modified value of K. Thus we
are also concerned with the value of Im(−K), noting that this is
a positive number in the convention that the imaginary part of
ε is negative. Figure 1(b) depicts the non-spherical absorption
enhancement Im(−KNS)/Im(−KCM), which is again larger for
non-spherical particles than for spheres.
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Figure 1. (a) Scattering enhancement factor due to the non-sphericity of monomers, versus aspect ratio, where the monomers are assumed to be randomly oriented
within the aggregate. This factor is equal to |KNS|2/|KCM|2, where KNS is as computed in section 2.3 and KCM is the equivalent Claussius–Mossotti value. (b) The
corresponding absorption enhancement factor, equal to Im(−KNS)/Im(−KCM). The solid lines were computed from the geometric factors appropriate for hexagonal
plates and columns, while the dashed lines were computed from geometric factors appropriate for oblate and prolate spheroids. Note that these functions are virtually
identical at all microwave frequencies.

The improvements to scattering and absorption via the use of
KNS are verified against DDA calculations in section 4.2. Gans
theory has been adapted only to simple shapes such as columns
and plates, whereas the comparisons later in the article use bullet-
rosette monomers. We find that the enhancements from assuming
a hexagonal columnar monomer with an aspect ratio of 4 matches
closely the DDA simulations of low-density aggregates composed
of bullet-rosette monomers. Specifically, this aspect ratio predicts
a scattering enhancement of 25% and an absorption enhancement
of 38% at all microwave frequencies.

2.4. The scattering phase function and scattering cross-section

We wish to extend the SSRGA to compute all scattering
properties including the full scattering phase function, neglecting
polarization in the first instance. This is achieved by extending
(1) to all directions, recognizing that the scattering amplitude
in any direction is determined by the degree of destructive
interference from all the different parts of the particle. In the
case of homogeneous spheres, this may be calculated from
geometry following van de Hulst (1957): in the backscatter
direction (scattering at an angle θ of 180◦), the maximum
difference in path length between two light rays each being
scattered just once is 2D. For scattering in an arbitrary direction,
the maximum difference in path length is reduced to 2D sin(θ/2).
In the forward direction there is no difference in path length and
only constructive interference, leading to a preference for forward
scattering. Thus, we may compute the scattering in any direction
by using the same function φ(x) but scaling its argument by
sin(θ/2); therefore the equivalent of (1) for scattering angle θ is

σs(θ) = 9

4π
k4|K|2V2 φ {x sin(θ/2)} 1 + cos2 θ

2
. (9)

Here, σs(θ) is defined as geometric cross-sectional area of an
idealized particle that scatters all radiation incident upon it
isotropically, and scatters the same amount of energy by angle θ

as the actual particle. Since each volume element acts as a Rayleigh
scatterer, we have introduced the Rayleigh ‘dumb-bell’ scattering
pattern via the (1 + cos2 θ)/2 term.

If we can compute the scattering in any direction then the
scattering cross-section is found by integrating over all angles:

σs = 1

2

∫ π

0
σs(θ) sin θ dθ. (10)

Lord Rayleigh solved this analytically for spheres, although
his solution contained the cosine integral so would be as easy
nowadays to integrate numerically.

2.5. Polarization considerations

Since the RGA treats a particle as a collection of non-interacting
Rayleigh scatterers, it predicts the same very simple polarization
properties as Rayleigh theory. In the backscatter direction,
relevant for radar remote sensing, it predicts zero depolarization.
This is a reasonable first-order approximation: Matrosov et al.
(1996) observed the radar depolarization ratio of ice aggregates
to be only around 5%. It also predicts that the radar backscatter
of horizontally oriented particles viewed from the side should
not depend on the axis of polarization of the transmitted wave.
Hogan et al. (2012) reported observations of ice aggregates for
which the 3 GHz radar backscatter was around 10% (0.5 dB)
greater for horizontally than vertically polarized radiation. This
suggests that we should not expect RGA backscatter calculations
for ice aggregates to have an uncertainty of less than 10%.

At scattering angles other than 180◦, we can adapt the
predictions of Rayleigh theory to RGA. If the Plane of Scattering
is defined as the plane containing the directions of propagation of
both the incident and scattered radiation, then we may consider
the incident radiation to be composed of a component polarized
perpendicular to the plane (with intensity I⊥) and another
polarized parallel to it (with intensity I‖), and consider the
scattering of these components separately. Thus, the scattering of
I⊥ will be completely polarized in exactly the same direction, with
a scattered intensity governed by a modified version of (9) of the
form

σ⊥(θ) = 9

4π
k4|K|2V2 φ {x sin(θ/2)} . (11)

Likewise, the scattering of I‖ is also completely polarized and the
direction of polarization of the scattered radiation is also parallel
to the Plane of Scattering, but this time the scattered intensity is
governed by

σ‖(θ) = 9

4π
k4|K|2V2 φ {x sin(θ/2)} cos2 θ. (12)

The polarization state of the scattered radiation can therefore be
found from the relative magnitudes of I‖ and I⊥. For unpolarized
incident radiation (I‖ = I⊥) the total scattering is found by
averaging (11) and (12), which correctly yields (9). But even
for unpolarized incident radiation, the scattered radiation can
be polarized, and as with Rayleigh scattering, the radiation
scattered at an angle of θ = 90◦ is completely polarized because
σ⊥(90◦) = 0. Note that the evaluation of the SSRGA model in the
remainder of this article considers only unpolarized radiation.

3. Fitting SSRGA parameters to synthetic aggregates

In this section, the five dimensionless parameters used by SSRGA
to describe the structure of ice particles are estimated. The

c© 2016 Royal Meteorological Society Q. J. R. Meteorol. Soc. (2017)



Millimetre-Wave Phase Function of Snowflakes

Figure 2. Two-dimensional images of aggregates generated by the Nowell et al.
(2013) model with maximum dimensions of close to 2, 4 and 8 mm. The
monomers were bullet rosettes with maximum dimension 200 μm. The shading
indicates the amount of ice in the third dimension.

SSRGA computes scattering parameters that are an average over
an ensemble of particles of the same size. Therefore, to evaluate
the scattering phase function we use two aggregate models to
simulate a number of 3D aggregates of around the same size.
We characterize the ice particles according to their maximum
dimension Dmax, the maximum distance between any two dipoles
in the lattice. This article is primarily concerned with the scattering
cross-section and scattering phase function in contexts where
many scattering events may have taken place, and so the radiation
incident on a particle is from a random direction with respect
to the particle orientation. Therefore, we treat the particles as
randomly oriented. Note that the backscatter cross-section of
horizontally oriented particles can still be computed for a specific
radar viewing angle by ensuring that for backscatter only, the
αeff value used is the ratio of the particle size in the direction of
propagation to the maximum dimension (Hogan et al., 2012).

3.1. Synthetic aggregate models

Two aggregate models are used to generate synthetic particles.
The first was devised by Nowell et al. (2013) and uses bullet-
rosette monomer crystals of either 200 or 400 μm in size. In this
model the particle is described on a Cartesian lattice with each
cell of the lattice being either completely full of ice or completely
empty. Individual monomers are added one by one to an existing
aggregate, and their placement is random, but with the constraint
that a new monomer must touch but not overlap the existing
ice in the lattice. The second model was devised by Westbrook
et al. (2004) and attempts to simulate the process of aggregation
physically. A population of particles is simulated simultaneously,
each particle initially being a bullet-rosette monomer 400 μm in
size (in the implementation used in this article). Pairs of particles
collide and stick at the first point of contact. This process is
repeated, with the orientation of the particles being randomized
between each collision. For further details about the models, the
reader is referred to these two articles.

Example particle images from the Nowell et al. (2013) model
using 200 μm monomers are shown in Figure 2, and from the
Westbrook et al. (2004) model in Figure 3. The two models
produce particles with a rather different character: the Nowell
et al. (2013) aggregates tend to have a dense core, while the
Westbrook et al. (2004) aggregates have a more open structure.
Of most relevance for microwave scattering is the mass of a
particle, and specifically for this article, the applicability of the
RGA relies on the particle density being quite low. Figure 4 depicts
the volume fraction for particles generated by the two models as
a function of size, i.e. the volume of ice in the particle, V , divided
by the volume of a sphere of diameter Dmax. For reference, three
empirical relationships are shown. The first two were derived
from aircraft observations of size distributions dominated by

Figure 3. As Figure 2, but for aggregates generated by the Westbrook et al. (2004)
model with maximum dimensions of close to 2, 4 and 8 mm. The monomers were
bullet rosettes with maximum dimension 400 μm.
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Figure 4. The volume fraction of aggregates generated by the Nowell et al. (2013)
model (using bullet-rosette monomers of either 200 or 400 μm in size) and the
Westbrook et al. (2004) model (using bullet-rosette monomers of 400 μm in size),
as a function of maximum dimension, where V is the volume of ice in the particle.
The volume fractions for three mass–size relationships are also plotted and are
described in the text. The Brown and Francis (1995) relationship is not shown
for Dmax > 6 mm, which is outside the range for which this relationship has been
verified.

unrimed ice aggregates: the relationship of Brown and Francis
(1995), when expressed in SI units in terms of Dmax (Hogan et al.,
2012), has the form

m = 0.0121D1.9
max, (13)

where m is the particle mass. It was found by Hogan et al. (2006)
and Hogan et al. (2012) that this relationship provided an excellent
fit between in situ aircraft estimates and simultaneous radar
observations of three different radar variables in the Rayleigh-
scattering regime, for stratiform clouds at temperatures between
−10 and −47◦C. The second relationship is from Heymsfield
et al. (2013), who used a large, state-of-the-art aircraft database
at temperatures between 0 and −86◦C to fit the following (in SI
units):

m = 0.0824D2.1
max. (14)

Simultaneous observations of size distributions and snow
accumulation at the surface tend to show snowflakes to be
denser than those observed by aircraft, presumably due to the
higher occurrence of riming near the surface. For example, Tiira
et al. (2016) found that a large database of snow observations
at a surface site in Finland were consistent with the following
relationship (SI units):

m = 0.102D1.996
max . (15)
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Figure 5. Illustration of the extraction of the parameters describing the structure of aggregates needed by the SSRGA, using randomly oriented aggregates generated
by the Nowell et al. (2013) model from 200 μm monomers. Panels (a)–(c) characterize the mean shape of particles with maximum dimension of 2, 4 and 8 mm. The
black solid line shows the mean normalized A(s) function of the simulated aggregates, with the shaded region indicating one standard deviation. The dashed line fits
this with the Afit(s) function given by (16). Panels (d)–(f) characterize the internal structure of the same particles. The grey dots indicate power spectra of the internal
structure, i.e. of deviations from the fit in real aggregates. The dashed line indicates that at lower wavenumbers corresponding to structure larger than individual
monomers, this may be fitted by a power law proportional to β(2j)−γ , where γ = 7/3 for these particles.

In Figure 4 it can be seen that the Westbrook et al. (2004)
aggregates typically lie between the two aircraft-derived curves,
while the Nowell et al. (2013) aggregates are significantly denser
and are consistent with rimed snowflakes observed at the surface.
Thus the two aggregate models provide an opportunity to test the
validity of the RGA (on which the SSRGA relies) both for unrimed
particles, and for particles with a density typical of snowflakes
which have experienced some degree of riming.

Even if their mass–size relationships are realistic, the
morphology of synthetic aggregates is an imperfect representation
of reality, which may limit the applicability of the results
somewhat. Observations of aggregates in cirrus clouds colder
than −25◦C find that aggregates composed of up to around ten
bullet-rosette monomers are common (Heymsfield et al., 2002;
Um and McFarquhar, 2007); their appearance in airborne probe
imagery is very similar to the Westbrook et al. (2004) aggregates
up to 2 mm in size (e.g. the smallest image in Figure 3). For larger
particles, intended to represent snowflakes at higher temperatures,
we simply considered aggregates composed of more monomers
of the same size, rather than increasing the monomer size. This
is partially justified by the finding of Hogan and Westbrook
(2014) that the SSRGA is insensitive to the shape of the monomer
particles, provided that they are considerably smaller than the
wavelength of the radiation. High-resolution imagery of free-
falling snow aggregates at the surface show them to be commonly
composed of dendrites (e.g. Garrett and Yuter, 2014), crystals
that themselves have structures at much smaller scales. Therefore,
the synthetic aggregates used in this article should be sufficient to
test the validity of SSRGA for large particles, but there remains
a need for future work to derive the five SSRGA parameters for
alternative 3D models of snow aggregates.

3.2. Fitting SSRGA parameters

The five properties needed by the SSRGA were described in
section 2.2. The process to estimate them is similar to that
described by Hogan and Westbrook (2014). Suppose that we

have n 3D aggregates of a particular size. To reduce statistical
uncertainty, we reorient each particle randomly 50 times, and
sample each reoriented particle along its three orthogonal
directions, yielding a total of 150n samples. For each sample,
a 1D function A(s) is generated consisting of the total area of
ice intersected by a plane at distance s. The maximum extent of
the particle along this dimension is D used in the SSRGA. Since
particles are usually characterized by their maximum dimension
Dmax, we compute the first property, the effective aspect ratio:
αeff = D/Dmax, where the average is taken over the 150n samples.

The second property characterizes the extent to which the mass
is concentrated toward the centre of the particle. This is done by
normalizing the A(s) function in two ways: the dimension s is
divided by D̄ so that the average particle extent in this dimension
is unity, and it is offset in s so that the ‘centre of gravity’ is
at s = 0. It is then normalized so that the integral of A in this
range is 1, and the 150n normalized functions are averaged in
the range −0.5 to +0.5. This results in the solid black lines in
Figures 5(a)–(c) for Nowell et al. (2013) aggregates composed
of 200 μm bullet rosettes, and the same in Figures 6(a)–(c) for
Westbrook et al. (2004) aggregates. The grey region indicates the
one-standard-deviation variability of individual samples from the
mean. The mean shape is then fitted by the function

Afit(s) = π

2

{(
1 + κ

3

)
cos(π s) + κ cos(3π s)

}
, (16)

where the kurtosis parameter κ is chosen to give the same variance
as the actual mean function. It can be seen that (16) provides a
reasonably good fit to the mean shape, and κ quantifies something
that can be seen visually in Figures 2 and 3: as the Nowell et al.
(2013) particles get larger they tend to concentrate more mass
in the centre with increasingly tenuous extremities, while the
Westbrook et al. (2004) particles are more self-similar; their
structural parameters vary less with size.

Next we characterize the internal structure of the particle.
The functional fit Afit(s) is subtracted from each individual A(s)
function to yield purely the deviation from the mean shape.
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Figure 6. As Figure 5, but for aggregates generated by the Westbrook et al. (2004) model, and fitting the power spectra by power laws with γ = 2.

Power spectra are then computed for each sample in the range
−0.5 < s < 0.5, and averaged in wavenumber space. The results
are shown in Figures 5(d)–(f) and 6(d)–(f). The low wavenumber
structure, corresponding to scales larger than that of individual
monomers, exhibit self-similar behaviour since the spectra are
well fitted by power laws shown by the dashed lines. The slope
of the power law is close to γ = 7/3 for the Nowell et al.
(2013) aggregates and γ = 2 for the Westbrook et al. (2004)
aggregates. The difference is likely to be because the Westbrook
et al. (2004) model allows one aggregate to join onto another,
maintaining more structure at all scales, whereas the Nowell
et al. (2013) model only allows an aggregate to grow by accreting
single crystals, leading to a more ‘foam-like’ structure. Note that
a slope of γ = 2 is steeper than the 5/3 found by Hogan and
Westbrook (2014) for the Westbrook et al. (2004) aggregate
model, but their fitting procedure was slightly different and only
particles of one size were analyzed. The steeper power spectrum
at high wavenumbers corresponds to monomer scales, but these
do not affect the scattering properties significantly provided that
the wavelength of the radiation is larger than the smallest scales
present in the particle.

Finally, the β and ζ1 parameters are estimated. It can be seen
from the figures that the first element of the power spectrum
(j = 1) is systematically lower than the value that would be found
by fitting a power law, so this point is treated separately. The
parameter β is therefore fitted to the power spectrum from j = 2
to 12, this upper limit being chosen to ensure we do not sample the
steepening of the slope at monomer scales. By Parseval’s theorem,
the integral of the power spectrum equals the variance of the
field from which it was calculated, A(s) − Afit(s) and, moreover,
a particular element of the power spectrum is equal to the
contribution of a specific wavenumber to the total variance. From
the way the fitted spectrum is constructed (described by Hogan
and Westbrook, 2014), it can be shown that the variance due to
wavenumber j of the fitted spectrum is equal to (π2/8)β(2j)−γ .
Therefore, β may be computed such that the sum of the fitted
spectrum for 2 ≤ j ≤ 12 equals the actual power spectrum over
this range of wavenumbers. The parameter ζ1 is then simply the
ratio of the actual and fitted power spectrum at j = 1. The fitted
parameters are shown in the legends of Figures 5 and 6.

To ensure a smooth variation of SSRGA scattering properties
across the range of particle sizes of interest (1–10 mm), we have

Table 1. Fits for the five parameters.

Parameter Nowell et al. Westbrook et al.

αeff 0.82 0.83
κ 0.16D0.44

max 0.09
β 0.15D0.64

max 0.86D−0.3
max

γ 7/3 2
ζ1 0.22D−0.44

max 0.28

Dmax is in millimetres and the range of validity of the fits is limited to 1–10 mm.

fitted expressions for the five parameters to the values found
for the discrete sizes shown in Figures 5 and 6. When there is
insufficient variation of a parameter to justify a size dependence,
a constant value is used. In the case of the Nowell et al. (2013)
model, we also include particles of size Dmax = 1 mm in the fit,
and average the results for aggregates of 200 μm monomers and
aggregates of 400 μm monomers. For each discrete size, there are
typically ten different particles, each sampled from 150 different
angles. The fits for the Nowell et al. (2013) and the Westbrook
et al. (2004) aggregate models are shown in Table 1.

4. Evaluation against DDA calculations

Scattering calculations have been performed using the DDA for
particles generated by the two aggregate models. Scattering by
the Nowell et al. (2013) aggregates used the ‘DDSCAT’ model
of Draine and Flatau (1994), while scattering by the Westbrook
et al. (2004) aggregates used the ‘A-DDA’ model of Yurkin and
Hoekstra (2011). Calculations were performed at 94 GHz using an
ice refractive index of 1.78306 − 0.0019734i, and at 183.31 GHz
using a refractive index of 1.78306 − 0.003862i. In section 4.1 we
evaluate the phase functions predicted by SSRGA for particles of
specific sizes, and in section 4.2 comparisons over a wider range of
particle size are performed to evaluate scattering and absorption
cross-sections, and the asymmetry factor.

4.1. Evaluation of the scattering phase function

We first test the ability of SSRGA to predict the scattering
phase function, p, which specifically tests the angular distribution
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Figure 7. Comparison of the phase functions of ensembles of aggregates of 200 μm bullet rosettes, generated using the Nowell et al. (2013) model, for the frequencies
and maximum dimensions (Dmax) indicated above each panel. The blue lines and blue shaded regions show the mean and standard deviation of DDA calculations,
while the black lines show the SSRGA calculations using the fitted parameters shown in Figure 5. The green lines show the equivalent phase functions for soft spheres
with the same mass and with a diameter of αeff Dmax. The RMS fractional differences between the SSRGA and DDA phase functions for each panel are: (a) 0.02, (b)
0.09, (c) 0.31, and (d) 0.33.

resulting from (9). We use the definition p(θ) = σs(θ)/2σs, where
σs is the scattering coefficient given by (10). This normalization
ensures that

∫ ∞
0 p(θ) sin(θ) dθ = 1, and makes p insensitive to

parameters that scale the overall scattering of the particle, such as
the volume of ice V or the dielectric factor K.

Figures 7(a)–(c) depict the 94 GHz phase functions for the
three particle sizes of the Nowell et al. (2013) model shown
in Figure 5, and Figure 7(d) shows 183 GHz calculations for
8 mm particles. Figure 8 shows the same but for the Westbrook
et al. (2004) aggregate model. The DDA calculations have been
averaged over all orientations and over the ensemble of particles
available at each size. The shaded regions show the one-standard-
deviation spread in DDA calculations from the different particles
of the same size. Since SSRGA is intended to provide an ensemble
average over many particles of the same size, only a single line is
provided in each case.

The agreement between the shape of the DDA phase function
(pDDA) and the SSRGA phase function (pSSRGA) is good for both
the aggregate models, particularly in the forward and backward
directions. To quantify the error in pSSRGA, the RMS fractional
difference with pDDA has been computed as the root-mean-square
of ln(pSSRGA/pDDA). The values are presented in the captions of
Figures 7 and 8. The largest error of 33% is for 8 mm Nowell
et al. (2013) aggregates observed at 183 GHz, although this is
far smaller than the three order-of-magnitude range spanned by
the phase function. Moreover, all errors are much less than the
RMS differences between the DDA calculations for Nowell et al.
(2013) and Westbrook et al. (2004) aggregates of the same size at
the same wavelength (presented in the caption of Figure 8). This
gives us confidence that (9) provides a good approximation to
the phase function for ice aggregates, with a typical error that is
less than the uncertainty due to not knowing the exact ice particle
shape.

The phase functions for equivalent ‘soft spheres’ consisting
of a homogeneous ice–air mixture are very different from the
DDA and SSRGA results, showing far too strong a preference for
forward scattering. Note that we have used spheres with diameter
αeff Dmax, the average extent of the particle over all directions.
An alternative sometimes used in the literature is spheres with
diameter Dmax, but these give results even more different from
DDA. Note that Rayleigh–Gans and Mie theory give virtually
identical phase functions for spheres with the densities considered
here.

4.2. Evaluation of cross-sections and asymmetry factor

Figures 9 and 10 evaluate SSRGA calculations of the asymmetry
factor and the various cross-sections against DDA calculations
for a wider range of particle sizes. The SSRGA calculations used
the exact volumes of the particles, and the parameters given by
Table 1. In order to specifically isolate non-Rayleigh effects, the

strong dependence on ice volume (V) has been factored out by
normalizing the cross-sections by the appropriate power of V .
Thus Rayleigh scattering would predict perfectly horizontal lines
in all panels. Also shown by the green lines are the values for soft
spheres.

We consider first the asymmetry factor g, which is computed
from the phase functions. Since the SSRGA phase functions
agreed well with DDA in Figures 7 and 8, SSRGA also predicts g
accurately. At 94 GHz, Figure 9(d) shows that SSRGA matches the
DDA result that the Nowell et al. (2013) aggregates have lower g
than Westbrook et al. (2004) at smaller sizes and higher g at larger
sizes. This can be explained as follows. The first deviation from
Rayleigh scattering at small sizes is governed by the overall shape
of the particle as described by the kurtosis parameter κ . Since
the Nowell et al. (2013) aggregates have higher κ , indicating that
their mass is more concentrated toward their centre, deviations
from Rayleigh scattering are not significant until they reach larger
overall sizes (as measured by Dmax). For much larger particles, the
amount of scattering in the backward and sideways directions is
governed by the amplitude of the structure at around the scale of
the wavelength, as determined by the β and γ parameters of the
power law fit. Since large Westbrook et al. (2004) aggregates have
more small-scale structure (indicated particularly by the smaller
value of γ ) than Nowell et al. (2013) aggregates, they have more
back- and side-scattering, and hence a lower g.

Consider next the absorption cross-section, σa. Over all size
ranges, soft spheres underestimate the absorption. This is due to
the implicit assumption of spherical monomers, which scatter and
absorb systematically less than randomly oriented non-spherical
particles, as explained in section 2.3. Our SSRGA calculations
use a dielectric factor KNS calculated assuming the monomers
to be columns of aspect ratio 4, leading to excellent agreement
with DDA calculations for Westbrook et al. (2004) aggregates
at 94 GHz. Since absorption in the RGA is proportional to the
volume of ice (8), any deviation of σa/V from a constant in
the figures must be due to deviations from RGA. The DDA
calculations reveal that for the Nowell et al. (2013) aggregates,
σa/V increases by around 25% between 1 and 10 mm, indicating
that the density of the particles is too high for the RGA (and hence
the SSRGA) to be strictly valid.

In the case of scattering and backscatter cross-sections, SSRGA
provides an excellent fit to DDA for the Westbrook et al. (2004)
aggregates at both 94 and 183.31 GHz. In Figure 9(c), SSRGA
correctly predicts the ‘cross-over’ between the backscatter cross-
section of the Nowell et al. (2013) and Westbrook et al. (2004)
aggregates. This occurs for the same reason as the cross-over
found for asymmetry factor and discussed above. Again due
to the density of the Nowell et al. (2013) aggregates being too
large for the RGA to be strictly valid, it tends to underestimate
these quantities for this aggregate model. Nonetheless, it is still a
much better approximation than soft spheres, which drastically
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Figure 8. As Figure 7, but for aggregates generated by the Westbrook et al. (2004) model, with SSRGA parameters taken from Figure 6. The colours in this figure
and Figure 7 are used to distinguish the aggregate types in the remaining figures of this article. The RMS fractional differences between the SSRGA and DDA phase
functions for each panel are: (a) 0.06, (b) 0.20, (c) 0.24, and (d) 0.21. The RMS fractional differences between the DDA phase functions shown here and in the
equivalent panels in Figure 7 are: (a) 0.25, (b) 0.48, (c) 0.72, and (d) 0.50.
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Figure 9. Comparison of the 94 GHz (a) scattering cross-section σs, (b) absorption cross-section σa, (c) backscatter cross-section σb and (d) asymmetry factor g,
for individual aggregates generated by the Nowell et al. (2013) model (with monomers of either 200 or 400 μm in size) and individual aggregates generated by the
Westbrook et al. (2004) model. The SSRGA calculations used the exact volumes of the particles, and the parameters given by Table 1. The strong dependence on ice
volume (V) has been factored out by normalizing the scattering and backscatter cross-sections by V2 and the absorption cross-section by V . The green lines show the
equivalent lines but for soft spheres with a diameter of αeff Dmax.

underestimate both cross-sections to an increasing degree as the
particles get larger.

To verify that the worse performance for the Nowell et al.
(2013) aggregates is due to the RGA not being valid, rather than
a weakness in the SSRGA equation or fitting procedure, we have
gone back to original Rayleigh–Gans equation (e.g. Eq. (1) of
Hogan and Westbrook, 2014) and explicitly computed the RGA
backscatter cross-section from the full 3D structures of a range
of particles from the two aggregate models considered in this
article. As with DDA calculations, random orientation is assumed
by averaging over many different orientations. It is still necessary
to apply the non-spherical correction to the RGA described in
section 2.3. The results are shown in Figure 11. It can be seen
that in all cases SSRGA and RGA agree with each other within the
uncertainty, verifying that any weakness in the SSRGA must be
due to the underlying assumptions in the RGA being invalidated.
We also see that for the Westbrook et al. (2004) aggregates, RGA
and SSRGA are not significantly different from the equivalent
DDA calculations at either frequency, whereas for the Nowell

et al. (2013) aggregates both underestimate the backscatter due to
the particles being too dense for the RGA to be strictly valid.

Tyynelä et al. (2013) examined the validity of the RGA in
detail for ice aggregates up to 220 GHz. In the case of backscatter
coefficient, they reported underestimates of between 20 and
70%. The first point to note is that they applied the RGA
using the Claussius–Mossotti value of K, implicitly assuming
spherical monomers. Section 2.3 explains that much of this
error can be explained by the enhancement due to non-spherical
monomers. As an example, Tyynelä et al. (2013) reported that
the backscatter by aggregates composed of thin hexagonal plates
with an aspect ratio of 0.01 was underestimated by between 25
and 65%. Figure 1(a) shows that such plates have a spherical
enhancement factor of 1.96, which if applied to their RGA
calculations would remove the systematic underestimate and
change the reported error to be between −30 and +50%. For
some of the particle types considered by Tyynelä et al. (2013), the
non-spherical monomer enhancement cannot explain all of the
RGA underestimate. Indeed, some of their 8 mm particles had
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Figure 10. As Figure 9, but at 183.31 GHz.
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Figure 11. Error in backscatter cross-section computed by the Rayleigh–Gans Approximation (RGA) and the Self-Similar Rayleigh–Gans Approximation (SSRGA)
for Nowell et al. (2013) and Westbrook et al. (2004) aggregates at (a) 94 GHz and (b) 183.31 GHz. ‘Backscatter error’ is defined simply as the difference with benchmark
DDA calculations for the same particle. The error bars represent 95% of the range of the individual particles for each size. For clarity, the error bars have been offset
horizontally from their reference values of maximum dimension of 1, 2, 4, 6 and 8 mm.

masses five times larger than predicted by the Heymsfield et al.
(2013) relationship, which Figure 4 indicates are more similar to
the density of the Nowell et al. (2013) aggregates considered in
this article. For such particles, their finding of an underestimate
of backscatter cross-section is consistent with our Figure 11.

Petty and Huang (2010) reported that the RGA underestimated
backscatter coefficient by 2 dB for small particles and up to 7 dB
for larger particles. They used monomers with extreme aspect
ratios so, according to the results in section 2.3, a backscatter
enhancement of around 2 dB should be applied at all sizes. This
leaves a difference of up to 5 dB to be explained. Tyynelä et al.
(2013) argued that this discrepancy was coincidental: Petty and
Huang (2010) used only two sample aggregates, yet the RGA
backscatter for individual particles can differ considerably from
DDA at some sizes, even when averaged over orientation, and the
bias of RGA is much smaller when averaging over many particles
of the same size.

5. Conclusions

It is now widely recognized that homogeneous spheres and
spheroids provide a poor approximation for computing the
millimetre-wave scattering properties of snowflakes when the

particles are larger than the wavelength. Despite its accuracy,
the current state-of-the-art, applying the Discrete Dipole
Approximation (DDA) to a large number of individual
simulated particles, is very computationally costly, and users
of pre-generated DDA databases are stuck with the mass–size
relationship of the particles used in generating the dataset.

Hogan and Westbrook (2014) introduced the Self-Similar
Rayleigh–Gans Approximation (SSRGA) to compute the
backscatter cross-section of unrimed ice aggregates at millimetre
wavelengths. SSRGA is much faster and more convenient to
use than DDA. This article extends the method to compute
also the scattering and absorption cross-sections, as well as the
full scattering phase function and parameters derived from it
such as asymmetry factor. The error compared to benchmark
DDA calculations is typically within the spread due to variations
between different particles.

As part of this development, we have introduced a modification
to the underlying RGA to account for an aggregate being
composed of non-spherical, randomly oriented monomers, which
scatter systematically more than spheres. This non-spherical
enhancement explains previous findings (e.g. by Tyynelä et al.,
2013) that RGA underestimates backscatter even for particles
of low enough density that the RGA ought to be applicable.
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This brings into sharper focus the situations in which the RGA
(and hence SSRGA) genuinely underestimates scattering, which
appears to be limited to ice particles that are dense enough that
they must have grown by riming in addition to aggregation.
Even for rimed particles, the SSRGA is still much more accurate
than soft spheres, and so could still be useful in that regime,
perhaps after some tuning of the SSRGA parameters. Another
interesting avenue would be to extend SSRGA to represent
second-order scattering effects using an approach such as mean-
field theory (Berry and Percival, 1986) or a more explicit method
(e.g. Acquista, 1976; Lu et al., 2014).

The SSRGA requires the structure of ice particles to be described
by five parameters, which we have derived and parametrized for
two different aggregate models. The aggregates generated by the
two models are visually very different, and the five parameters
provide a framework to explain quantitatively how the differences
in structure lead to different scattering properties. For practical
applications, the accuracy of SSRGA is limited by the realism
of the synthetic aggregates from which the five parameters were
derived. Large snow aggregates have a much more complex
appearance than aggregates of bullet rosettes found in cirrus, so
further work is required to generate more realistic 3D snowflake
structures from which the SSRGA parameters can be derived,
and to evaluate them using observations such as triple-frequency
radar (e.g. Kneifel et al., 2016).

The ability of SSRGA to predict the full range of unpolarized
scattering properties is potentially useful for other particle regimes
where the RGA is applicable, such as light scattering by aerosol
aggregates (Sorensen, 2001). It is also worth noting that SSRGA
scales easily to particles much larger than the wavelength for
which the computational cost of DDA becomes prohibitive.
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Delanoë J, Hogan RJ, Forbes RM, Bodas-Salcedo A, Stein THM. 2011.
Evaluation of ice cloud representation in the ECMWF and UK Met Office
models using CloudSat and CALIPSO data. Q. J. R. Meteorol. Soc. 137:
2064–2078.

Draine BT, Flatau PJ. 1994. Discrete-dipole approximation for scattering
calculations. J. Opt. Soc. Am. A 11: 1491–1499.

Garrett TJ, Yuter SE. 2014. Observed influence of riming, temperature, and
turbulence on the fallspeed of solid precipitation. Geophys. Res. Lett. 41:
6515–6522, doi: 10.1002/2014GL061016.

Geer AJ, Baordo F. 2014. Improved scattering radiative transfer for frozen
hydrometeors at microwave frequencies. Atmos. Meas. Tech. 7: 1839–1860.

Geer A, Baordo F, Bormann N, English SJ. 2014. All-Sky Assimilation of
Microwave Humidity Sounders, Technical Memorandum 741. ECMWF:
Reading, UK.

Heymsfield AJ, Lewis S, Bansemer A, Iaquinta J, Miloshevich LM. 2002. A
general approach for deriving the properties of cirrus and stratiform ice
cloud particles. J. Atmos. Sci. 59: 3–29.

Heymsfield AJ, Schmitt C, Bansemer A. 2013. Ice cloud particle size
distributions and pressure-dependent terminal velocities from in situ
observations at temperatures from 0◦ to −86◦. J. Atmos. Sci. 70: 4123–4154.

Hogan RJ, Battaglia A. 2008. Fast lidar and radar multiple-scattering
models – 2. Wide-angle scattering using the time-dependent two-stream
approximation. J. Atmos. Sci. 65: 3636–3651.

Hogan RJ, Illingworth AJ. 1999. The potential of spaceborne dual-wavelength
radar to make global measurements of cirrus clouds. J. Atmos. Oceanic
Technol. 16: 518–531.

Hogan RJ, Westbrook CD. 2014. Equation for the microwave backscatter
cross section of aggregate snowflakes using the self-similar Rayleigh–Gans
approximation. J. Atmos. Sci. 71: 3292–3301.

Hogan RJ, Mittermaier MP, Illingworth AJ. 2006. The retrieval of ice water
content from radar reflectivity factor and temperature and its use in the
evaluation of a mesoscale model. J. Appl. Meteorol. Climatol. 45: 301–317.

Hogan RJ, Tian L, Brown PRA, Westbrook CD, Heymsfield AJ, Eastment JD.
2012. Radar scattering from ice aggreates using the horizontally aligned
oblate spheroid approximation. J. Appl. Meteorol. Climatol. 51: 655–671.

van de Hulst HD. 1957. Light Scattering by Small Particles. John Wiley and
Sons: New York, NY. Reprinted 2003 by Dover Publications: Mineola, NY.

Illingworth AJ, Barker HW, Beljaars A, Ceccaldi M, Chepfer H, Clerbaux N,
Cole J, Delanoë J, Domenech C, Donovan DP, Fukuda S, Hirakata M,
Hogan RJ, Huenerbein A, Kollias P, Kubota T, Nakajima T, Nakajima TY,
Nishizawa T, Ohno Y, Okamoto H, Oki R, Sato K, Satoh M, Shephard MW,
Velázquez-Blázquez A, Wandinger U, Wehr T, van Zadelhoff G-J. 2015.
The EarthCARE Satellite: The next step forward in global measurements of
clouds, aerosols, precipitation and radiation. Bull. Am. Meteorol. Soc. 96:
1311–1332.
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