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1 Introduction

The accurate parametrization of radiative transfer is of central importance to climate simulations, as well as
being an important aspect to numerical weather prediction models. However, substantial errors remain in the
representation of clouds, in particular the effects of their subgrid distribution on gridbox-mean fluxes and heat-
ing rates. This is a critical area requiring attention, since cloud radiative feedbacks are implicated as a leading
source of uncertainty in climate prediction. This article is intended to give a broad overview of radiative trans-
fer in the presence of clouds, from its foundations in classical electrodynamics through to recent methods for
parametrizing subgrid cloud structure. It is aimed at the relative newcomer to atmospheric radiation, although
hopefully radiation gurus will find it interesting as well.

We start in section2 by showing how atmospheric optical phenomena arise from onesimple process at the
microscopic level, and how these phenomena may be demonstrated from numerical solutions to Maxwell’s
equations. We then discuss the derivation of the two-streamequations, which lie at the heart of almost all
operational radiation schemes. In section3 we show how these equations may used to treat be discretized
in the presence of inhomogeneous clouds, covering both the new McICA and Tripleclouds methods. The
computational resources assigned to representing the spectral variation of gaseous absorption and the spatial
variation in clouds is compared. The structure of clouds maybe described observationally in terms of the degree
of horizontal inhomogeneity, the vertical overlap of cloudboundaries and the overlap of cloud inhomogeneities.
In section4 we review the relevant observational studies, and then in section 5 use consensus values describing
cloud structure to estimate its global impact compared to the “plane-parallel” representation assumed in most
current schemes. The challenge presented by 3D radiative effects is reviewed in section6, and in section7 we
discuss some of the remaining frontiers of radiative transfer parametrization with regard to clouds.

2 From Maxwell to the two-stream equations

2.1 What is radiation?

Whether light should be thought of as particles or waves has been a matter of debate in physics for centuries.
The earliest experimentally based treatise on optics was byIbn al-Haytham (1021), who with remarkable pre-
science proposed that light was composed of tiny particles characterized only by their energy, predating the
modern concept of a photon by almost 900 years. The earliest comprehensive wave theory of light was by
Huygens (1690), developing extensively the ideas of Descartes and Hooke. But with Newton (1704) holding
to the particle view, it was not until Young’s demonstrationof optical interference patterns in the early nine-
teenth century that waves became the preferred model. The wave theory culminated in Maxwell’s unification
of electricity, magnetism and light in 1873, which also put visible light on the same footing as electromagnetic
waves of other wavelengths, such as infrared radiation discovered by Herschel earlier in the century. However,
the particle theory made an unexpected comeback in the earlytwentieth century, with Planck and Einstein
demonstrating that black-body radiation and the photoelectric effect could only be explained by radiation oc-
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curring in discrete packets of energy. The most complete description we now have of electromagnetic radiation
is quantum electrodynamics, formulated by Feynman and others in the 1940s. In this theory the wave and
particle views are reconciled (at least mathematically), in that a photon’s path has a probability distribution that
is determined by the interference pattern of a wave-function governed by the laws of quantum mechanics, but
which nonetheless behaves similarly to a classical wave when a large number of photons are considered.

Hence, in the same way that Newtonian mechanics is a perfectly adequate approximation for representing
non-relativistic geophysical fluids, so Maxwell’s classical theory of electric and magnetic fields is perfectly
adequate for describing thepropagationof radiation in atmospheric applications. The one area where we do
need to consider quantum effects isemission(and, by Kirchoff’s law, absorption): here the energy and hence
wavelength of emitted photons is determined by internal energy levels in the material and the Planck function,
which in turn are governed by quantum mechanics. But Maxwell’s equations may be used as the starting point
for all other aspects of atmospheric radiative transfer.

2.2 How Maxwell’s equations describe atmospheric phenomena

The incredible richness of atmospheric optics, including phenomena such as mirages, rainbows, the varied
colour of the sky and the silver lining around clouds, can be shown to originate from a single process that
occurs when an electromagnetic wave impinges on a dielectric material: charges in the material oscillate under
the influence of the incident electric field and radiate electromagnetic waves at the same frequency. We now
describe this process and demonstrate numerically how it leads to familiar optical effects.

The propagation of atmospheric radiation is governed by Maxwell’s curl equations, which describe the time
evolution of the electric and magnetic fields,E andB, and in their most fundamental form may be expressed in
SI units as

∂B

∂ t
= −∇×E; (1)

∂E

∂ t
= c2∇×B−

J

ε0
, (2)

whereJ is the total current density (in A m−2) andε0 is the permittivity of a vacuum. Here and in all subsequent
equations, vectors are shown in bold. In a vacuum, the current density may be set to zero and the resulting
equations can be combined to form a wave equation that supports waves of any frequency, but all of which
travel with the speed of lightc.

Virtually all the materials encountered by radiation in itsjourney through the atmosphere are poor conductors,
so may be treated asdielectrics in the way they respond to an incident electromagnetic field.A dielectric
is composed of negatively charged electrons that are “bound” to positively charged atomic nuclei. When an
electromagnetic wave passes into a dielectric, a particle with chargeq will feel a force given byF = q(E +
v×B), in addition to the forces that bind it into the atom or molecule. In practice the velocity of the bound
particlev is much smaller than the speed of light, so theqE term is dominant. Thus the positive and negative
charges will be perturbed by a small amount in opposite directions, and we may assume that the amplitude of
thedipole momentinduced in each atom or molecule is proportional and parallel to the externalE field. Hence
the sum of the dipole moments in a unit volume, thepolarization density, may be written asP = ε0χE, where
χ is the dimensionlesselectric susceptibilityof the material, a frequency-dependent measure of how easily it
polarizes. In practice, the dipoles behave as damped simpleharmonic oscillators, where the damping represents
energy being transferred into thermal motions in the medium. This results in the induced polarization density
not oscillating perfectly in phase with the external electric field, but lagging somewhat behind. This effect
may be represented by using a complex number forχ : if we write the electric field in time-harmonic form as
E = E0eiωt , whereω is the angular frequency, then the induced polarization density isP = ε0|χ |ei(ωt+φ), where
the phase shiftφ is simply the argument of the complex electric susceptibility. Since the phase shift is negative
(a lag), the imaginary part ofχ is negative and smaller than the real part.
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The oscillating dipoles constitute an alternating electric current, with current density given byJ = ∂P/∂ t.
From (2) we can see that an oscillatingJ will generate an oscillating electric field, which will in turn excite
electromagnetic waves. It is this scattering on a microscopic level, and the resulting pattern of constructively
and destructively interfering waves, that lead to optical effects. It turns out that the amplitude of the electric
field of the scattered wave (sufficiently far away from the dipoles) is proportional to the rate of change of the
current, and hence to theaccelerationof the dipole moments,∂ 2

P/∂ t2. The second derivative of the time-
harmonic form ofP (above) is proportional toω2. Since the power in a wave, equal to the intensity of the
radiation, is proportional to the square of the wave amplitude, the intensity is proportional toω4.

We represent the effect of the current by substitutingJ = ∂P/∂ t = ε0χ∂E/∂ t into (2) to yield ε∂E/∂ t =
c2∇×B, where thedielectric constant(or “relative permittivity”) of the medium is defined asε = n2 = χ +1,
andn is the familiar refractive index. But what do we do about the fact thatε may be complex? From the
time-harmonic form ofE it may be shown that∂E/∂ t = iωE. Hence, if the real and imaginary parts of the
dielectric constant areε = εr − iεi, then we may write

∂E

∂ t
= −

εiω
εr

E+
c2

εr
∇×B. (3)

Thus it can be seen thatεi acts to attenuate the electric field, constituting absorption of energy from the wave.
This makes sense, since it originates from the damping of themotion of the oscillating dipoles and transfer of
this energy into heat.

We now have two equations, (1) and (3), that conveniently describe how an electromagnetic wave propagates
in a dielectric. We could proceed to explore analytically the many consequences and applications of Maxwell’s
equations (e.g. Chapters 18–37 of Feynman et al. 1964), but ameteorologist’s instinct is to discretize these
equations and perform a numerical “forecast” of the evolution of the fields for a variety of different distributions
of ε . This is known as the Finite Difference Time Domain (FDTD) method, and the most natural way to do it
is on the grid devised by Yee (1966), which is staggered in both time and space. For simplicity we consider a
two-dimensional solution in thex-y plane in which the electric field oscillates only in thez direction, resulting
in the magnetic field only having components in thex andy directions. We defineEn

z;i, j as thezcomponent ofE
at timestepn and at gridpointsi and j in thex andy directions respectively. The curl terms are most accurately
discretized by placing theBx points half way between theEz points in they direction, and theBy points half
way between theEz points in thex direction. As we alternate between calculating the electric and magnetic
components, it makes sense to locate them half a timestep apart. Thus, the first step is to evolve theB field
from theE field:

Bn+1/2
x;i, j+1/2 = Bn−1/2

x;i, j+1/2−
∆t
∆x

(

En
z;i, j+1−En

z;i, j

)

; (4)

Bn+1/2
y;i+1/2, j = Bn−1/2

y;i+1/2, j −
∆t
∆x

(

En
z;i, j −En

z;i+1, j

)

, (5)

where∆t is the timestep and∆x is the spatial resolution in both thex andy directions. The second step is to
evolve theE field from theB field:

En+1
z;i, j = En

z;i, j exp

(

−
εi;i, j ω∆t

εr ;i, j

)

+
c2∆t

εr ;i, j∆x

(

Bn+1/2
y;i+1/2, j −Bn+1/2

y;i−1/2, j −Bn+1/2
x;i, j+1/2 +Bn+1/2

x;i, j−1/2

)

, (6)

whereεi andεr are discretized on the same spatial grid asEz. Plane waves can be initialized by adding a row
of dipole oscillators at one side of the domain, essentiallyreintroducing a−J/ε0 term on the right-hand-side of
(3). To prevent reflection from the side of the domain, it is necessary to add a few rows of absorbing material
at the boundaries.

Figure1a shows a snapshot ofEz from a simulation in which a wave initialized at the bottom ofthe domain
propagates into a region with a left-right gradient ofε . The bending of the wave towards the region of largerε
demonstrates the process of atmospheric refraction, whichis responsible for mirages (where light bends towards
the larger refractive index of the colder air), and also the shimmering of light over a hot surface. Figure1b
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(a) (b) (c)

Figure 1: Instantaneous snapshots of the z-component of theelectric field for 2D (x-y) simulations of
an electromagnetic wave propagating into the following distributions of dielectric constant: (a) a gra-
dient increasing from left to right, (b) a single pixel ofε = 4 in a vacuum, and (c) a circle ofε = 4
in a vacuum. Note that in panels (b) and (c) the field that wouldoccur in a vacuum has been sub-
tracted, to leave just the scattered field. Animations of these and many other cases may be found at
http://www.met.rdg.ac.uk/clouds/maxwell/.

shows the scattered field when a wave is incident on a single dipole representing a scatterer much smaller than
the wavelength; note that the scattered field is simplyEz minus theEz that would occur without the scatterer.
The result is that the dipole radiates equally in all directions. This is the same mechanism by which nitrogen
and oxygen molecules in the atmosphere scatter sunlight, and the ω4 dependence of the scattered intensity
(discussed earlier) explains why the sky is blue. It should be noted that because we are performing 2D rather
than 3D simulations, we have really simulated the scattering from a wire that extends infinitely in a direction
perpendicular to the page, but essentially the same behaviour is observed in 3D. Figure1c shows the same but
for a scatterer larger than the wavelength, which could represent a cloud droplet or an aerosol particle. This time
more of the energy is scattered forward, and the angular distribution of the scattered amplitude has much more
structure. The preference for forward scattering explainswhy the edges of clouds illuminated from behind tend
to have a “silver lining”, while the wavelength-dependent pattern of scattering in the forward direction explains
the coloured corona that is often seen around the moon when itis viewed through thin clouds. An obvious
example of the angular scattering pattern in the backward direction is a rainbow, which occurs for drops much
larger than the wavelength.

It is remarkable that the same equations can explain such a wide variety of atmospheric phenomena when all
we have changed is the spatial distribution of dielectric constant. Underlying each phenomenon is the simple
process that a dielectric in the presence of an incident oscillating electric field will radiate radiation in all direc-
tions, yet the pattern of constructive and destructive interference can be completely different. Animations for a
wide variety of distributions ofε may be found athttp://www.met.rdg.ac.uk/clouds/maxwell/,
and in addition to demonstrating scattering from differenttargets, they demonstrate the workings of instru-
ments such as a diffraction grating, a Michelson interferometer, a dish antenna and a Campbell-Stokes sunshine
recorder.

The FDTD method described above can be used to calculate the scattering and absorption properties for in-
dividual arbitrarily shaped particles, including the the angular distribution of scattered power, and indeed it is
used for light scattering by ice particles (Yang and Liou 1996). However, it can be very computationally expen-
sive for particles large compared to the wavelength, because the grid spacing must be much smaller than the
wavelength to adequately resolve the waves. Therefore moreefficient time-independent methods are usually
preferred; for spheres of uniform dielectric constant (such as liquid droplets), Mie (1908) provided an exact
solution in terms of a series expansion. For non-spherical particles, there are a range of methods that were
comprehensively reviewed by Mishchenko et al. (2000).
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2.3 The radiative transfer equation

We have seen that Maxwell’s equations are sufficient to modelall aspects of the propagation of atmospheric
radiation, and for calculating the detailed scattering properties of individual particles. Yet they are clearly im-
practical for macroscale radiative transfer in the column of a General Circulation Model (GCM). It is desirable
to express radiation in terms of aradiance I(Ω), which is the power density in directionΩ per unit frequency
(or wavelength), giving it units W m−2 sr−1 Hz−1. It was shown by Mishchenko et al. (2006) that an equation
governing the relationship between radiances may be derived rigorously from Maxwell’s equations, provided
that the following reasonable assumptions are made:

• Time dependence is ignored, which is valid since in the timescale of an individual photon to transit the
atmosphere, atmospheric constituents can be treated as stationary and the sources of radiation (the sun in
the shortwave and the surface and atmosphere in the longwave) emit continuously.

• Atmospheric particles are present in large concentrationsand are randomly separated, which means that
the phase difference between radiation scattered from different particles is random, and enables their
intensities to be summed incoherently.

• There are no propagation effects due to the wave nature of radiation, except around individual parti-
cles. Therefore there is no diffraction around macroscale objects such as clouds and no refraction from
macroscale gradients in refractive index.

• The polarization of the radiation is ignored; this is not an essential assumption, but in terms of calculating
heating rates and surface fluxes, polarization is irrelevant.

The result is the monochromaticradiative transfer equation:

Ω ·∇I(Ω) = −βeI(Ω)+
βs

4π

∫

4π
p
(

Ω
′,Ω

)

I(Ω′)dΩ
′ +S(Ω). (7)

The term on the left-hand-side expresses the rate of change of the radiance with distance in directionΩ. The first
term on the right expresses the rate of loss by absorption or scattering, whereβe is the extinction coefficient
(in m−1), the reciprocal of the mean-free-path. The second term on the right expresses scattering into the
directionΩ from all other directions, as governed by the scattering coefficient βs. The scattering phase function
p(Ω′,Ω) expresses the normalized fraction of energy incident in thevector directionΩ′ that is scattered into
directionΩ. The final term represents sources of radiation; in the longwave this is simply thermal emission by
the atmosphere.

Given a 3D distribution of scattering and absorption properties, and with suitably specified boundary conditions,
this equation may be solved directly. If the full 3D radiancedistribution is of interest, then the leading freely
available code is the Spherical Harmonics Discrete Ordinate Method (SHDOM) of Evans (1998). If integrated
quantities are required [e.g. over angle to obtain irradiances (or “fluxes”), over a horizontal area to obtain
domain-averaged values, or over the spectrum to obtain broad-band quantities], then the Monte Carlo method
is usually more efficient.

Explicit 3D radiative transfer is not efficient enough for use in a GCM, and so the following further assumptions
must be made:

• All horizontal structure is ignored, so the atmosphere varies only in heightz while in the horizontal it
is treated as infinite and homogeneous. Alternatively, one can picture a finite atmospheric column but
with periodic boundaries so that radiation exiting one sidere-enters on the other. This is known as the
plane-parallel approximation.

• Radiances in all directions are represented by only two discrete directions, one into the upward hemi-
sphere and the other into the downward hemisphere (the exactangle differs between approximations).
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The exception is unscattered radiation from the sun, which is calculated separately. This is known as the
two-stream approximation.

• The detailed structure of the phase function cannot be represented in the two-stream approximation, and
in fact it is only necessary to characterize the phase function by a singleasymmetry factor,defined as the
average of the cosine of the scattering angles:g = 〈cosθ〉.

Clearly these assumptions are much less justifiable than those made in deriving (7), and ways of correcting the
consequent errors are described in much of the remainder of this article. The derivation is clearly explained by
Petty (2006) and results in the two-stream equations (written as one for brevity):

±µ1
dF±

dz
= −

(

βe−βs
1+g

2

)

F± + βs
1−g

2
F∓ +S±. (8)

These equations describe the interaction of the upwelling irradianceF+ and the downwelling irradianceF−,
and have been written so that the terms can be traced easily from (7). The term on the left is prefixed by±µ1

in order that it represents the rate of change of flux in the direction that the radiation is travelling;µ1 is the
cosine of the angle from zenith or nadir that is regarded as “representative” of radiation travelling in all upward
or downward directions. Usually a value of 0.5 or 0.6 is used,corresponding to angles of 60◦ or 53◦ (Fu et al.
1997). The first term on the right corresponds to extinction as in (7), but is reduced by a factor that accounts
for scattered radiation that remains within the same hemisphere. The second term on the right corresponds to
scattering from one hemisphere to the other, while the final term plays the same role as the source term in (7).
It is easy to check the behaviour for different values ofg: if the scattering is isotropic (g = 0) then half of any
scattered radiation will remain in the same hemisphere and the other half will enter the other hemisphere. For a
greater degree of forward scattering (0< g< 1), increasingly more scattered radiation remains within the same
hemisphere.

In a GCM radiation scheme,βe may be calculated as the sum of the contributions from any liquid droplets,
ice particles and aerosols that may be present in the gridbox. Its vertical integral is simply the optical depth.
In generalβe is wavelength dependent, but in the case where the mean particle size is much larger than the
wavelength (i.e. excluding most aerosols), geometric optics applies and we may write:

βe =
3ρaql

2ρl rel
+

3ρaqi

2ρirei
, (9)

whereql andqi are the mixing ratios of liquid and ice provided by the GCM, while ρa, ρl andρi are respectively
the densities of the air, liquid water and solid ice. The variablesrel andrei are theeffective radiiof the liquid
droplets and ice particles and are typically prescribed; infact, effective radius is definedso that(9) holds. The
asymmetry factorg and the single-scattering albedoβs/βe of ice and liquid are both parametrized as a function
of effective radius.

It should be noted that in many applications not all of the assumptions between (7) and (8) need to be made.
For example, the popular radiative transfer code “DISORT” (Stamnes et al. 1988) makes the plane-parallel
assumption while fully resolving the angular radiance distribution. Likewise, Liu and Weng (2002) presented
a version of the two-stream equations that retained the polarization information, for use in passive microwave
remote sensing, while Hogan and Battaglia (2008) presenteda time-dependent form of the two-stream equations
that enabled multiple scattering from instruments such as radar and lidar to be modelled efficiently.

We have covered a lot of ground in a short time: from Maxwell’sdescription of microscale fluctuations in the
electric and magnetic fields to the two-stream equations that are used in GCMs. Perhaps unsurprisingly, the
chronology of developments in the field of radiative transfer is precisely the reverse of the order that they have
been presented here. The two-stream equations were first presented by Schuster (1905) in the context of stellar
atmospheres, their derivation relying on considerations of energy conservation rather than consistency with
Maxwell’s equations. Interestingly, Arthur Schuster was working with Maxwell in Cambridge at the time that
he published his great treatise on electromagnetism. Radiative transfer was presented in much more general
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terms by Chandrasekhar (1950), and was first applied to non-uniform media by Giovanelli (1959). Yet only
recently has the rigorous derivation of the radiative transfer equation (with polarization) from classical electro-
dynamics been made (Mishchenko 2002), putting the two-stream equations on a firmer theoretical footing.

3 Solving the two-stream equations in cloudy atmospheres

3.1 The independent column approximation

The task of a GCM radiation scheme is to provide “total” fluxesF±
t (in W m−2), as a function of height, that

represent an average over the domain in which it is expected to act, such as the horizontal area of a grid column
and the temporal durationT of a timestep (or several timesteps in the common situation that the radiation
scheme is called infrequently). Since the properties of theatmosphere vary in spacex, time t, frequencyν ,
and can depend on the angle of incidence of the radiationΩ, radiances are also a function of these variables.
Therefore we can think of a radiation scheme as a multi-dimensional integration over the radiance distribution:

F±
t (z) =

1
TA

∫

T

∫

A

∫

∞

∫

2π
I(z,Ω,x,ν , t)µdΩdν dxdt, (10)

whereµ is the cosine of the zenith angle consistent with directionΩ. This is actually a six-dimensional in-
tegration, sinceΩ represents the azimuth and elevation dependence of the radiance, andx represents varia-
tions in bothx andy (with A the area of a gridbox). Integration over frequency is taken to include the long-
wave and shortwave. The horizontal-mean heating rate due toradiation is then given by∂T/∂ t|radiation =
−(ρaCp)

−1∂ (F+
t −F−

t )/∂z, whereCp is the specific heat capacity of the air.

If a calculation is being performed in which the horizontal distribution of cloud properties is known, then a
common approach to estimating (10) is the Independent Column Approximation (ICA), in which the continuous
3D distribution of cloud is treated as a finite number of independent columns that each behave as if they were
horizontally infinite and homogeneous. An equivalent assumption made in frequency space is that there is no
energy transfer between frequencies, which is much more valid (Raman scattering is the exception, but has
around 10−5 the intensity of Rayleigh scattering). Hence integration over frequency can be performed by a
discrete number of independent column calculations. If, asis common, we neglect the time dependence of the
cloud field during the periodT, then (10) can be represented as a double summation:

F±
t (z) ≃

1
Nx

Nx
∑
j=1

Nν

∑
i=1

F±
i, j (z)∆νi , (11)

whereF±
i, j is the flux for wavebandi and spatial columnj, calculated by solving the monochromatic two-stream

equations given by (8). But how large shouldNν andNx be for an accurate solution?

In frequency space, the very rapid variation of gaseous absorption with frequency can be treated by dividing
the spectrum up into wide bands in which the solar flux (in the shortwave) or Planck function (in the longwave)
is approximately constant. Within each band we perform a discrete integration not over frequency, but over
absorption coefficient, taking advantage of the high degreeof vertical correlation of the spectrally dependent
absorption. Thus the interpretation of the summation overi in (11) is now ofNν calculations for representative
absorption profiles with weights∆νi , but which do not map directly to contiguous regions of the spectrum.
This is known as the correlated-k-distribution method (e.g. Lacis and Oinas 1991, Petty 2006), and the number
of independent calculations used in climate models is of order one hundred. In the Rapid Radiative Transfer
Model (RRTM), a version of which is now used in the ECMWF model(Morcrette et al. 2008), a total of
Nν = 252 calculations are required in 30 bands. The Met Office usesNν = 115 for climate and global forecasting
applications andNν = 55 for mesoscale forecasting.

In the horizontal dimension, the variability in absorptionand scattering is caused not by gases but by clouds,
and one would expect at least 50 columns to be necessary to represent the full distribution of cloud within a
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Table 1: Comparison of the four different dimensions of integration carried out by a radiation scheme, as
represented by the integrals in (10).

Dimension Quadrature points How well is dimension known? Consequence of poor resolution
Time t 1/3 (e.g. every 3 h

for a model with a
1-h timestep)

At the timestep of the model Changed climate sensitivity
(Morcrette 2000), poor diurnal
cycle (Yang and Slingo 2001)

AngleΩ 2 (occasionally 4
for the four-stream
method)

Well, except for some
uncertainty on ice phase
functions

±6 W m−2 (Stephens et al.
2001)

Spacex 2 (clear and cloudy
regions)

Poorly, due to the unknown
cloud distribution

∼ 20 W m−2 long-term regional
biases (see section5)

Spectrumν 100–250 Very well Temperature biases, particularly
above the tropopause (Iacono
et al. 2000, Li and Barker 2005)

Table 2: Comparison of some of the properties of the variation of gaseous absorption with frequency, and
the variation of cloud absorption and scattering with horizontal distance.

Gaseous absorption Cloud absorption and scattering
Varies strongly with frequency but only a little with
horizontal position due to gases being horizontally
well mixed in a gridbox

Varies strongly with horizontal position and
significantly with frequency

Strongly correlated in the vertical, exploited by the
correlated-k-distribution method

Weakly correlated in the vertical, with the degree of
correlation depending on cloud overlap discussed in
section4.2

Well known spectrum for all major gases Exact horizontal distribution is unknown

No transfer between frequencies, except for Raman
scattering which is tiny

Horizontal transfer can be significant, as discussed
in section6

gridbox, including the correlation of the cloud propertiesin one level with those in another. However, in typical
GCMs, Nx is essentially only 2: the horizontal distribution is represented by one clear-sky region and one
cloudy region in which the cloud properties are assumed to behorizontally homogenous. In fact, the clear and
cloudy regions are typically not treated as two independentcolumns, but rather as a single column containing
two regions at each level, the widths of which are dependent on the cloud fraction at that level. This is explained
in more detail in section3.4. The point to note is that, to a reasonable approximation, the computational power
assigned to integration over frequency isNν/Nx ∼ 50 times more than that assigned to integration in space.
This is summarized in Table1, which shows the typical number of quadrature points used for each of the four
dimensions in (10). Table2 specifically compares the frequency dependence of gaseous absorption with the
spatial distribution of cloud absorption and scattering.

An obvious question arises: are we spending our computer time wisely? The accuracy–efficiency trade-off
suggests “not quite”, since the bias due to using onlyNx = 2 is around 20 W m−2 in certain locations of the
globe (see section5) compared to random errors always better than 1 W m−1 for Nν = 252 (Mlawer et al. 1996).
It should be pointed out that if we were to reduceNν to 2 (e.g. to have a single shortwave and a single longwave
band and take no account of the spectral variation of gaseousabsorption) then the associated errors would
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certainly be much larger than 20 W m−2, but there is nonetheless a case for increasing the spatial resolution
at the expense of some of the spectral resolution. The historic reason for the much poorer spatial resolution
is simply because the horizontal distribution of cloud is unknown (the GCM typically providing only cloud
fraction and cloud water content) whereas the spectral distribution of gaseous absorption can be accurately
calculated given the mixing ratios of the various gases.

The remainder of this document is therefore focussed on the problem of obtaining information on the spatial
variation in cloud properties from observations, and how torepresent this efficiently in a radiation scheme
without having to reduce the resolution in the other dimensions. We have not said much about temporal or
angular resolution in the integration, dimensions which are also shown in Table1. Although it is surprising how
well the two-stream approximation performs, some authors argue that sufficient accuracy is only obtained with
four streams, or efficient combinations of the two- and four-stream methods (Fu et al. 1997). There is certainly
a case for a more rigorous examination of the trade-offs between all four dimensions, but full consideration of
the errors associated with temporal and angular discretization is beyond the scope of this article.

3.2 The Monte Carlo independent column approximation

Given the desire not to compromise on spectral resolution, there is a need to find methods to resolve the spatial
variations of clouds without a significant increase in computational cost. A simple method used by Tiedtke
(1996) was to scale the optical depth by a factor of 0.7, an attempt to account for the fact that inhomogeneous
clouds are less reflective than their plane-parallel equivalent due to the convex relationship between albedo and
optical depth. However, it has since been shown that the appropriate factor to use is a function of solar zenith
angle in the shortwave (Shonk and Hogan 2008) as well as beingdifferent between the longwave and shortwave
and dependent on gridbox size (Pomroy and Illingworth 2000). Therefore we require mehods that have a more
physical link to the distribution of water content within a gridbox.

The leading method currently is the Monte Carlo ICA (McICA),proposed by Pincus et al. (2003), which
replaces the double integral in (11) by a single summation over frequency, but with the cloud profile presented
to each band being a different realization of the underlyingprobability distribution:

F±
t (z) ≃

Nν

∑
i=1

F±
i, j=i(z)∆νi . (12)

Räisänen et al. (2004) developed a method for stochastically generating cloud profiles given input information
on the variance of cloud water content and the degree of correlation between levels, and this is typically em-
bedded within operational implementations of McICA. The advantage of this approach is not only that cloud
structure is represented, but also that the overall efficiency is better than the standard method of representing
clouds as horizontally homogeneous within the cloudy part of each box. The reason is that instead ofNν calls to
a solver capable of representing two regions at each height (as described in section3.4), the cloud structure can
be represented byNν calls to a simpler plane-parallel discretization of the two-stream equations (described in
section3.3). The additional cost of running the cloud generator is negligible. A possible drawback of McICA is
that there is a large range of gas absorption for different parts of the spectrum (different values ofi), so that even
if the cloud is represented well withNν columns, the cloud realization in each column contributes differently
to the total flux, and resulting in a certain amount of “noise”compared to a full ICA calculation. However, this
noise is unbiased and has been shown to have no effect on weather forecasts. The McICA is now operational
in the ECMWF model (Morcrette et al. 2008). In section3.5, an alternative method known as “Tripleclouds”
is presented.

3.3 Discretizing the two stream equations

The two stream equations given by (8) describe the diffuse upwelling and downwelling fluxes in differential
form, and need to be integrated over discrete layers of the atmosphere to be solved numerically. Figure2a
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Figure 2: (Left) Schematic of a two-level horizontally homogeneous atmosphere with the reflection, trans-
mission and source coefficients (R, T and S± respectively) defined at each level, and the upwelling and
downwelling fluxes (F±) defined between each level. The surface albedo isαs. (Right) Schematic for the
same scenario but with each level split into two regions a andb, which may be thought of as clear-sky and
cloud. The fluxes in this case are defined at the base of a model level.

depicts a two-layer atmosphere in which the fluxes are definedat layer boundaries, while the layers themselves
are described by a reflectanceR, a transmittanceT, an upwelling source termS+ and a downwelling source term
S−. Meador and Weaver (1980) provided expressions for these quantities in terms of the scattering properties
that appeared in (8). In the shortwave the source terms correspond to scattering from the direct incoming beam
(including its scattering from the surface to yield the surface source termS+

s ). In the longwave, the source terms
correspond to thermal emission by the atmosphere. Thus we may write the upwelling flux at layer interface
i − 1/2 as the sum of transmission of the upwelling flux from layer interfacei + 1/2 (noting that the layer
indices increase downwards), reflection of the downwellingflux at layer interfacei − 1/2, and the upwelling
source from layeri:

F+
i−1/2 = TiF

+
i+1/2 +RiF

−
i−1/2 +S+

i . (13)

In this way, six equations may be written for the six unknown fluxes, and cast as a matrix problem (e.g. Stephens
et al. 2001, Shonk and Hogan 2008)

















1
1 −R1 −T1

−T1 −R1 1
1 −R2 −T2
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1 −αs




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
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
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















S−t
S+

1
S−1
S+

2
S−2
S+

s

















, (14)

where the spaces in the matrix indicate zero values. As the matrix is tridiagonal it is efficient to solve, and may
be extended to any number of levels.

3.4 Representing cloud fraction

The discretization in the previous section may be extended to the case when we consider cloud to occupy a
fraction of the gridbox at each level. There is more than one way to tackle this problem, but the approach
discussed here is that taken in the code of Edwards and Slingo(1996), depicted by the rightmost schematic
in Fig. 2. The clear and cloudy regions in each layer are denoteda andb, respectively, and each have their
own values of the coefficientsR, T and S±. We define the upwelling and downwelling fluxes at the lower
boundary of each region, so for exampleFa+

1.5 is the upwelling flux entering regiona of layer 1 from below,
which will depend on the contributions from regionsa andb in the layers below. These will be dependent on
the cloud fractions in the two layers, and the degree of overlap between the clouds. Following the example in
the Edwards-Slingo code, we define upwelling and downwelling overlap coefficients, such thatUxy

i−1/2 is the

fraction of upwelling radiation from regionx of layer i that enters regiony of layer i−1. Likewise,Vxy
i−1/2 is the
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Figure 3: (a) Demonstration of the problem of anomalous horizontal photon transport, and its solution, for a
single layer of ice cloud with a visible optical depth of 20, an effective radius of 50µm and a cloud fraction
of 0.5, as illustrated by the grey region. (b) The corresponding upwelling shortwave fluxes calculated by
the Edwards-Slingo code for a solar zenith angle of 45◦, a surface albedo of 0.5 and the US Standard
Atmosphere. Results are shown for the ICA (in which the code was run independently on the clear and
cloudy halves of the column), the “standard” solver essentially utilizing (16) to describe the relationship
between the fluxes, and the “new” solver described in the text. From Shonk and Hogan (2008).

fraction of downwelling radiation from regionx of layer i−1 that enters regiony of layer i. Thus (13) becomes

Fa+
i−1/2 = Uaa

i−1/2Ta
i Fa+

i+1/2 +Uba
i−1/2Tb

i Fb+
i+1/2 +

(

Vaa
i−1/2Ra

i +Vab
i−1/2Rb

i

)

Fa−
i−1/2 +Uaa

i−1/2Sa+
i +Uba

i−1/2Sb+
i . (15)

Note that we are not permitting any downwelling radiation inregion b (denotedFb−
i−1/2) to be immediately

reflected back into regiona. In the case shown in Fig.2b, where the cloud fraction is 1/3 in layer 1 and 2/3 in
layer 2, the overlap coefficients between layers 1 and 2 wouldbeUaa

1.5 = 1,Uba
1.5 = 1/2,Vaa

1.5 = 1/2 andVab
1.5 = 1/2.

In the two-layer case there are now a total of ten fluxes to evaluate (noting that at the top-of-atmosphere, TOA,
we do not need to use separate regions), which can again be written as a matrix problem:
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. (16)

ECMWF Seminar on Parametrization of Subgrid Physical Processes, 1-4 September 2008 11



HOGAN, R. J.AND J. K. P. SHONK: RADIATION PARAMETRIZATION AND CLOUDS

This approach may be extended to more than two layers, as before, but clearly the matrix is no longer tridiagonal
and so is less efficient to solve. Moreover, this treatment ofcloud fraction also has a problem with accuracy
when compared to the equivalent ICA calculation. Consider shortwave radiation illuminating the very simple
cloud shown in Fig.3a. As in an ICA calculation, half of the incoming solar radiation enters the cloud and
half proceeds through the clear half of the column and reaches the surface (of course, a modest fraction of this
will be absorbed or scattered by gases). In the ICA, radiation in the clear column that is reflected from the
surface will then penetrate up through the clear air and escape (again, except for the small fraction intercepted
by gases). But in our matrix solution, the downwelling fluxeswould be horizontally homogenized in the single
clear region beneath the cloud that such half of the radiation reflected from the surface would enter the cloud
from below, and therefore be less likely to escape to space. Figure 3b compares the horizontally averaged
upwelling fluxes for a two-column ICA calculation and the matrix solution (the standard two-region solver of
the Edwards-Slingo code), revealing a significant bias (assuming the ICA to be correct). We refer to this as the
shadowing problem,since it is associated with the scheme being unable to cope with the fact that part of the
clear-sky region is in shadow and the other part is not. It should be stressed that because this error relates to
scattering, it is much more significant in the shortwave.

One approach to tackle this problem was evident in the schemeused by Morcrette and Jakob (2000), which
uses three regions, splitting the two clear regions into a part that is in the shadow of a cloud above it, and a
part that has no cloud above it. Shonk and Hogan (2008) found an alternative, more computationally efficient
solution. The details may be found in their paper, but essentially they appealed to the physical interpretation
of how a tridiagonal system of equations is solved, and applied it to the denser matrix problem associated with
more than one region at each height. In solving a tridiagonalsystem, the “Gaussian elimination” step involves
proceeding up through the atmosphere and at each level calculating the albedo of theentire atmospherebelow
that level, as well as the total amount of radiation emitted from below that level. The “back-substitution” step
then involves returning back down the atmosphere and calculating the upwelling and downwelling fluxes using
these two variables. This process can be adapted to multipleregions in a way that retains much of the efficiency
of the tridiagonal algorithm. In the case shown in Fig.3a, it ensures that downwelling solar radiation in the
clear-sky half of the box at an altitude of 4.5 km “sees” the albedo of the entire atmosphere below that level and
is reflected back up into the same region, rather than some of it being reflected back up into the cloudy region.
Figure3b shows that the new solver based on this approach agrees almost perfectly with ICA. This new solver
is now released with the Edwards-Slingo code.

3.5 The Tripleclouds approximation

Figure2 shows that the two-stream method can be applied both in a horizontally homogeneous atmosphere, and
with a division between clear and cloudy regions. However, the homogenization of the cloud within the cloudy
region still results in significant biases in fluxes, by making the clouds too reflective for a given cloud water
content. In reality, there is a probability density function (PDF) of optical depth (or equivalently cloud water
content) across the cloudy part of a gridbox. The solution tothe shadowing problem presented in the previous
section enables the two-stream scheme to be efficiently extended to any number of regions horizontally, the
computational cost scaling linearly with the total number of regions at all heights. But how many regions are
required to represent the PDF of cloud water content? Shonk and Hogan (2008) proposed the simplest possible
extension, “Tripleclouds”, in which three regions are usedat each height, one clear and two cloudy. It might be
expected that only two cloudy regions (one with high water content and one with low water content) would be
insufficient to represent the full PDF, but the method was shown to work well using cloud-radar derived cloud
fields and treating the ICA as “truth”.

Figure4 illustrates visually what the Tripleclouds approximationmeans when applied to a real ice cloud ob-
served by radar. There is some flexibility in choosing the values of the water contents to use for the two cloudy
regions. If the full PDF is known then the best performance (when tested in a radiation scheme against ICA in
both the shortwave and longwave) was found by
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Figure 4: Comparison of the plane-parallel and Tripleclouds schemes when applied to observational data:
(a) just over 8 h of radar retrievals of ice water content taken from Chilbolton, southern United Kingdom,
on 28 June 2003, and the same data when (b) the plane-paralleland (c) the Tripleclouds approximations are
applied directly without any parametrizations or assumptions that affect overlap. From Shonk and Hogan
(2008).

• Making the cloud fractions of the two cloudy regions the same, i.e. each being half the value of the “total”
cloud fraction;

• Setting the water content of the low water-content region tothe 16th percentile of the full distribution;

• Setting the water content of the high water-content region to ensure that the gridbox-mean cloud water
content is the same as that of the full distribution.

In an operational context the full PDF is usually not available, nor is explicit information on the overlap of the
regions in one layer with the regions in another (i.e. the values to use for the overlap coefficientsU andV).
Some cloud schemes (e.g. Tompkins 2002, Wilson et al. 2008) prognose the variance of cloud water content,
which could be used as input to Tripleclouds (or indeed McICA), but there is a need to quantify the amount of
inhomogeneity that occurs in real clouds, and the degree to which they are overlapped.

4 Observations of cloud structure

This section provides a review of the available measurements of cloud inhomogeneity and cloud overlap, to
provide the necessary inputs for new radiation schemes (such as McICA and Tripleclouds) to represent cloud
structure globally.
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(e.g. because the samples were taken over fixed periods in time rather than space), an error bar is shown.
Adapted from Shonk (2008).

4.1 Horizontal cloud inhomogeneity

There have been numerous studies in the literature that haveused different observational datasets to quantify
the degree of inhomogeneity that is found in different typesof cloud. In this section we compare them. The first
task is to convert the various measures of inhomogeneity into a common metric. We use the fractional standard
deviation of in-cloud water content, defined simply asfw = σw/w̄, wherew̄ is the mean water content (or its
vertical integral, the water path, in some studies) andσw is the standard deviation of water content. Note that
for small values offw, we find thatfw ≃ σlnw. If particle size is assumed constant thenfw will be equal to the
fractional standard deviation of extinction coefficient, or its vertical integral, optical depth. Clear-sky regions
are not considered in the calculation in any of the studies. Hogan and Illingworth (2003) used the fractional
variance, which is simplyf 2

w, while Barker et al. (1996) used a parameterν = f−2
w .

The resulting values offw are shown in Fig.5. Since each study considered a different averaging area, which
we might expect to be important, the results are plotted against the equivalent model gridbox size. Most studies
produced a single value for each cloud type, although Hogan and Illingworth (2003) reported a gridbox-size-
dependent relationship that is depicted by the blue diagonal line. The results are colour-coded according to the
observational method used. The blue and black points indicate radar and aircraft measurements, respectively,
which are measures of fractional standard deviation at a particular height in the cloud. By contrast, the red
and cyan points are measurements by passive satellite and ground-based microwave radiometers, which are
measures of the fractional standard deviation of the vertical integral of water content (or more exactly in the case
of satellite measurements, of the optical depth). We might expect vertical integrals to have a lower fractional
standard deviation, since they average structures at different levels that may be uncorrelated, but there is little
sign of systematically lower values for these points. One possible consideration is that optical measurements
are sensitive to a lower moment of the size distribution thanradar measurements, and it may be that these
moments have a different fractional standard deviation.
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Figure 6: Schematic of three possible cloud overlap assumptions in the columns of a GCM, with the vertical
dotted line showing the total column cloud cover. All assumethat clouds in layers with a cloud-free layer
between them are randomly overlapped, but the assumption ofthe overlap of clouds in adjacent layers varies
from random on the left to maximum on the right. The central panel shows the use of an overlap parameter
α (in this case with a value of 0.6 between all adjacent levels)describing the overlap relative to random
(α = 0) and maximum (α = 1).

The spread of points shows no dependence on the size of the gridbox, despite the fact that in individual studies a
dependence is found due to the fact that increasing the size of the gridbox means that larger scales of variability
are included (e.g. Hogan and Illingworth 2003). Presumablythe spread caused by other factors means that the
dependence on gridbox size is obscured. Note that the study of Cahalan et al. (1994) has a large equivalent
gridbox size because it was from of order a month of continuous observations.

The greatest surprise is the lack of a strong dependence on cloud type. Visually, cirrus clouds have a more
homogeneous appearance than stratocumulus, and yet there is no real evidence in Fig.5 that they have a smaller
fw. This is likely to be because ice clouds have variability on larger scales than liquid clouds, so while they lack
the small scale structure that is apparent from the ground, when we consider all scales within a GCM gridbox
the two cloud types are comparable. One exception to this rule is cumulus, which Barker et al. (1996) showed
to have a significantly greater variability than stratocumulus. This result was also reported by Pincus et al.
(1999) who examined a range of boundary-layer cloud types. We should be wary of the exactfw shown for
cumulus in Fig.5, however, since cumulus clouds are most susceptible to 3D effects in optical depth retrievals.
Given these results, it may be justified to use a single value for fw globally, but there is clearly more work to
be done to reconcile the effects of different observing systems, for example by calculatingfw simultaneously
from the same cloud using different methods.

4.2 Cloud overlap

The importance of cloud overlap is illustrated in Fig.6, which shows three idealized model columns, each with
the same profile of cloud fraction. However, the different assumptions on the way the clouds in each level are
overlapped lead to a significantly different total cloud “cover” (the fractional area of cloud projected on to the
ground). It was shown by Morcrette and Jakob (2000) that thisleads to significantly different planetary albedo.
The random overlap assumption assumes that clouds in all levels are randomly overlapped with respect to each
other, but has the unphysical property that the total cloud cover increases significantly as the vertical resolution
of the model improves (although all assumptions have some sensitivity to vertical resolution). Most models
currently use the “maximum-random” overlap assumption, meaning that cloud in adjacent levels is overlapped
to the maximum extent, while clouds that are separated by cloud-free levels are randomly overlapped. In order

ECMWF Seminar on Parametrization of Subgrid Physical Processes, 1-4 September 2008 15



HOGAN, R. J.AND J. K. P. SHONK: RADIATION PARAMETRIZATION AND CLOUDS

to test this we can use cloud radar data of the type shown in Fig. 4, and careful inspection of panel b of this
figure reveals that clouds in adjacent levels are often somewhere between the two extremes of maximum and
random overlap, as illustrated by the middle panel of Fig.6.

Hogan and Illingworth (2000) quantified this behaviour as follows. Suppose we consider two levels of the
atmosphere, which may or may not be adjacent, and which have acloud fraction ofca andcb. If they were
randomly overlapped, then the combined cloud cover of thesetwo levelsexcluding any levels in betweenwould
beCrand= ca +cb−cacb, while assuming maximum overlap would beCmax = max(ca,cb). Radar observations
can also provide us with the “true” combined cloud cover,Ctrue. Analysis of a large volume of data allows the
mean of these different values ofC to be calculated as a function of the distance between levels, and whether
there is any intervening cloud between the levels under consideration. Hogan and Illingworth (2000) then
introduced an “overlap parameter”, defined as

α =
Ctrue−Crand

Cmax−Crand
, (17)

which varies between the extremes ofα = 1 for maximum overlap toα = 0 for random overlap (on average).
The radar observations clearly showed that for clouds with clear sky between them, the overlap was random
on average, as represented by all the idealizations in Fig.6. For clouds in adjacent levels, or for pairs of levels
with some cloud at all levels between them, the dependence ofoverlap parameter with level separationz was
well fitted by an inverse exponential of the form

α(z) = exp(−z/z0) , (18)

wherez0 can be thought of as an overlap “decorrelation length”.

An important point to note is that many radiation schemes that are equipped to take overlap information as input,
including Tripleclouds, can only allow the overlap of adjacent layers to be specified. This can easily be seen
from the discussion in section3.4 where the overlap coefficientsU andV are only specified between levels.
Hence, the observed behaviour of overlap becoming more and more decorrelated with increased separation
can be thought of as arising naturally from the cumulative effect of small decorrelations between adjacent
levels. Therefore, for the analysis that follows we calculate z0 from clouds in levels only 1 km apart, with
the understanding that a radiation scheme would implement this by using (18) to calculateα for the particular
separation of adjacent levels, and from that the values of the overlap coefficientsU andV.

Values ofz0 have been derived at Chilbolton, southern England, by Hoganand Illingworth (2000), and also at
the various Atmospheric Radiation Measurement sites worldwide by Mace and Benson-Troth (2002), and are
shown versus absolute latitude in Fig.7. Results from CloudSat appear to indicate a larger decorrelation length,
although this is believed to be due to the fact that rain was included in the statistics, which tends to be more
maximally overlapped due to the much larger fall speed. The ground-based points can be fitted by a line of the
form

z0 = 2.9−0.027|φ |, (19)

wherez0 is in km andφ is latitude in degrees. This shows a clear tendency for more maximally overlapped
clouds in the tropics, presumably due to the greater prevalence of convective over stratiform clouds, and the
lower wind shear. However, we stress that a simple linear fit is somewhat crude given that only four points
are present, and it would be desirable to include a more physical dependence on cloud type rather than simply
on latitude. Indeed, the large error bar at the Southern Great Plains ARM site indicates the range in different
seasons, from the convection-dominated summer to the stratiform-dominated winter. Attempts to build in a
dependence on wind shear were presented by Naud et al. (2008). It has also been shown that cloud phase has
a role to play. Brooks (2005) used the radar and lidar signalsat Chilbolton to distinguish between liquid and
ice clouds, and found that for a model with a horizontal resolution of ∆x and a vertical resolution of∆z (both in
metres), the overlap parameters for adjacent levels were best fitted for liquid and ice by

αliquid(∆z) = 1−0.0097∆x−0.0214∆z0.6461; αice(∆z) = 1−0.0115∆x−0.0728∆z0.5903. (20)
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Figure 7: Estimate of the variation of overlap decorrelation height, z0 in (18), versus absolute latitude, for
vertically continuous cloud. The ground-based observations were from Chilbolton (Hogan and Illingworth
2000), with the error bar indicating the dependence on gridbox size, and the various permanent ARM sites
globally (Mace and Benson-Troth 2002), with the error bars indicating the seasonal variation at each site.
The cyan dashed line was calculated from spaceborne CloudSat radar and CALIPSO lidar data (G. G. Mace,
personal communication), but includes rain. The blue line provides a linear fit to the ground-based data
points. Adapted from Shonk (2008).

For typical model resolutions it was found that liquid clouds tended to be more randomly overlapped than
ice clouds. A possible reason for this is that liquid clouds often occur in the form of thin layers, and when
observations are discretized to the finite vertical resolution of a model, physically separate layers can occur in
adjacent model levels. By contrast, ice clouds are deeper and ice particles fall at around 1 m s−1, leading to a
greater correlation of cloud occurrence between levels.

4.3 Overlap of cloud inhomogeneities

The previous section discussed the overlap of cloud boundaries, but an additional consideration for radiative
transfer is the degree to which in-cloud inhomogeneities inwater content are overlapped in the vertical. The
only study in which this has been calculated from observations was by Hogan and Illingworth (2003), who
used cloud radar to quantify the vertical correlation of horizontal inhomogeneities in cirrus clouds. They found
that the decorrelation length for inhomogeneities increased with horizontal gridbox size, but decreased with
increased wind shear. Generally their values were less than1 km, which is substantially less than the values
found for the overlap of cloud boundaries in the previous section. Hogan and Kew (2005) calculated that the
top-of-atmosphere effect of different cirrus fallstreaksorientations in response to changed wind shear could be
of order 20 W m−2 in the shortwave and 10 W m−2 in the longwave.

Unfortunately it is much more difficult to estimate the overlap of inhomogeneities in stratocumulus clouds, since
most such clouds contain radiatively unimportant drizzle drops that dominate the radar return, and hence the
vertical distribution of water content cannot be reliably derived. Given these issues, a number of implementa-
tions of McICA simply assume that the decorrelation length for cloud inhomogeneities is half the decorrelation
length for cloud boundaries (e.g. Morcrette et al. 2008), although it would clearly be desirable to put this figure
on a firmer observational footing.
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5 The global impact of cloud inhomogeneity and overlap

In this section we estimate the global impact of cloud inhomogeneity and overlap, and hence the likely errors
that are present in current climate models that assume clouds to be horizontally homogeneous within the cloudy
fraction of the gridbox, and overlapped according to the rules of maximum-random overlap. We take a month
of global ERA-40 model fields from each of the four seasons in the year 2001, including cloud fraction, liq-
uid water content and ice water content. Four off-line experiments are performed using the Edwards-Slingo
radiation code:

1. Using the common assumptions of horizontally homogeneous (plane-parallel) clouds and maximum-
random overlap.

2. Using horizontally homogeneous clouds, but with more realistic “exponential-random” overlap, in which
the overlap parameter varies with latitude according to thefit shown in Fig.7. In fact a pressure-
dependent correlation length is used, because this produces better agreement with the finding of Brooks
(2005) that low liquid clouds are more randomly overlapped than high ice clouds (evident from plugging
typical numbers into Eq.20).

3. Using maximum-random overlap, but with the “Tripleclouds” scheme to represent inhomogeneity with
a fractional standard deviation offw = 0.8 for all cloud types (a reasonable average of the studies sum-
marized in Fig.5). This is achieved by setting the water content values in thetwo cloudy regions to
w = w̄± fw, wherew̄ is the mean water content provided by the ERA-40 data.

4. Using both exponential-random overlap and Tripleclouds, thereby correcting both of the main biases re-
lating to cloud structure that are present in current climate models. In this case, the overlap decorrelation
length of the cloud inhomogeneities is assumed to be 2/3 of the value for the cloud boundaries.

Additionally, we perform a calculation using the same modelstate but with no clouds present, in order that
the cloud radiative forcing (CRF) of all the previous runs may be calculated. CRF is defined as the top-of-
atmosphere net shortwave or longwave radiation (downwelling minus upwelling) of the cloudy case minus that
of the clear-sky case.

The results are shown in Fig.8 versus latitude for the shortwave, longwave and net (the sumof the two). The
dark blue line shows the results for Experiment 1 above, in which clouds are represented as in most current
climate models. As in previous studies, this shows shortwave CRF to be negative, indicating that the high solar
albedo of clouds is in the sense of a cooling effect on climate, while longwave CRF is positive, indicating that
clouds act to warm the climate in this part of the spectrum in asimilar way to greenhouse gases. In a global
average the shortwave effect is dominant and the net CRF is negative.

The light blue line in Fig.8 shows the results of Experiment 2 in which more realistic overlap is used but the
clouds are still horizontally homogeneous in each model level. It can be seen that the magnitude of the CRF is
increased in both the longwave and the shortwave due to the fact that the global cloud cover has been increased.
The red line shows the effect of representing cloud inhomogeneity (Experiment 3) but retaining maximum-
random overlap. This time the CRF is reduced by an amount thatis significantly larger than the effect of using
more realistic overlap. Finally, the black line shows Experiment 4 in which both cloud inhomogeneity and
realistic overlap are used, which reveals a significant net reduction in CRF compared with Experiment 1, but
not by as much as Experiment 3.

Hence we conclude that it is important to represent both the effects of both realistic overlap and cloud inhomo-
geneity in order for the radiative effects of clouds to be accurately captured. If only the overlap representation
is improved then the CRF will actually be less accurate, while if only the effects of cloud inhomogeneity are
introduced then the result will be an overcompensation for the CRF error. This point was also made by Hogan
and Kew (2005) for individual cirrus clouds.
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Figure 8: Top-of-atmosphere cloud radiative forcing in the(a) shortwave, (b) longwave and (c) net, for four
experiments performed on a selection of ERA-40 data. The order of the colours in the legend corresponds
to experiments 1–4 described in section5. From Shonk (2008).

The longitudinally averaged changes to CRF hide significantregional variations due to the different behaviours
of different types of cloud. Figure9 shows the global distribution of the changes to CRF when the representation
of both overlap and inhomogeneity is improved. In the stratocumulus regions on the eastern sides of ocean
basins, the clouds tend to be physically thin and fill the gridbox horizontally, resulting in the inhomogeneity
effect dominating over the overlap effect. Since the shortwave effect of these clouds is much larger than the
longwave effect, the net CRF is increased (becomes less negative) in these regions by up to around 15 W m−2

(around 20%). In the convective region of the tropical West Pacific, most clouds only partially fill the gridbox
yet occupy many vertical levels. Hence in the shortwave the overlap effect almost completely counteracts the
inhomogeneity effect and the change is only around 4 W m−2. In the longwave, the overlap effect in this region
dominates and the change in CRF is around−4 W m−2, resulting in a near cancellation in the net. In the
mid-latitude storm-track regions, both effects are important in both the shortwave and longwave, but with the
shortwave effect of the inhomogeneity having the upper hand, resulting in a net increase of CRF (i.e. becoming
less negative). Further analysis of these runs was presented by Shonk (2008).

As a final point we note that these results are subject to the accuracy of the clouds in the ERA-40 analysis, and
some appreciable errors have been revealed in previous studies (e.g. Allan and Ringer 2003). These could be
expected to change the precise values shown here, although the broad patterns are believed to be robust.
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Figure 9: The change in top-of-atmosphere cloud radiative forcing in the (a) shortwave, (b) longwave and
(c) net, when improving both the representations of cloud overlap and inhomogeneity in a radiation scheme
(i.e. Expt. 4 minus Expt. 1). Note that since shortwave CRF isnegative, a positive change in panel a indicates
a reduction in the magnitude of the shortwave CRF. Adapted from Shonk (2008).

6 Three-dimensional radiative transfer

So far we have treated the ICA as “truth” against which to testmore efficient methods for representing cloud
structure, such as McICA and Tripleclouds. As the name implies, the ICA is an approximation, but how good an
approximation is it? We can imagine radiation entering or leaving the edges of clouds, which do not exist in the
ICA, but often there is a significant degree of cancellation between a net gain of radiation into a cloud side in one
part of the domain and a net loss out of a cloud side elsewhere.To explain how 3D effects can change domain-
averaged fluxes and heating rates, it is convenient to simplify the multitude of ways that radiation can interact
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Pincus et al. (2005): cumulus
Benner & Evans (2001): small cumulus
Di Giuseppe & Tompkins (2003): cumulonimbus
Zhong et al. (2008): cirrus uncinus
Gounou & Hogan (2007): contrails

Figure 10: Effect on shortwave top-of-atmosphere cloud radiative forcing of 3D radiative transport (com-
pared to an ICA calculation) for several different cloud types. The solid magenta line shows the results for
a contrail of optical depth 0.4 illuminated perpendicular to its length, while the dashed magenta line is for
illumination parallel to its length. The cirrus uncinus case had a domain-mean optical depth of 1.2.

with a complex cloud field into three dominant processes. These were described by Gounou and Hogan (2007)
for the simple geometrical structure of an aircraft contrail (where 3D effects turn out to be very significant), but
essentially the same mechanisms have been outlined by Várnai and Davies (1999) in the shortwave and Killen
and Ellingson (1994) in the longwave:

1. Shortwave side illumination.When the sun is low in the sky, the presence of cloud sides means that the
incoming radiation has a greater chance to intercept a cloudthan when the sun is overhead. Therefore
more radiation will be scattered back to space, increasing the cloud radiative forcing. The geometrical
reason behind this also explains why a field of cumulus cloudsappears to cover a greater fraction of the
sky when looking towards the horizon than when looking upwards.

2. Shortwave side leakage.When the sun is high in the sky, an opposing effect often occurs: radiation
entering the cloud near the top is scattered into the forwardhemisphere and has a chance of leaking
out of the edge of the cloud and continuing to the ground (giving the cloud a silver lining to a ground
observer). In the ICA this would not happen: this radiation would remain within the cloud and have a
greater chance to be subsequently scattered back out to space. The 3D effect is therefore typically to
reduce the radiative forcing.

3. Longwave side effects.Imagine a field of cumulus clouds that has an areal coverage ofone half. For the
same geometrical reason as outlined in mechanism 1, theangularcoverage of the sky by clouds, as seen
by a pyrgeometer above or below the cloud will be more than onehalf, on average. Because clouds tend
to be colder than the surface, there will be a lower emission to space and a larger emission towards the
ground, so the longwave cloud forcing at the top-of-atmosphere and at the surface is larger if 3D effects
are included.

So which of these effects dominates in real clouds? Figure10 depicts the fractional change to shortwave
cloud radiative forcing, i.e.(CRF3D−CRFICA)/CRFICA , calculated for a number of different cloud types. The
magnitude of the 3D effect is substantial for cumulus cloudsdue to their relatively large area of cloud “side”.
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For large solar zenith anglesθ , the side illumination effect dominates and CRF is increased, while for θ <
45◦, the side leakage effect dominates and CRF is reduced. Cirrus clouds and contrails exhibit approximately
the same behaviour, but presumably because their thickness-to-width ratio is lower, the transition occurs at
a larger value ofθ . The dashed line shows that for contrails, the side illumination effect can be removed
completely by orienting the contrail parallel to the direction of the incoming sun. For cumulonimbus, the
results forθ = 60◦ are close to the results for cumulus clouds, but forθ = 0◦, the behaviour is quite different.
A possible explanation is the role of absorption in deep clouds: Di Giuseppe and Tompkins (2003) showed that
for overhead sun the domain-mean absorption was reduced in the 3D calculation, suggesting that photons that
leaked from cloud sides had a higher probability of escapingback to space than the equivalent photons in the
ICA that stayed within the cloud and were more likely to be absorbed. However, it remains a puzzle to explain
the similar behaviour reported by Zhong et al. (2008) for thin cirrus clouds (the leftmost point of the green line
in Fig. 10). Stratiform clouds, such as stratocumulus (Zuidema and Evans 1998) and optically thicker cirrus
(Zhong et al. 2008) exhibit much weaker 3D effects in the shortwave, typically at the 2% level, so have not
been shown in Fig.10.

There have been fewer studies of the longwave 3D effect for realistic cloud fields. It was found by Gounou and
Hogan (2007) and Zhong et al. (2008) that the top-of-atmosphere longwave CRF was enhanced by around 10%
for contrails and optically thin cirrus, but for ice clouds with an optical depth larger than around 5 the effect
was closer to 1%. Boundary-layer clouds generally have a much larger surface than top-of-atmosphere CRF
in the longwave, and it was estimated by Heidinger and Cox (1996) that cumulus clouds increase the surface
longwave forcing by as much as 30%.

The ultimate aim is to find a way to represent these effects efficiently in a GCM radiation scheme. In terms
of the part of the code requiring modification, the three mechanisms listed above will specifically affect (1)
the direct incoming shortwave calculation, (2) the diffuseshortwave calculation, and (3) the diffuse longwave
calculation. Tompkins and Di Giuseppe (2007) tackled mechanism 1 by making the overlap assumption in
the shortwave dependent on the solar zenith angle, thereby accounting for the fact that when the sun is close
to the horizon the incoming sunlight is more likely to intercept a cloud. To fully simulate 3D effects it will
be necessary to also represent mechanisms 2 and 3, which could involve changes to the way the two-stream
equations are solved to allow for radiation to pass horizontally through the edges of clouds, and indeed between
internal inhomogeneities in the cloud. However, we should tread cautiously: although Fig.10 shows that the
instantaneous effects can be large for certain cloud types,there can be substantial cancellation between the two
shortwave effects over the diurnal cycle. Moreover, it remains to be seen whether it is possible to characterize
complex 3D structure by a handful of variables (such as the effective area of cloud edge within a gridbox) that
could be used in a radiation scheme.

7 Conclusions and outlook

In this article we have shown that the two leading sources of error in the sub-grid representation of clouds
in radiation schemes, namely cloud inhomogeneity and cloudoverlap, may now be represented efficiently
in GCMs. Indeed, there are at least two viable algorithms, McICA (Pincus et al. 2003) and Tripleclouds
(Shonk and Hogan 2008). Using Tripleclouds, we have estimated the global impact of these two effects on the
radiation budget, and hence the errors that are likely to be present in climate models. Naturally there will be a
dynamical response to changes to the global distribution ofincoming radiation, and work is currently underway
to implement Tripleclouds in the Met Office climate model to quantify it. The intention is also to make use of
the inhomogeneity information available from the new “PC2”cloud scheme (Wilson et al. 2008), rather than
relying on empirical relationships.

There are numerous other possible sources of error and inconsistency in the way that clouds are treated in radi-
ation schemes, and which deserve further attention. Three-dimensional effects were discussed in the previous
section, and if a way can be found to represent them efficiently then more information will be required from
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observations on the typical area of “cloud edge” within a model gridbox. More generally, it would be desirable
to synthesize cloud observations into an overarching “theory of cloud structure” (no doubt based on fractal
principles) that enables the various quantities required by a radiation scheme to be predicted in a way that is
intrinsically dependent on gridbox size and all the other relevant variables, rather than relying on crude em-
pirical relationships that obscure the underlying physics. Including gridbox-size-dependent parametrizations is
important for a number of models that are run routinely at a wide range of resolutions, yet most fail to include
it rigorously. Improvements along these lines could be extended to include the fact that individual cloud real-
izations do not always exhibit mean inhomogeneity and mean overlap behaviour, but rather can take on a range
of values. Perhaps it is important to include a stochastic element to represent the known fluctuations of these
properties from case to case.

It is worth pointing out that the innovations in representing the interactions of clouds with radiation may also be
useful for other parts of the GCM, specifically aspects of themicrophysics such as precipitation formation. It
was shown by Jakob and Klein (2000) that cloud overlap affects the fraction of precipitation reaches the ground
without evaporating. Is there a way that overlap, inhomogeneity and particle size information can be made to
be consistent between the various schemes?

So far we have discussed only the accuracy of a radiation scheme given the inputs from the GCM. However,
the most substantial source of error in calculating the radiative properties of clouds is almost certainly due to
errors in the cloud variables themselves. For example, whenthe radiation budget of ERA-40 is compared to
CERES observations, there is a distinct underestimate of convection over the Amazon, and an underestimate
of the longwave CRF in mid-latitudes that is larger than the differences between the various combinations
of cloud inhomogeneity and overlap discussed in section5. Therefore the greatest challenge is to make use
of ground-based and spaceborne observations, coupled withanalysis techniques such as those of Illingworth
et al. (2007), to identify specific errors in the way clouds are represented and remedy them with better cloud
parametrizations.
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