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Abstract Current weather and climate models neglect 3-D radiative transfer through cloud sides, which
can change the cloud radiative effect (CRE) significantly. This two-part paper describes the development
of the SPeedy Algorithm for Radiative TrAnsfer through CloUd Sides (SPARTACUS) to capture these effects
efficiently in a two-stream radiation scheme for use in global models. The present paper concerns the
longwave spectral region, where not much work has been done previously, although the limited previous
work has suggested that radiative transfer through cloud sides increases the longwave surface CRE of
shallow cumulus by around 30%. To assist the development of a longwave capability for SPARTACUS, we
use a reference case of an isolated, isothermal, optically thick, cubic cloud in vacuum, for which 3-D effects
increase CRE by exactly 200%. It is shown that for any cloud shape, the 3-D effect can be represented in
SPARTACUS provided that correct account is made for (1) the effective zenith angle of diffuse radiation
emitted from a cloud, (2) the spatial distribution of fluxes in the cloud, (3) cloud clustering that enhances
the interception of emitted radiation by neighboring clouds, and (4) radiative smoothing leading to the
effective cloud edge length being less than the measured value. We find empirically that the circumference
of an ellipse fitted to a horizontal cross section through a cumulus cloud provides a good estimate of the
radiatively effective cloud edge length, which provides some guidance to how cloud observations could be
analyzed to extract their most important properties for radiation.

1. Introduction

Clouds are a key component of the climate system: they strongly influence the radiative gain and loss of
energy that drives atmospheric processes on all scales, from global temperature patterns to microphysical
processes [Boucher et al., 2013]. Their complex 3-D shapes and high spatial and temporal variability make their
representation in models challenging. Numerical radiative transfer schemes in weather and climate models
have traditionally relied on several assumptions to simplify the problem, such as that the cloudy region of a
model grid box can be treated as horizontally homogeneous, neglecting the horizontal variability observed
in real clouds (the plane-parallel assumption). The development of fast radiation schemes able to treat cloud
horizontal structure has now largely solved this problem [e.g., Pincus et al., 2003; Shonk and Hogan, 2008], and
they have been used to estimate that the plane-parallel approximation results in an overestimation of the
magnitude of the net longwave plus shortwave cloud radiative effect (CRE) at top of atmosphere (TOA) by
around 14% globally [Shonk and Hogan, 2010].

A further assumption of such models is that it is sufficient to treat vertical radiative fluxes within cloudy and
clear regions separately, without including horizontal transport between them (the 1-D or independent col-
umn approximation, abbreviated ICA). In the shortwave spectral region, this assumption induces an error in
CRE at TOA of between −25% and +100% (depending on solar zenith angle) in individual scenes of strongly
non–plane-parallel clouds such as cumulus, contrails, or deep convection [Benner and Evans, 2001; Di Giuseppe
and Tompkins, 2003; Gounou and Hogan, 2007] but considerably less for stratocumulus and cirrus [Zuidema
and Evans, 1998; Zhong et al., 2008]. For longwave radiation, much less work has been done, and longwave 3-D
effects are often assumed to be negligible. However, studies have estimated that 3-D effects increase long-
wave surface CRE by 30% for cumulus [Heidinger and Cox, 1996] and both TOA and surface longwave CRE by
10% for aircraft contrails [Gounou and Hogan, 2007]. Takara and Ellingson [2000] have reported surface long-
wave flux errors of up to 10 Wm−2 due to neglecting both 3-D effects and longwave scattering. It should be
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noted that 3-D longwave effects are largest at the surface, because their strongest contributions come from
optically thick broken clouds like cumulus that occur low in the atmosphere. At TOA on the other hand, the
global study of Cole et al. [2005], using a 2-D cloud model nested in the global model, found a smaller increase
in longwave CRE of less than 1 Wm−2 in zonal averages. We expect the observed 3-D effect to be lower in stud-
ies that use 2-D approximations (which neglect one dimension of horizontal radiative transfer) or at coarse
resolutions like the 4 km used in Cole et al. [2005] (which neglect some of the cloud structure).

While high-resolution 3-D radiation models are capable of calculating the precise radiative effect of a known
3-D cloud field [e.g., Cahalan et al., 2005; Pincus and Evans, 2009; Mayer, 2009], they are not suitable for climate
models because of their high computation cost. Killen and Ellingson [1994] and Heidinger and Cox [1996] pro-
posed simple scaling of the cloud fraction as an empirical approximation to account for 3-D effects, but that
method is difficult to implement for general cloud fields, especially with multiple cloud layers. Consistency
with cloud effects in the shortwave is also hard to achieve, as any equivalent shortwave method would only
hold for one particular solar zenith angle. We seek a more sophisticated method that is physically consistent
between spectral regions and valid for general cloud fields. Recently, fast approximations for 3-D radiative
transfer on cloud-resolving scales have been developed [Klinger and Mayer, 2016; Jakub and Mayer, 2015], but
these approaches are not designed for use in global models.

The lack of a fast broadband radiative transfer scheme that can reliably represent 3-D effects in large-scale
models means that we currently have no way to estimate the importance of 3-D radiative transfer on the
Earth’s radiation budget or on the evolution of weather systems. As a first step to tackling this issue, Hogan and
Shonk [2013] proposed a method to incorporate 3-D effects into a conventional two-stream radiative transfer
code. Their approach describes 3-D cloud structure information in terms of cloud side area (or equivalently,
the cloud edge length of a horizontal slice through a cloud field) and adds terms to the two-stream equations
to represent the loss and gain of radiation through cloud sides, with a modest increase in computational cost.
The assumption underlying this formulation is that the fraction of clear-sky flux that encounters a cloud edge
is proportional to the length of cloud edge, which roughly corresponds to assuming a random horizontal dis-
tribution of clouds within a grid box. Thus, the cloud edge length versus height, which may be expressed in
terms of an effective cloud size [Jensen et al., 2008], is the only input that is needed in addition to the large-scale
information on cloud fraction and water content provided in global models. However, Hogan and Shonk
[2013] only considered monochromatic calculations in the shortwave part of the spectrum; they neglected
in-cloud horizontal inhomogeneity, and their method for solving the modified two-stream equations was
excessively complicated, with multiple steps that still resulted in numerical imprecisions and a dependence on
vertical resolution.

In this two-part paper we describe the development of a broadband radiation scheme ready for use in
large-scale models, which overcomes the limitations of Hogan and Shonk [2013]. We refer to it as the SPeedy
Algorithm for Radiative TrAnsfer through CloUd Sides (SPARTACUS). Hogan et al. [2016, hereinafter Part 2]
incorporates treatment of cloud inhomogeneity using the Tripleclouds method following Shonk and Hogan
[2008] and describes an elegant and accurate method for solving the modified two-stream equations using
matrix exponentials. They also evaluate the method against fully 3-D broadband radiative transfer calculations
in both the shortwave and longwave.

In this paper (Part 1), we develop the longwave capability of SPARTACUS making use of fully 3-D calculations
to identify the most important features to represent, as well as introducing improvements that are applica-
ble in both the shortwave and the longwave. Section 2 describes the idealized case of an isolated, isothermal,
cubic cloud, which is a very useful benchmark for longwave 3-D radiation schemes because its known sym-
metry properties allow us to determine the 3-D effect analytically. In section 3, we outline the SPARTACUS
scheme and use the results of section 2 to develop a consistent longwave capability. As part of this we cor-
rect inconsistencies in the treatment of horizontal and vertical fluxes by Hogan and Shonk [2013]. Tests using
realistic cumulus clouds are performed in section 4, including the two main factors important for determining
the radiatively effective cloud edge length: cloud clustering and radiative smoothing. This provides guidance
for the use of observations to quantify the cloud geometry variable needed by SPARTACUS when applied to
realistic cloud fields. The performance of SPARTACUS is compared to full 3-D simulations with the Monte Carlo
code for the physically correct tracing of photons in cloud atmospheres (MYSTIC) [Mayer, 2009].
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Figure 1. Schematic of outgoing fluxes and their contributions to total downwelling flux in 1-D and 3-D schemes for a
cubic cloud. Because of symmetry, the total outward flux G through every cloud face is the same, as discussed in
section 2. Every arrow symbolizes a flux of G∕2 through the respective face. At cloud sides, half of the outgoing
radiation is at an upward angle, the other half at a downward angle. The distribution of downwelling flux at the surface
is shown below: in a 1-D scheme, we only see downwelling flux directly underneath the cloud, while in a 3-D scheme,
cloud side fluxes result in a more spread-out distribution as well as in higher total downwelling flux.

2. Theory for an Idealized Cubic Cloud

In this section, we examine the idealized case of one homogeneous, isothermal, cubic cloud in vacuum that is
isolated in a larger model grid box of surface area A without other clouds (so cloud fraction c is small). In this
symmetric case, the 3-D effects can be derived analytically, providing an excellent benchmark for 3-D radiation
schemes (both fully 3-D schemes and approximate schemes such as SPARTACUS). As we are interested in the
cloud longwave effect, we here consider only thermal radiation emitted from the cloud, without direct solar
radiation or emission, reflection or absorption by the ground. More realistic cases including atmospheric and
surface emission, absorption, and reflection will be considered in Part 2.

All properties of a homogeneous, isothermal cubic cloud are symmetric with respect to discrete rotations that
exchange the faces of the cube, and therefore so is the radiation emitted at each face. This means that the
outward flux through each cloud face is the same, G, shown schematically in Figure 1. Here “outward flux” is
defined as the radiation through a plane parallel to the cloud face, per unit area of the face (we denote fluxes
per area of the cloud by G and fluxes per horizontal area of the domain by F).

We can derive the theoretical cloud 3-D effect by comparing the different contributions to the total downward
flux F↓ through a horizontal plane, per unit area of the entire grid box (note difference in definition of flux). The
fraction of G through a cloud face that contributes to downward flux depends on the orientation of the face.
At cloud base, outward is the same as downward, so F↓

base = cG, where the cloud fraction c = Abase∕A accounts
for the difference between flux per area of cloud base Abase and flux per total grid box area A. At a cloud side,
on the other hand, radiation can leave the cloud at an upward or a downward angle with equal probability.
Therefore, half of the radiation from each cloud side contributes to the downward flux: F↓

side = 1
2

GAside∕A, and
since Aside = Abase, this becomes F↓

side = cG∕2.

Adding the fluxes from cloud base and the four cloud sides gives

F↓
base+sides = F↓

base + 4F↓
side = 3cG. (1)

As a measure of the 3-D cloud side effect, we introduce the cloud side factor fsides = F↓
base+sides∕F↓

base. If the
cloud is in a vacuum and there is no interaction with the ground, then from (1) we see that fsides = 3 at all
heights beneath the cloud.

This result gives an idea of the importance of 3-D effects: two thirds of the downwelling radiation from the
cloud comes from the cloud sides, not the cloud base. The theory is independent of the optical depth of the
cloud or the particle scattering properties, allowing the following general statement:
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Figure 2. Schematic showing the treatment of downwelling radiation encountering cloud sides in 3-D and 1-D schemes,
in the limit of (top row) optically thin and (bottom row) optically thick clouds, for fully 3-D radiative transfer (in the left
column) and the 1-D independent column approximation (ICA; in the right column). In the ICA, cloudy columns have
periodic boundary conditions, so that radiation that encounters the side of the column reenters on the opposite side
(shown as numerical sinks and sources in the plot). This makes the radiation’s path through the cloud longer than in
reality. In the optically thick case increased absorption along the longer ICA path is noticeable, which leads to an
underestimation of downwelling flux below the cloud.

Theorem 1. For an isolated, isothermal, homogeneous cubic cloud in vacuum above a nonreflecting, nonemitting
surface, a third of the downwelling radiation beneath the cloud originates from the cloud base and two thirds from
the cloud sides, regardless of the optical depth or scattering properties of the cloud. The same holds for upwelling
emitted radiation above the cloud: one third originates from cloud top and two thirds from cloud sides.

In realistic cases with gaseous absorption and emission, the cloud side factor could be defined as the ratio
of cloud radiative effect resulting from outgoing fluxes through all faces to that from outgoing fluxes through
cloud top and base alone. In these cases, the factor is likely to be somewhat less, partly due to increased
gaseous absorption on the longer slanted paths to the ground for radiation from cloud sides, but as we will
show, the 3-D effect should not be neglected and always leads to an increase in cloud radiative effect, in
contrast to the shortwave case, where it can be of either sign.

While the cloud side factor measures the importance of cloud side emission, we are particularly interested in
the change in cloud radiative effect relative to the results of current 1-D schemes of the type used in weather
and climate models. Figure 2 shows how radiation encountering cloud sides is treated in 3-D and 1-D schemes.
In 1-D schemes, periodic boundary conditions at region boundaries let radiation that encounters a cloud side
reenter at the opposite side and remain within the cloudy region (this is shown schematically in Figure 2 as a
numerical sink and a numerical source that lets the radiation reenter the cloud at the opposite side).

For very optically thin clouds (optical depth 𝜏 ≪ 1), where the chance of absorption or backscattering (scat-
tering from the downward to the upward direction or vice versa) is small, radiation once emitted is essentially
unaffected by its passage through the cloud. Total downwelling flux in the grid box at any height only depends
on the number of emitting cloud particles above. Hence, as using 1-D periodic cloud boundary conditions
does not change particle emission, the total downwelling flux in the grid box beneath the cloud as predicted
by a 1-D scheme F↓

1D approaches the correct 3-D value F↓
base + sides. The spatial distribution of fluxes, however,

is different: in reality some radiation leaves the cloudy column and reaches the surface at some horizontal
distance from the cloud but still contributes to the grid box total of downwelling flux from the cloud. In the
1-D calculation this radiation is instead added to the downward flux directly underneath the cloud, which is
thereby increased above its real value (as illustrated in Figure 1).
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For very optically thick clouds (𝜏 ≫ 1), the picture is different. Again, radiation that in reality would escape
through cloud sides remains within the cloud in the 1-D scheme, but because of the high optical depth vir-
tually all of it is absorbed or scattered rather than reaching cloud base (see Figure 2). The downwelling flux
beneath the cloud F↓

1D is approximately equal to the flux out of cloud base in the 3-D case F↓
base, which, as stated

above, is lower by a factor of 3 than the correct total downwelling flux. This gives us a limiting benchmark for
the underestimation of cloud radiative effects by 1-D schemes:

Theorem 2. For an isolated, isothermal, homogeneous and very optically thick cubic cloud in vacuum above a
nonreflecting, nonemitting surface, the downwelling radiation beneath the cloud and upwelling radiation above
the cloud are underestimated by a factor of 3 in 1-D radiation schemes.

The factor f1Dcorrection = F↓
3D∕F↓

1D quantifies this error for different cloud cases, but note that f1Dcorrection is only
equal to fsides for very optically thick clouds.

3. Development of a Longwave Capability for SPARTACUS
3.1. Overview of SPARTACUS
The SPARTACUS scheme modifies the two-stream equations to incorporate horizontal radiative transfer effects
by coupling the equations for neighboring clear and cloudy regions (denoted a and b, respectively) through
the addition of horizontal transfer gain and loss terms. The cloudy region may optionally be divided into
two (denoted b and c) to represent cloud horizontal inhomogeneity following the approach of Shonk and
Hogan [2008]. The two-region case (clear and cloudy) results in the following equations for upwelling and
downwelling diffuse fluxes F↑, F↓ in any individual longwave or shortwave spectral band:

dF↓
a

dz
= 𝛽a

(
−𝛾1,aF↓

a + 𝛾2,aF↑
a + S↓a

)
− fab𝜀aF↓

a + fba𝜀bF↓
b;

−
dF↑

a

dz
= 𝛽a

(
−𝛾1,aF↑

a + 𝛾2,aF↓
a + S↑a

)
− fab𝜀aF↑

a + fba𝜀bF↑
b;

dF↓
b

dz
= 𝛽b

(
−𝛾1,bF↓

b + 𝛾2,bF↑
b + S↓b

)
− fba𝜀bF↓

b + fab𝜀aF↓
a ;

−
dF↑

b

dz
= 𝛽b

(
−𝛾1,bF↑

b + 𝛾2,bF↓
b + S↑b

)
− fba𝜀bF↑

b + fab𝜀aF↑
a , (2)

which is analogous to the formalism for diffuse shortwave fluxes in Hogan and Shonk’s [2013] equation (11)
except for the factors 𝜀 that describe spatial distribution of emitted radiation within each region (see below).

Here the fluxes are radiative power per area of the entire grid box (in W m−2), z is height increasing downward,
and 𝛽 is the volume extinction coefficient. The coefficients 𝛾1 and 𝛾2 govern extinction by absorption and
backscattering, and gain by backscattering, respectively, and are given in equations (12) and (13) of Hogan and
Shonk [2013] and elsewhere. The source terms S↓↑ are the internal sources of diffuse radiation in each region.
In the shortwave this would be scattering from the direct solar beam, while in the longwave it represents
isotropic thermal emission. For region a they are given by

S↓a(z) = S↑a(z) = ca

𝜋(1 − 𝜔a)
cos 𝜃1

B[T(z)],

where ca is the fraction of the domain covered by region a, B is the Planck function, T(z) is the temperature at a
given height, and 𝜔a is the single scattering albedo (and similarly for regions b and c). For optimum longwave
results in atmospheres dominated by gas absorption, we assume the zenith angle of diffuse streams, 𝜃1, to be
53∘ [Elsasser, 1942; Fu et al., 1997], although other assumptions are possible. Note that 𝜃1 also appears in the
definitions of 𝛾1 and 𝛾2.

The system of differential equations in (2) can be solved for the entire multilayer atmosphere by formulating
the terms as vectors and matrices and computing the solution in terms of matrix exponentials, as described
in detail in sections 2 and 3 of Part 2. This approach is more elegant and accurate than the multistage method
proposed by Hogan and Shonk [2013].
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The final two terms on the right-hand side of each of the expressions in (2) represent lateral transport between
regions. For example, fba𝜀bF↓

b is the rate of transport of downwelling radiation from region b (cloud) to region
a (clear sky), per unit vertical distance. Naturally, this term is proportional to F↓

b , the horizontal-mean flux at a
particular height within the cloud. The two coefficients describe the distinct physical processes that determine
this rate.

The first coefficient, fab or fba, is purely a function of the geometry of the cloud edge. Hogan and Shonk [2013]
showed that it may be formulated at a given height in terms of the total length of cloud edge per unit area
of the grid box. However, applying their theory to the idealized cubic cloud described in section 2 reveals
an error, which we address in section 3.2. The second coefficient, 𝜀b, accounts for any systematic difference
between the mean fluxes in the cloudy region and fluxes near cloud edge (which determine outgoing fluxes
at cloud edge). We choose the symbol 𝜀 as this coefficient plays the role of a kind of effective emissivity of the
cloud edge. In the shortwave, we find that 𝜀b ≃1 (as assumed by Hogan and Shonk [2013]) works reasonably
well, which will be demonstrated in Part 2 from the good agreement found with fully 3-D shortwave calcula-
tions. This suggests that there is no systematic increase or decrease of in-cloud shortwave fluxes toward cloud
edge. In the longwave, however, emission from within the cloud makes fluxes spatially more variable and 𝜀b

is significantly different from 1. This effect is parameterized in section 3.3.

While the distribution of fluxes in the clear sky also varies, the variance mostly depends on the distance from
clouds, as these dominate the emission. We find it satisfactory to include this effect in the parameterization
of cloud geometry (described in section 4) and hence set 𝜀a to 1.

3.2. Effective Direction of Radiation Transported Through Cloud Sides
This section derives an expression for the coefficients fab and fba in (2), which describe the contribution to
the rate of lateral exchange from the geometry of the cloud edge. Hogan and Shonk [2013] showed that if
the diffuse radiation is assumed to be traveling in discrete directions with zenith angles of 𝜃3D and 𝜋 − 𝜃3D

(illustrated in Figure 3a), then the coefficients are given by

fab = tan(𝜃3D)
Lab

𝜋ca
; fba = tan(𝜃3D)

Lab

𝜋cb
, (3)

where ca and cb are the fractions of the domain covered by regions a and b, respectively, and Lab is the length
of cloud edge (i.e., the length of the interface between regions a and b in the horizontal plane) per unit area
of the grid box.

Hogan and Shonk [2013] equated 𝜃3D with the diffusivity angle 𝜃1 used in the definitions of 𝛾1, 𝛾2, and S↓↑ and
hence used 𝜃3D =53∘. To test this, we appeal to the idealized case described in section 2 and use SPARTACUS to
simulate emission from an isothermal, cubic cloud in vacuum. In order to isolate purely the geometric effect,
we consider a very optically thick nonscattering cloud so that the effective emissivity of the cloud, 𝜀b, is unity.
The dash-dotted black line in Figure 3b depicts the 3-D factor f1Dcorrection as a function of cloud fraction for
𝜃3D = 53∘, and it can be seen that the 3-D effect reduces for increasing cloud fraction due to the increased
probability of radiation emitted from the side of a cloud being absorbed by another cloud. In the limit of
completely overcast skies, SPARTACUS has the correct limit of no 3-D effect. However, in the limit of very small
cloud fraction, f1Dcorrection has a value of 2.65 rather than the value of exactly 3 both predicted by Theorem 2 in
section 2 and simulated by the fully 3-D Monte Carlo radiation model MYSTIC [Mayer, 2009]. This means that
the isothermal cube is incorrectly emitting less from its sides than from its base in SPARTACUS.

MYSTIC, which is used here and throughout this paper to evaluate SPARTACUS, has been validated by exten-
sive comparison with other 3-D state-of-the-art radiative transfer models [Cahalan et al., 2005] and both
shortwave and longwave observations [Mayer et al., 2010; Emde and Mayer, 2007] and showed very good
agreement. Klinger and Mayer [2014] showed that completely independent approaches in MYSTIC for calcu-
lating thermal heating and cooling rates are consistent with each other. For this paper, thermal fluxes were
calculated using 105 photons which resulted in a statistical noise of less than 0.1% for domain-averaged fluxes
as shown here.

The red lines in Figure 3b show the results for a cubic cloud with an optical depth of 2; it can be seen that
f1Dcorrection is reduced from the value of 3 that is applicable only in the optically thick limit. The two red lines
also confirm that SPARTACUS is not sensitive to vertical resolution. The details of how SPARTACUS is run with
multiple layers are given in Part 2.
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Figure 3. (a) Schematic of outward radiances from cloud base and cloud side in the approximation of discrete zenith
angles 𝜃3D and 𝜋 − 𝜃3D for a cubic cloud. (b) Dependence of 3-D factor, denoted f1Dcorrection in section 2, on cloud
fraction, for an isothermal, cubic cloud in vacuum, where optical depth is denoted in the legend by 𝜏 and the number of
vertical layers by nz . All SPARTACUS simulations use the effective zenith angle for lateral transport derived in section 3.2
of 𝜃3D = 57.52∘ , except for the black dash-dotted line that uses a value of 53∘. The circles show the theoretical limits of
very low cloud fraction and overcast sky for a very optically thick cloud, which agree with MYSTIC calculations.

We wish to derive new expressions for fab and fba that ensure that vertical transport and horizontal transport
between clear and cloudy regions are treated consistently. This can be thought of as finding a better value for
𝜃3D, but we need not make the assumption that diffuse radiation travels only with two discrete zenith angles.
We again consider a very optically thick nonscattering cloud, which can now have any shape. In this case, it
can be seen from (2) that the rate of change of in-cloud fluxes due to lateral escape through the cloud sides
is given by

dF↓
b

dz

||||||lat

= −fbaF↓
b; −

dF↑
b

dz

||||||lat

= −fbaF↑
b . (4)

The flux exiting the cloud sides over a thin layer of depth dz, per area of the entire grid box, is then

− dF↓
b + dF↑

b = fba(F
↓
b + F↑

b)dz. (5)

From this, we can compute the flux exiting a thin layer of the cloud side per unit area of cloud side, Gside, by
dividing the left-hand side of (5) by the ratio of cloud side area in the thin layer to the horizontal area of the grid
box, Labdz, yielding: Gside = fba(F

↓
b + F↑

b)∕Lab. Since upwelling and downwelling radiation within the optically
thick cloud are in equilibrium (as explained in section 3.3.2) is isotropic, we have F↓

b = F↑
b and hence

Gside = 2fbaF↓
b∕Lab. (6)
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Meanwhile, the flux exiting the cloud base per unit area of cloud base is simply the downwelling flux F↓
b (which

is per unit area of the grid box) divided by the cloud fraction:

Gbase = F↓
b∕cb. (7)

We require that the outgoing diffuse fluxes out of the base and sides are the same, i.e., Gbase = Gside, so
equating (6) and (7) yields

fba =
Lab

2cb
. (8)

This may be used as a direct replacement for (3).

While the derivation of (8) has not assumed that the diffuse radiation travels in discrete directions, it is illumi-
nating to equate (3) and (8), which reveals that the effective zenith angle to get the correct lateral transport
is 𝜃3D = 57.52∘. The fact that this value is larger than 53∘ means that it will lead to a larger 3-D effect than in
Hogan and Shonk [2013], and indeed Figure 3b shows that when the new value is used, SPARTACUS yields the
correct 3-D effect (a value of f1Dcorrection = 3) for the isolated optically thick cubic cloud considered in section 2.

As an alternative way to derive this angle, consider the approximation of all diffuse radiation being repre-
sented as upward and downward cones at zenith angles 𝜃3D and 𝜋 − 𝜃3D, respectively, both with radiance I,
as illustrated in Figure 3a. As each cloud particle’s emission is isotropic, it is reasonable to assume that if the
cloud’s height and width are similar (as fulfilled for a typical cumulus cloud), the downward flux per area of
horizontal cloud surface should equal the lateral flux per area of vertical cloud surface. The downward flux is
found by integrating over all azimuth angles 𝜙 of the downward cone:

Gbase = ∫
2𝜋

0
I cos 𝜃3D d𝜙 = 2𝜋I cos 𝜃3D. (9)

If 𝜙 represents the azimuth angle of a beam of radiation with respect to the normal to a vertical surface
representing part of the cloud side, then the flux through that surface is

Gside = 2∫
𝜋∕2

−𝜋∕2
I sin 𝜃3D cos𝜙d𝜙 = 4I sin 𝜃3D. (10)

Since emission per surface area of cloud base and cloud side should be the same, we set Gbase = Gside, which
also yields 𝜃3D = 57.52∘.

3.3. Horizontal Distribution of Fluxes in Cloud
In reality, the rate at which radiation escapes through the side of a cloud is proportional to the local value of
the upwelling and downwelling diffuse flux in the cloud very near the cloud edge. This section parameterizes
the coefficient 𝜀b in (2), which quantifies the ratio of the near-edge fluxes to the mean flux in the cloud. Hogan
and Shonk [2013] assumed fluxes to be homogeneous within the cloud, so that 𝜀b = 1. We can only be sure
that this is valid in the longwave for optically thick nonscattering clouds (as assumed in section 3.2).

To test the validity of assuming 𝜀b =1 over a wider range of cloud properties, we again appeal to Theorem 1
in section 2, which states that for an isothermal, homogeneous, isolated cubic cloud in vacuum, the outgoing
lateral flux from each side face Gside equals the flux from top or base, Gbase. Fully 3-D calculations using MYSTIC
have confirmed that the ratio Gside∕Gbase =1 for a range of scattering properties. We have computed this ratio
with SPARTACUS assuming 𝜀b = 1 for various optical depths and single scattering albedos 𝜔, as is shown by
the dashed lines in Figure 4. It is clear that 𝜀b =1 performs poorly in general: in optically thin clouds the side
flux is underestimated for all values of 𝜔, because in reality lateral fluxes due to internal emission accumulate
toward the edges of the cloud, making cloud edge fluxes just before escape larger than the mean in-cloud
values. For optically thick clouds the side flux is overestimated, but only for strongly scattering clouds; this is
because larger 𝜔 reduces the emissivity of the cloud edge, an effect not captured by SPARTACUS.

It should be stressed that these two phenomena also affect the outgoing fluxes at cloud top and base. The dif-
ference is that there they are fully represented in SPARTACUS via its use of the classical two-stream equations
including explicit representation of the vertical exchange of radiation between upwelling and downwelling
streams. Since SPARTACUS does not similarly resolve horizontally oriented fluxes and the exchange between
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Figure 4. Ratio of horizontal to vertical outgoing fluxes Gside∕Gbase from an isothermal homogeneous cubic cloud in
vacuum at wavelength 𝜆 = 10.7 μm (asymmetry factor g = 0.85) in SPARTACUS assuming 𝜀b = 1 (dashed lines) and with
a full parameterization of 𝜀b (solid lines), versus the logarithm of optical depth 𝜏 for different values of single scattering
albedo 𝜔. Both theory and fully 3-D calculations using MYSTIC predict a value of unity for this ratio, shown by the black
horizontal line.

radiation traveling toward and away from a cloud edge, these two phenomena are not simulated automati-
cally, so they must be parameterized via the specification of 𝜀b in order to obtain consistent behavior at cloud
sides as at cloud base and top.

Our approach to parameterizing 𝜀b is to use the two-stream equations to describe how outgoing horizontal
fluxes at cloud sides relate to the cloud average fluxes, depending on the cloud’s optical properties. In the
limiting cases of very optically thin or very optically thick clouds, the equations simplify enough to be solved
analytically (sections 3.3.1 and 3.3.2, respectively), and in section 3.3.3 we combine these findings to obtain a
parameterization that may be used over the full range of optical depth.
3.3.1. Optically Thin Limit
As the two-stream scheme in SPARTACUS already calculates fluxes out of vertical surfaces correctly, we can
ask the question what value of 𝜀b results in the same lateral as vertical outgoing cloud edge fluxes, for the case
of the isothermal homogeneous cubic cloud in vacuum. We denote the value in the limit of very low optical
depth as 𝜀0,b. The fact that the bias at low optical depth shown in Figure 4 is insensitive to 𝜔 suggests that
𝜀0,b will be independent of 𝜔. A limitation of this section is that our use of a cubic cloud means that strictly
the result will only be applicable for clouds with an aspect ratio of around unity, although we note that 3-D
effects get weaker as optical depth decreases, so this is not expected to have a strong impact on any future
estimate of the global impact of 3-D radiative effects.

In the optically thin limit, radiation emitted from one cloud particle is very unlikely to encounter another
before it leaves the cloud, so we can neglect the scattering and absorption terms in (2) and the upwelling and
downwelling streams decouple. Thus, the equation for the downwelling in-cloud flux becomes

dF↓
b

dz
= 𝛽bS↓b − fba𝜀0,bF↓

b , (11)

which has a general solution

F↓
b(z) = X exp(−fba𝜀0,bz) +

𝛽bS↓b
fba𝜀0,b

,

where X is a real number. Since we are concerned with radiation originating from within the cloud, we insert
the boundary condition of no downward flux at cloud top, i.e., F↓

b(z = 0) = 0, which gives X = −𝛽bS↓b∕fba𝜀0,b,
and therefore

F↓
b(z) =

𝛽bS↓b
fba𝜀0,b

[
1 − exp(−fba𝜀0,bz)

]
. (12)
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Similarly, the equation for downwelling clear-sky flux due to emission from cloud sides (i.e., without internal
clear-sky sources) reduces to

dF↓
a

dz
= fba𝜀0,bF↓

b = 𝛽bS↓b
[
1 − exp(−fba𝜀0,bz)

]
. (13)

The solution, again using the zero upper boundary condition F↓
a(z = 0) = 0, is

F↓
a(z) = 𝛽bS↓b

[
z +

exp(−fba𝜀0,bz) − 1

fba𝜀0,b

]
. (14)

We consider a cloud with a vertical depth of Δz; hence, at the level of cloud base, F↓
b(Δz) is the radiation

emerging from cloud base and F↓
a(Δz) is the radiation that originated from the cloud sides. From Theorem 1

in section 2, we know for a cubic, isothermal cloud that

F↓
a(Δz) = 2F↓

b(Δz). (15)

Substituting in (12) and (14) and simplifying yields the following implicit equation for 𝜀0,b:

3 exp(−𝜀0,bfbaΔz) + 𝜀0,bfbaΔz = 3. (16)

For a cubic cloud with depth Δz in a grid box of area A, the cloud fraction is cb = Δz2∕A and the cloud edge
length per unit area is Lab = 4Δz∕A. Combining with the definition of fba in (8) indicates that fbaΔz = 2. The
numerical solution in this case is 𝜀0,b = 1.4107. (Equation (16) for fbaΔz = 2 actually has an analytical solution:
𝜀0,b =

[
W

(
−3e−3

)
+ 3

]
∕2 = 1.4107, where W is the Lambert W function.) As expected, 𝜀0,b > 1, to represent

the accumulation of outward emission toward the cloud edge that results in a higher flux than the in-cloud
average.
3.3.2. Optically Thick Limit
In the interior of a very optically thick cloud, the radiance in any direction is equal to the Planck function at
the temperature of the cloud, but if the cloud particles have a nonzero single scattering albedo, then the flux
emitted by the cloud will be less than the Planck value; i.e., its emissivity will be less than 1. This is because
the presence of scattering particles gives the cloud a nonzero reflectance, and if there is no transmission, the
absorptivity (equal to the emissivity) must be 1 minus the reflectance. In the limit of very large optical depth,
𝜀b becomes the actual emissivity of the cloud, which we write as 𝜀∞,b.

Two-stream computations (including SPARTACUS) correctly reduce the vertically upwelling and downwelling
longwave fluxes out of top and base of an optically thick cloud from the Planck value, corresponding to an
emissivity of less than 1.

For SPARTACUS to capture this effect at cloud sides as well, we need to specify the emissivity 𝜀∞,b directly.
This quantity may be calculated from the two-stream equations by treating the optically thick cloud as
semi-infinite. In this particular case, we neglect horizontal transport terms, because for the thin layers at cloud
edges that are relevant to this calculation, the lateral gain and loss terms are dominated by the 𝛾1 and 𝛾2

terms. The two-stream equations in this case have been solved by various authors, such as Petty [2006] whose
equation 13.45 described the albedo of a semi-infinite cloud, r∞. The emissivity is then

𝜀∞,b = 1 − r∞ =
2
√

1 − 𝜔√
1 − 𝜔g +

√
1 − 𝜔

, (17)

where g is the asymmetry factor of the medium in region b.
3.3.3. Parameterization Depending on Optical Depth
For general optical depth, the correct parameterization of the edge flux is more complicated, due to the inter-
action of several effects that partially compensate each other, and cannot be analytically solved. We find that
a satisfactory empirical approximation of 𝜀b is

𝜀b(𝜏, 𝜔, g) =
𝜀0,b − 𝜀∞,b(𝜔, g)
𝜏(1 − 𝜔) + 1

+ 𝜀∞,b(𝜔, g). (18)
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This distribution has limiting values that agree with the analytical results for 𝜏→0 (found in section 3.3.1) and
𝜏→∞ (found in section 3.3.2). Note that in terms of practical application of (18) in the SPARTACUS radiation
scheme, 𝜏 is the horizontal optical depth of a typical cloud in a given layer, which can be estimated by multiply-
ing the extinction coefficient by the typical cloud diameter. In the implementation of SPARTACUS, we use as a
measure of this the similar effective cloud diameter (discussed in section 4) that we also use for characterizing
cloud edge length, as outlined by Hogan and Shonk [2013] and Jensen et al. [2008].

To check that treatment of lateral and vertical cloud edge fluxes is consistent, we repeat the SPARTACUS calcu-
lations shown in Figure 4 for a homogeneous, isothermal, cubic cloud in vacuum, but this time with the new
parameterization for 𝜀b (shown by the solid lines). This time the ratio Gside∕Gbase is much closer to the value
of 1 expected from theory and found from fully 3-D calculations using MYSTIC and constitutes a significant
improvement on the results without the parameterization.

4. Description of Cloud Geometry in Terms of Effective Cloud Edge Length
4.1. Theory
In order to determine radiative fluxes correctly, we need to provide SPARTACUS with an appropriate descrip-
tion of cloud geometry. SPARTACUS assumes that the flux between clear and cloudy regions is proportional
to the length of the cloud edges in the horizontal plane, with coefficients of proportionality as derived in the
previous section. In sections 2 and 3, it was found that this parameterization works well for idealized clouds
with smooth edges, such as cubes. We will see in this section that for realistic clouds with irregular edges find-
ing the appropriate edge length for input in SPARTACUS is less straightforward, as using our parameterization
with cloud edge lengths measured in high-resolution cloud fields overestimates the 3-D effect. It appears
that the “effective” cloud edge length for radiation is less than the measured cloud edge length, which we
hypothesize is due to two effects:

1. Irregular, fractal cloud edges. Realistic cloud edge length is determined by cloud geometry on a range of
scales from the overall cloud size down to the distance between cloud particles. In practical scenarios, we
only have model or observation data down to a finite grid resolution, which is at best tens of meters, so
some structure is missing. Cloud geometry is fractal, meaning that the measured edge length L is sensitive
to small-scale features and increases with decreasing grid spacing Δx:

L(Δx) ∝ Δx1−D,

where D is the fractal dimension of the cloud perimeter, which for a large class of fractals can be found as the
exponent that relates the object’s perimeter to the square root of the area. Studies of both observed [e.g.,
Cahalan and Joseph, 1989] and simulated clouds [Siebesma and Jonker, 2000] have found a perimeter fractal
dimension of about 4∕3 for small shallow cumulus. Thus, we have a fundamental observational problem:
Cloud edge length is not a well-defined quantity but depends on resolution.
On the other hand, due to the 3-D transport effects that we are including, the radiation fields are much
smoother than the cloud water fields, an effect known as radiative smoothing. Marshak et al. [1995] found
a fractal dimension of 1.14 for the albedo field (which should be very similar to the flux field), and hypoth-
esized that it might be even closer to 1 but for numerical imprecisions. In particular, small-scale concave
features of the cloud edge are smoothed out in flux fields. This is appropriate, as most of the radiative
flux escaping from these parts of the cloud edge will reenter neighboring sections of the cloud instead of
contributing to clear-sky fluxes. Hence, the effective cloud edge length we are seeking should not include
the added length contributed by these small concave features, but should instead follow the edge of an
approximation to the cloud that is smooth and convex up to the same scale that the flux field is. Radia-
tive smoothing is most pronounced in the shortwave spectral region, where multiple scattering leads to
isotropic diffuse fluxes, but the effect is also relevant for isotropic emission in the longwave. There is also
nonnegligible scattering in the longwave (for the droplet size and wavelength considered here, the sin-
gle scattering albedo 𝜔 is 0.6), which we include in our model. This explains why the assumption of flux
∝ L works quite well for idealized Euclidean clouds such as cubes with D = 1, but for realistic clouds at
high resolution the measured edge length is higher than the radiative effective edge length of the flux
field, and hence using the measured edge length in the radiative transport parameterization leads to an
overestimation of the 3-D transport.

2. Cloud clustering. Another effect that can reduce the 3-D transport in cloud fields with multiple clouds is
that radiation leaving the side of one cloud can be intercepted by another cloud. SPARTACUS allows this to
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Figure 5. Cloud fields of the four experiments described in section 4.2: (a) cumulus cloud field, (b) isolated cumulus
cloud, (c) ellipsified cloud field, and (d) isolated ellipsified cloud. The gray shapes are 3-D contours of cloud liquid water
content larger than 0.001g m−3, while the color field shown below is the liquid water path of each vertical column. The
domain measures 6.4 km by 6.4 km, grid resolution is 67 m in the horizontal and 40 m in the vertical, and a realistic
temperature profile based on a radiosonde sounding is used [Hinkelman et al., 2005].

happen but assumes that the clouds are randomly spaced throughout the domain. In realistic cloud fields,
groups of clouds may tend to cluster together, making the chance of radiation from one cloud’s sides being
intercepted by other clouds higher than if they were randomly spaced. Underestimating this reduction of
3-D transport in SPARTACUS would add to the overestimation of 3-D effects.

4.2. Experiments
In order to separate, quantify, and account for these effects, we have designed a set of experiments based
on a realistic large-eddy simulation (LES) of a continental shallow cumulus cloud field by Hinkelman et al.
[2005] used in the Intercomparison of 3-D Radiation Codes (I3RC) project [Cahalan et al., 2005]. Clouds are
described by their liquid water content and effective cloud particle radius in a periodic domain measuring
6.4 km in each horizontal dimension with a resolution of 67 m in the horizontal and 40 m in the vertical. The
temperature profile is taken from a radiosonde sounding at the Atmospheric Radiation Measurement (ARM)
program’s Southern Great Plains site in Oklahoma, USA [Hinkelman et al., 2005]. To isolate cloud effects, we do
not include atmospheric gases, aerosol, surface emission, or reflection.

We start with the full cumulus cloud field (depicted in Figure 5a), centered within the domain. In order to
clearly isolate differences due to treatment of 3-D effects, we remove cloud internal inhomogeneity effects by
assuming constant effective droplet radius throughout, and constant averaged liquid water content within
each layer, making the 3-D calculations directly comparable to SPARTACUS with two regions, clear and cloudy.
We label the pixels belonging to each individual cloud in the cloud field using an algorithm based on the
object labeling code of Stein et al. [2014]. This algorithm considers two pixels to be part of the same object
if they share an edge face but not if they just share a corner. In Experiments a and c, we consider the full
cloud field containing 55 clouds, showing the cloud clustering effect. For Experiments b and d, we select one
isolated cumulus cloud and remove all others. Without neighboring clouds there is no cloud clustering effect,
allowing us to observe the irregular edge effect alone.

We estimate the irregular edge effect by using two different cloud edge lengths as input for SPARTACUS:
In Experiment a and b, we calculate the cloud edge length from high-resolution cloud contours, found by
reducing the cloud field at each height to a 2-D field of ones (cloud present) and zeros (no cloud present)
and computing the length of the 0.5 contour. As these contours include cloud edge structure at scales likely
too small to impact the radiation field, we expect an overestimation of 3-D fluxes in SPARTACUS with this
input, the irregular edge effect discussed in section 4.1 (and in Experiment a also overestimation due to cloud
clustering).

For Experiments c and d, we calculate the edge lengths by fitting an ellipse to each horizontal cross section of
each cloud of Experiments a and b respectively, using the method of Hogan et al. [2012], which ensures that
the fitted ellipse preserves the aspect ratio, orientation, and area as much as possible given the finite pixel size.
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Figure 6. Downward domain-averaged monochromatic fluxes at wavelength 𝜆 = 10.7 μm, from MYSTIC and from
SPARTACUS using contour edge length and ellipsified edge length. (left) Profiles for the single-cloud case and (right)
profiles for the whole cloud field. Note that in the 1-D calculations, the cloud edge length does not matter, so the 1-D
profiles with contour edge length and ellipse edge length coincide.

The resulting ellipse is a convex smooth approximation of the cloud. The field’s ellipse cloud edge length is the
sum of the exact ellipse perimeters of all the ellipses in each slice. We refer to this process as “ellipsification.”
The idea is to estimate the radiative effective cloud edge length for use in SPARTACUS by maintaining the
largest-scale properties of cloud geometry but excluding the influence of smaller-scale features irrelevant
for radiation. Thus, Experiment c includes the cloud clustering effect but not the irregular edge effect, while
Experiment d excludes both effects. Ellipse cloud edges are shorter than contour cloud edges by a (vertically
averaged) factor of 1.9 for the isolated cloud and 1.5 for the cloud field—the reduction is less for the full cloud
field because it contains small clouds of only a few grid boxes, which do not show irregular features at the
given resolution; therefore, ellipsification has less impact.

For each cloud field, we choose the optimum height-independent cloud overlap parameter for SPARTACUS’s
cloud overlap scheme [Shonk et al., 2010] so as to give the correct total cloud cover. We compare the results
of SPARTACUS, including the edge flux parameterization described in section 3.3.3 and with the cloud edge
length inputs discussed above, to fully 3-D MYSTIC calculations for the original cloud field (Experiments a
and c) and original isolated cumulus cloud (Experiments b and d).

4.3. Results for Cloud Geometry Description
As seen in Figure 6, SPARTACUS’s results agree well with MYSTIC in the 1-D case (without horizontal transport).
In 3-D, MYSTIC and SPARTACUS with ellipse edge length agree well for the single cloud, while when using
contour edge length or in the presence of neighboring clouds, the effects discussed in section 4.1 lead SPAR-
TACUS to overestimate the 3-D flux. To test how representative this particular cloud is, we have run analogous
single-cloud calculations for every cloud in the cloud field that is larger than four grid boxes, using SPARTA-
CUS with ellipse edge length and MYSTIC. Figure 7 shows a comparison of the 3-D factor f1Dcorrection = F↓

3D∕F↓
1D

at the surface between SPARTACUS and MYSTIC for each single cloud, where the symbols’ colors indicate the
cloud’s total cloud cover. The two codes’ results agree reasonably well, especially for the largest clouds in the
field (in dark blue colors), which dominate the total cloud field results. The cloud selected for the single-cloud
experiment above is typical of these large clouds. For the smallest clouds (in pale cyan), results agree less
closely due to numerical noise (the three clouds that show a 3-D factor larger than 3 in MYSTIC are the three
smallest clouds in the ensemble). The agreement between MYSTIC and ellipsified SPARTACUS in single-cloud
cases confirms that SPARTACUS’s overestimation of 3-D effects for the full cumulus field is due to a combi-
nation of the two effects suggested in section 4.1 and that our ellipsification method succeeds in removing
the error due to small-scale irregular cloud edges. This is important: it suggests that for cumulus clouds, the
radiatively effective cloud edge length is well represented by the perimeter of an ellipse fitted to the cloud
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Figure 7. The 3-D factor f1Dcorrection = F↓
3D
∕F↓

1D
at the surface for the fluxes from each single cloud larger than four grid

boxes in the cloud field, using SPARTACUS with ellipse cloud edge length, plotted against the same factor seen in
MYSTIC results. The symbols’ colors show each cloud’s total cloud cover. The filled, red-edged symbol denotes the cloud
used in the single-cloud experiment discussed above. The 1-to-1 line is shown dashed in black.

edge at each height. More experiments are needed to confirm if an analogous method would work for other
cloud types.

This still leaves the error caused by cloud clustering. To determine how clustered the cloud field is, we calcu-
late the average horizontal distance between centers of mass of each cloud and its nearest neighbor dnext,
allowing for periodic boundary conditions at domain boundaries, as do the radiation calculations. In the full
cloud field with 55 clouds, dnext is 276.4 m. Distributing the same number of clouds randomly in a domain of
the same size results in a mean nearest neighbor distance of dnext,rand = 432.7 m (averaged over 105 random
distribution realizations to ensure representative sampling). This shows that in reality, our cloud field is sig-
nificantly more clustered than in SPARTACUS’s random distribution assumption, therefore intercepting more
of the outgoing flux from cloud sides than SPARTACUS accounts for. We can compensate for this by reducing
the cloud edge length and thereby also the cloud side flux. By running SPARTACUS repeatedly with a range of
reduction factors, we can determine the optimum reduced edge length resulting in exact agreement between
SPARTACUS and MYSTIC in each case. For the isolated cloud, without any cloud clustering to compensate, the
optimum input edge length is about the ellipse edge length (at 0.94 times the ellipse edge length), while for
the cloud field it is 0.69 times the ellipse edge length. This shows that using the ellipse edge length and mul-
tiplying by a factor of 0.69 to correct for clustering is a good estimate for the radiatively effective cloud edge
length in this cumulus field. Further work will be needed to see how typical this value is for cumulus clouds
and to determine the appropriate reduction factor depending on degree of clustering for any cloud type.

5. Conclusions

Three-dimensional radiative effects systematically and significantly increase the longwave cloud radiative
effect of cumulus clouds, an effect that has been largely neglected in the literature. Hogan and Shonk [2013]
presented an idea for how to rigorously capture 3-D shortwave cloud effects in a two-stream radiation scheme
at a numerical cost suitable for use in a global model. This two-part paper provides many improvements to
their method, and we refer to the resulting radiation scheme as SPARTACUS.

This first part has developed the longwave capabilities of SPARTACUS. We have first proposed a benchmark
case: an isolated, homogeneous, isothermal, cubic cloud in vacuum, for which the 3-D effect is known theo-
retically. In the optically thick limit, 3-D effects increase its cloud radiative effect by a factor of exactly 3. This
benchmark has been used to ensure consistent treatment of horizontal and vertical fluxes at every step of the
method, since the flux out of each of the six faces of the cube should be the same. It is shown that if the diffuse
radiation is assumed to be traveling in two discrete directions, then in computing fluxes out of cloud sides,
a zenith angle of 𝜃3−D = 57.52∘ must be used, rather than the 𝜃1 = 53∘ most often used for vertical transport
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calculations in the longwave. We also find that in the longwave the spatial distribution of fluxes within the
clouds is important and develop a parameterization for the flux values at cloud sides that represents the
buildup of fluxes toward cloud edge in the optically thin case and cloud edge emissivity in the optically
thick case.

The decisive cloud geometry parameter for determining the cloud side fluxes correctly is the effective cloud
edge length relevant for radiation. For idealized clouds such as cubes, this is simply the geometric edge length.
For realistic high-resolution cloud fields, we find that this length is lower than the measured cloud edge length
for two reasons. First, the radiation field is smoother than the high-resolution cloud water field, so essentially
the small-scale fluctuations of cloud water are irrelevant for radiation. We find that for cumulus clouds, a good
approximation of the radiatively effective cloud edge length at a given height is the perimeter of an ellipse
fitted to the cloud boundary such that area and aspect ratio are preserved. Second, clouds tend to be more
clustered than would result from the random distribution assumed by SPARTACUS, enhancing the chance of
radiation emitted from a cloud side being intercepted by a neighboring cloud and therefore reducing the
effective length of cloud sides from which radiation escapes. To determine this reduction correctly, we need
to consider how strongly the clouds cluster. We have proposed here a simple empirical adjustment to the
effective cloud edge length to approximately account for this effect, but clearly further observational work is
required to quantify the extent to which clouds cluster in reality and its impact on 3-D radiative transfer.

Part 2 of this paper [Hogan et al., 2016] describes much of the further work needed to prepare SPARTACUS
for use in a large-scale atmospheric model. They introduce an elegant method for solving the two-stream
equations modified to include 3-D effects and incorporate full representation of gas absorption and sur-
face effects, enabling them to perform a realistic comparison between SPARTACUS and fully 3-D broadband
radiative transfer calculations for cloud fields in both the shortwave and longwave. They discuss practical
implementation and numerical cost. However, further analysis of observations and cloud-resolving simu-
lations is required to extract the radiatively effective cloud edge length for different cloud fields and to
parameterize it as a function of variables available in a large-scale model. The findings in section 4 of this
paper should provide useful guidance on the analysis that would be most useful to provide the information
required to SPARTACUS.
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