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Evaluation of boundary-layer type in a weather forecast model
utilizing long-term Doppler lidar observations
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Many studies evaluating model boundary-layer schemes focus on either near-surface
parameters or short-term observational campaigns. This reflects the observational datasets
that are widely available for use in model evaluation. In this article, we show how surface
and long-term Doppler lidar observations, combined in such a way as to match model
representation of the boundary layer as closely as possible, can be used to evaluate the skill
of boundary-layer forecasts. We use a two-year observational dataset from a rural site in
the UK to evaluate a climatology of boundary-layer type forecast by the UK Met Office
Unified Model. In addition, we demonstrate the use of a binary skill score (Symmetric
Extremal Dependence Index, SEDI) to investigate the dependence of forecast skill on season,
horizontal resolution and forecast lead time. A clear diurnal and seasonal cycle can be seen
in the climatology of both model and observations, with the main discrepancies being
the model overpredicting cumulus-capped and decoupled stratocumulus-capped boundary
layers and underpredicting well-mixed boundary layers. Using the SEDI skill score, the
model is most skilful at predicting the surface stability. The skill of the model in predicting
cumulus-capped and stratocumulus-capped stable boundary-layer forecasts is low, but
greater than a 24 h persistence forecast. In contrast, the prediction of decoupled boundary
layers and boundary layers with multiple cloud layers is lower than persistence. This
process-based evaluation approach has the potential to be applied to other boundary-layer
parametrization schemes with similar decision structures.
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1. Introduction

Climate models vary substantially in their predictions of
boundary-layer clouds in a warmer climate. This leads to an
uncertainty in radiative feedback and is one of the largest sources
of uncertainty in climate prediction (Bony et al., 2006; Webb et
al., 2006). For example, Bony and Dufresne (2005) have shown
that the climate models with the largest climate sensitivity are
those that have the largest changes in boundary-layer cloud in
their future climate.

On a more local scale, the boundary-layer parametrization
scheme used in a given numerical weather prediction model can
affect the forecasts of weather phenomenon such as tornadoes
(Stensrud and Weiss, 2002), hurricanes (Powell, 1980) and
convective clouds (Zampieri et al., 2005). Even within a single
scheme, small differences in parameter values or initial conditions
can cause forecasts to change dramatically, for instance changing
from clear sky to overcast conditions (Martin et al., 2000). Such
changes have large impacts on surface temperatures and also
feedback on the timing and location of deep convection (Baldauf
et al., 2011). Accurate near-surface temperature forecasts are
important for a range of users, including electricity companies,

as demand for electricity varies with temperature, and local
road authorities, who are concerned with values of near-surface
temperature relative to a threshold below which roads should be
treated to prevent ice formation. Therefore, there is a strong need
for accurate and comprehensive methods for the evaluation
of boundary-layer schemes, from both climate and weather
prediction perspectives.

There are many different boundary-layer parametrization
schemes used in numerical weather prediction and climate models
(e.g. schemes based on a first-order closure with local or non-local
diffusivities and schemes based on the prognostic turbulent kinetic
energy method). There have been a number of attempts to evaluate
these schemes by comparing their output with observations in
case studies (Beesley et al., 2000; Betts and Jakob, 2002; Zhang and
Zheng, 2004; Cuxart et al., 2006; Hu et al., 2010; Shin and Hong,
2011; Svensson et al., 2011; Xie et al., 2012). However, these are all
based on short-term observational campaigns. In addition, they
typically focus on only a few variables such as 2 m temperature,
10 m winds and boundary-layer height. The studies of Sengupta
et al. (2004) and Barrett et al. (2009) go further and consider
the occurrence and distribution of boundary-layer clouds, but to
date there has been no systematic evaluation of boundary-layer
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schemes based on surface and above-surface turbulent mixing
and cloud type made throughout the depth of the boundary
layer.

The new dataset of observed boundary-layer type derived by
Harvey et al. (2013) provides an opportunity to perform such an
evaluation. Surface and above-surface observations are analyzed
in such a way as to diagnose boundary-layer types that match
the categories used in models as closely as possible, making it
possible to evaluate boundary-layer parametrizations. In addition
the method is based solely on ground-based Doppler lidar and
sonic anemometer data, which are routinely collected at various
locations worldwide, and therefore provides a viable method for
performing long-term boundary-layer scheme evaluations over
different sites. This dataset could also be used in many different
ways to characterize other aspects of the boundary layer, such as
cloud cover and the structure of turbulence; however, here we
restrict our attention to evaluating one particular boundary-layer
parametrization scheme.

In this study, two years of data from the Chilbolton Facility
for Atmospheric and Radio Research (CFARR), UK, are used
to provide such an evaluation of the boundary-layer scheme
in the UK Met Office Unified Model (UM). This model has a
boundary-layer parametrization scheme that makes explicit use
of the concept of boundary-layer type: it uses model variables
to diagnose discrete boundary-layer types, which are then used
to determine the location and intensity of of the turbulent
mixing to apply. In principle, this analysis could be extended
to other atmospheric models that use binary decisions inside
their boundary-layer parametrizations, since each combination
of binary decisions can be interpreted as a boundary-layer type.
The evaluation of parametrization schemes is an indispensable
part of the development of prediction systems. In this article, we
aim to design an evaluation scheme that can be used to quantify
both skill and bias in model forecasts, with the intention that
this scheme can aid model development and lead eventually to
improved forecasts.

This article is organized as follows. In section 2, the
methodology of Harvey et al. (2013) is outlined briefly, followed
by a description of the data used in this study. In section 3, a two-
year climatology of boundary-layer type is presented for both the
model and observations and in section 4 the Symmetric Extremal
Dependence Index (SEDI) is then used to evaluate the skill of both
the 4 and 12 km resolution versions of the UM. This measure of
skill is also used to assess the predictions of boundary-layer type
as a function of forecast lead time and season.

2. Method

2.1. Observational data

Harvey et al. (2013) diagnose discrete boundary-layer types from
observations according to an extension of the classifications used
in the UM (Lock et al., 2000). Thus the verification data are
matched to the forecast data as closely as possible, making it
easier to verify the model forecast and identify bias. Table 1 lists
the seven UM boundary-layer types and their relation to the nine
observational types of Harvey et al. (2013). The observational
boundary-layer types are diagnosed using data from a vertically
pointing ground-based Doppler lidar and a sonic anemometer,
both located at the CFARR. The sonic anemometer is used to
derive the surface sensible heat flux (H). The Doppler lidar is used
to infer the presence of one or more layers of boundary-layer cloud
and the skewness (s) and variance (σ 2

w) of the vertical velocity
throughout the depth of the boundary layer. Together, s and σ 2

w
provide information on the presence of turbulent mixing in the
boundary-layer as well as its source (cloud-top or surface-driven
convection).

Each decision in the algorithm incorporates observational
uncertainties and, as such, results in a probability of occurrence
for each of the nine boundary-layer types for each hour of

Table 1. The UM boundary-layer types of Lock et al. (2000) (left column) and
their relation to the nine observational boundary-layer types of Harvey et al.

(2013) (right column).

UM type Observational type

I Stable, possibly with non-
turbulent cloud

Ia Stable boundary layer, no cloud

Ib Stratus-topped boundary layer,
no cumulus

Ic Forced cumulus under stra-
tocumulus

II Stratocumulus over a stable
surface layer

II Stratocumulus over a stable
surface layer

III Single mixed layer, possibly
cloud-topped

IIIa Single mixed layer, no cloud

IIIb Single stratocumulus-topped
mixed layer

IV Decoupled stratocumulus
not over cumulus

IV Decoupled stratocumulus not
over cumulus

V Decoupled stratocumulus
over cumulus

V Decoupled stratocumulus over
cumulus

VI Cumulus-capped layer VI Cumulus-capped layer
VII Shear-dominated unstable

layer
III Type a or b, depending on the

presence of cloud

available data. For a fair comparison with the deterministic
hourly UM data, only the most probable boundary-layer type is
considered and observational types Ia, Ib and Ic are combined
into one type and IIIa and IIIb are combined into one type,
as shown in Table 1. In addition, the observational diagnosis
is unreliable during periods of precipitation. As a result, all
hours where there is precipitation in either the observational data
(from a collocated rain gauge) or the model forecast (defined
as precipitation rate above 0.02 mm h−1) are removed from the
comparison. This removes approximately 20% of the data from
the comparison.

2.2. Model data

The UM (version 5.2 onwards) solves non-hydrostatic, deep-
atmosphere dynamics using a semi-implicit, semi-Lagrangian
numerical scheme (Cullen et al., 1997; Davies et al., 2005).
The model includes a comprehensive set of parametrizations,
including schemes for the surface (Best et al., 2011; Clark et
al., 2011; Essery et al., 2001), boundary layer (Lock et al.,
2000), mixed-phase cloud microphysics (Wilson and Ballard,
1999) and radiation (Edwards and Slingo, 1996). The model also
includes an option for convection parametrization (Gregory and
Rowntree, 1990), which is used at all resolutions greater than
4 km, with additional downdraught and momentum-transport
parametrizations. The model runs on a rotated latitude/longitude
horizontal grid with Arakawa C staggering and a terrain-
following hybrid height vertical coordinate with Charney–Philips
staggering.

Operational forecasts from two versions of the UM are used in
this study. The 4 km resolution version of the UM (UK4) is used
for the main observational comparison presented in sections 3
and 4 and the North Atlantic European version of the UM (NAE)
is used to investigate the effect of horizontal resolution on the
boundary-layer type forecasts. The UK4 covers a domain slightly
larger than the UK and has 70 levels in the vertical, 16 of which
are in the lowest 1 km. The NAE covers a larger domain over the
North Atlantic and Europe and has a 12 km horizontal resolution
and a coarser vertical resolution of 38 levels, with 7 levels in the
lowest 1 km. There are several other differences between the two
models, most notably in the convection and data assimilation
schemes.

Each forecast is 36 h long and these are initialized four times
per day, at 0300, 0900, 1500 and 2100 UTC for the UK4 and 0000,
0600, 1200 and 1800 UTC for the NAE. UK4 data are available for
the two-year period 1 September 2009–31 August 2011, whereas
NAE data are available for the nine-month period 1 September
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Figure 1. The frequency of occurrence of hourly boundary-layer types for UK4
and observations during the period 1 September 2009–31 August 2011.

2009–31 May 2010. These data are available for the closest nine
grid points to CFARR.

The same boundary-layer scheme (Lock et al., 2000; Lock
and Edwards, 2011) is used in both the UK4 and NAE models. It
categorizes the boundary layer at each grid point and time step into
one of the seven different types summarized in Table 1, based on
the surface stability, the vertical profile of potential temperature
and the presence and type of cloud. The selected boundary-layer
type then influences the form of the eddy diffusivity profile used
to parametrize the turbulent fluxes within the boundary layer. A
first-order K-closure scheme is used and the diffusivity can have
contributions from both local and non-local terms, depending
on the static stability. Additional diffusivity terms are included
if boundary-layer cloud is present. For example, if cumulus
cloud is diagnosed then it is assumed that there is turbulent
mixing present from the surface up to the cumulus cloud base.
In that case, the associated convection is treated entirely by the
convection scheme. In stratocumulus-capped boundary layers,
there is an additional source of mixing associated with turbulence
driven from the cloud-top due to radiative cooling.

3. Evaluation of the model climatology

In this section the climatology of hourly boundary-layer
types from the UK4 forecasts is compared with observations.
Figure 1 shows the frequency of occurrence of hourly UK4 and
observational boundary-layer types for the two years of available
model data. For this comparison, only data from the grid point
nearest to the CFARR is used. In addition, only data from the
first 6 h of each forecast are used (the dependence on lead time is
discussed in section 4.2.1).

There is good agreement between the frequency of occurrence
of the stable boundary-layer types (I and II) in model and
observations, with the model forecasting a slightly higher
frequency of each. There is less agreement for the unstable types,
with the model forecasting the decoupled stratocumulus types
(IV and V) more frequently than occurs in the observations and
the well-mixed (III) and cumulus (VI) types less frequently than
in the observations. The ranking of the types in terms of frequency
of occurrence is similar in the model and the observations, with
only the order of the decoupled stratocumulus (IV) and cumulus
(VI) types reversed.

Regarding the diurnal evolution of boundary-layer type,
Figure 2 shows the frequency of occurrence of each type as a
function of time of day for each season. A clear diurnal cycle is
present in both model and observations, with the stable types
dominating at night and the unstable types during daylight hours.
Consistent with this, there is a seasonal cycle in the frequency of
occurrence of each type, with higher occurrences of the unstable

types during the summer months and higher occurrences of the
stable types during the winter months. The transition between
these two states occurs fairly rapidly around the time of sunrise,
although this is blurred out in the seasonal averages of Figure 2.

The tendency for the model to favour the decoupled
stratocumulus type (IV) over the well-mixed (III) type (Figure 1)
is apparent in all seasons by the relative sizes of the bars.
This discrepancy is largest during the morning daylight hours,
particularly in spring and summer. Another feature to note is
the difference between the occurrence of unstable types during
night-time hours. The observations show the presence of unstable
types during night-time during spring, summer and autumn with
very little in winter, whereas the opposite is true of the model
forecasts.

4. Evaluation of forecast skill

4.1. Verification measures

In this section, the skill of the model in predicting the correct
boundary-layer type at the correct time is assessed using binary
verification measures. These are calculated from joint histograms
between the boundary-layer types of UK4 and the observations.
Figure 3 shows the joint histogram for the hourly boundary-layer
data from the entire two-year period. It shows the total number
of occurrences of each combination of observed and modelled
boundary-layer type.

If the model provided perfect forecasts, then all occurrences
would lie on the diagonal in Figure 3. However, this is not the
case here and there is a large spread. Multi-category verification
measures do exist for assessing the skill of multi-category variables
quantitatively; however, as our contingency table arises from a
sequence of binary decisions for both model and observations,
we will instead assess the skill using the more intuitive approach
of applying binary verification measures to each decision in turn.

For binary events, the problem of forecast verification has
a long history dating back to Finley (1884), who studied
forecasts of tornadoes. More recently, similar techniques have
been used, for instance by Barrett et al. (2009), Hogan et al.
(2009b) and Mittermaier (2012), to evaluate forecasts of cloud
properties.

In the present case, the joint histogram is split into 2 × 2
contingency tables by dividing it into four quadrants based on
the decisions made in the diagnosis of boundary-layer type. It is
common to refer to quadrants in a contingency table using the
letters a, b, c and d, as shown in Table 2, and this convention
is followed here. There are five decisions used in determining
the observational boundary-layer type, as listed in Table 3. The
third column of this table shows how each of the five decisions
discriminates uniquely between the boundary-layer types and
Figure 4 shows schematically how the histogram is split for
each decision. For the ‘surface layer stable’ and ‘cumulus present’
decisions, the totals from each combination of events are summed
to give the quadrant values. As an example, for the joint histogram
shown in Figure 3, the 2 × 2 contingency table for the stability
decision is as follows:

(
c d
a b

)
=

(
233 3596

5853 624

)
, (1)

meaning that of the 6086 observed stable types, 5853 occurred in
the model and of the 4220 unstable types, 3596 occurred in the
model.

There are many verification measures that can be used to
assess the skill of a 2 × 2 contingency table (e.g. Wilks, 1995;
Von Storch and Zwiers, 1999; Casati et al., 2008; Hogan et al.,
2009b; Hogan and Mason, 2012). Here, the SEDI is used (Ferro
and Stephenson, 2011). This measure was chosen as it has many
desirable properties: it is equitable, meaning that all random
forecasting systems will receive the same expected score, and it
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Figure 2. The frequency of occurrence of each type as a function of time of day for (a) and (e) winter, (b) and (f) spring, (c) and (g) summer and (d) and (h) autumn.
Panels (a)–(d) show observational boundary-layer types and (e)–(h) show UK4 boundary-layer types.

Figure 3. The joint histogram of hourly boundary-layer types for UK4 and observations during the period 1 September 2009–31 August 2011. The darker shading
indicates a larger number of events.

Table 2. The construction of a 2 × 2 contingency table.

Event observed

Event forecast Yes No

No c (misses) d (correct rejections)
Yes a (hits) b (false alarms)

is also difficult to hedge, meaning that it cannot be improved by
issuing a forecast that is not the true judgement of the forecaster.
In addition, many verification measures tend to give meaningless
values for rare events, but SEDI is independent of the frequency
of occurrence of an event and therefore can be used for both rare
and overwhelmingly common events (which is required here for
types V and I, respectively).

The SEDI skill score is defined as

SEDI = ln F − ln H + ln (1 − H) − ln (1 − F)

ln F + ln H + ln (1 − H) + ln (1 − F)
, (2)

where H is the hit rate (H = a/(a + c)) and F is the false-alarm
rate (F = b/(b + d)). A SEDI value of 1 indicates perfect forecast
skill, whereas a value of 0 indicates no more skill than a random
forecast.

4.2. The SEDI skill score for the UK4 forecasts

In this section, the SEDI skill score is used in both relative and
absolute terms to judge the skill of forecasts relative to each
other and relative to two baseline reference forecasts. The first
is a persistence forecast for which the boundary-layer type at a
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Table 3. Summary of decisions that are assessed using binary verification measures.

Decision Description Types Forecast Persistence
SEDI SEDI

1 Surface layer stable? I and II vs. III, IV, V and VI 0.938 0.903
2 Cumulus present given unstable surface layer? V and VI vs. III and IV 0.184 0.108
3 Decoupled given cumulus is not present? IV vs. III 0.152 0.299
4 More than one cloud layer given cumulus cloud present? VI vs. V −0.019 0.083
5 Stratocumulus present given surface layer is stable? II vs. I 0.271 0.098

(a) (b)

(c)

(e)

(d)

Figure 4. Schematic of how the joint histogram in Figure 3 is split into multiple
2 × 2 contingency tables corresponding to each decision. The number refers to
the decision being considered (as in Table 3). The abscissa refers to the observed
boundary-layer type and the ordinate to the modelled type.

given hour of a given day is forecast to be the boundary-layer
type of the same hour on the previous day and the second is a
hypothetical random forecast for which the SEDI skill score is
zero. The SEDI skill scores for the full two-year period, using
data from only the first 6 h of each forecast (i.e. the same data as
discussed in section 3), are shown in Table 3. These are briefly
discussed before considering the impact of lead time, season and
model resolution.

The highest value of skill by far is for the stability decision
(0.938), which may be due to the presence of a strong diurnal
cycle. For this decision, the UK4 forecast skill is greater than
the skill from persistence. The cumulus and stable stratocumulus
decisions have lower forecast skill than the stability decision
(0.184 and 0.271, respectively) and again the UK4 forecast skill is
greater than the skill from persistence. In contrast, the decoupled
and layers decisions have SEDI values lower in the UK4 forecasts
than the persistence forecast (0.152 and −0.019, respectively)
and, further, the layers decision has a slightly negative SEDI
value, which is worse than that expected from a random forecast.
The size of the error bars on these values due to sampling is
discussed in section 4.2.1. The sharp decrease in SEDI between
the stability and cloud-related decisions is probably due to the
fact that it is fundamentally more difficult to predict cloud-related
variables, as they are sensitive to subtle changes in the vertical

temperature structure. This hypothesis is supported by Hogan
et al. (2009b), who found that the NAE model systematically
underpredicts cloud fractions greater than 5% in the lowest 5 km
of the atmosphere.

The sensitivity of the SEDI skill scores to the choice of model
grid point used has been found to be small. In particular, the
values in Table 3 are very similar if, instead of using the nearest
model grid point to the CFARR for the observational comparison,
the most common boundary-layer type of the nearest nine grid
points is used.

4.2.1. Dependence of skill on forecast lead time

To test whether the skill of the UK4 forecasts varies with lead time,
the SEDI has been calculated for all forecast lead times grouped
into 6 h periods. These are: 0–5, 6–11, 12–17, 18–23, 24–29 and
30–36 h for the two-year period (1 September 2009–31 August
2011).

Figure 5 shows the evolution of the SEDI values with lead
time. The plots also show error bars for each SEDI value, which
are based on the following formula, as presented in Hogan and
Mason (2012):

S2
err =

S2
H

[
SEDI(1−2H)+1

H(1−H)

]2 + S2
F

[
SEDI(1−2F)+1

F(1−F)

]2

[ln F + ln H + ln (1 − H) + ln (1 − F)]2 , (3)

where S2
H = H(1 − H)/(a + c) and S2

F = F(1 − F)/(b + d) are
the error variances of H and F. However, this formula assumes
that each event in the contingency table is independent. In the
case of boundary-layer type diagnosis, this is unlikely to be true
since, particularly at night time, there are prolonged periods (i.e.
several consecutive hours) with the same type present. To take
account of this, the number of independent events for each type
is estimated by counting the number of times that there is a
transition to that boundary-layer type. For example, the sequence
I I I I I would be one event for type I, whereas I V V II II would be
three events, one each for types I, II and V. The contingency table
coefficients are scaled by the fraction of independent events over
total events and these scaled coefficients are then used to calculate
the SEDI error variance of Eq. (3).

Figure 5 shows that none of the decisions has a significant
increase or decrease in skill with lead time. This contrasts with the
behaviour found by Hogan et al. (2009a) for cloud occurrence
(at all levels) in a similar model, where skill dropped significantly
during the 36 h forecast period. This may be because their short
lead-time skill scores were higher than the skill scores here, with
the exception of the stability decision, for which the skill is aided by
the strong dependence on the diurnal cycle. In addition, all hourly
periods that contain either observed or modelled precipitation
have been removed (see section 2.1). Therefore it is possible that
some large-scale weather events, the forecasts of which tend to
have a strong dependence on lead time (for instance the passing
of a front), have been neglected, thus skewing the results.

The error bars for each lead time in Figure 5 are generally
small. One exception is for the layers decision; this is due to the
relatively small number of samples. There is therefore no evidence
that the SEDI is negative, i.e. that the UK4 forecasts are worse
than a random forecast.
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4.2.2. Dependence of skill on season

To assess the dependence of the forecast skill on the time of
year, Figure 6 summarizes the SEDI score for each decision for
each season. In this plot, data from all six forecast lead-time
periods have been combined. This is to improve the statistics by
increasing the number of samples. This is justified in this case,
since, as shown in section 4.2.1, there is very little variation of the
forecast skill with lead time, meaning that each forecast can be
treated as an alternative realization of the same period. The error
bars in Figure 6 are estimated from the variations between the
forecasts of different lead times, σ , in the following way:

CI = ±1.96
σ√

N − 2
, (4)

where N = 6 is the number of forecast lead times used. The scaling
of 1.96 corresponds to a confidence interval of 95% assuming a
normal distribution.

Figure 6 shows that, in winter, the decisions that discriminate
between the unstable types are predicted with less skill than in
all other seasons. The stability decision also has the lowest skill
during winter. The reason for this drop in skill in winter may
be related to the fact that it is seen observationally that during
winter the sensible heat flux can remain close to zero throughout
the day. This can make it difficult for the model to predict
when the transition from stable to unstable occurs, thus reducing
the skill. Spring has the highest SEDI scores for stability and
decoupled. Summer has the highest score for the cumulus and
layers decisions. The prediction of more than one cloud layer
when cumulus is present has little or no skill in all seasons.

4.3. Dependence of skill on model resolution

The effect of model resolution is investigated by using another
model in the operational suite of the UK Met Office. Here the
NAE is used, as described in section 2.2. Due to the availability of
the NAE data, the shorter period of 1 September 2009–31 May
2010 is used for this analysis.

Figure 7 shows the frequency of occurrence of boundary-layer
types for the observations, the UK4 model and the NAE model
for the period 1 September 2009–31 May 2010. As before, the
observations and the UK4 model agree reasonably well for stable
boundary-layer types (I and II), but there is a discrepancy with
the NAE model. The NAE model has a much greater frequency
of occurrence of stable boundary-layer type I than the other data
sets. This is compensated by a lower frequency of occurrence of
the stable under stratocumulus type (II).

The NAE model also diagnoses both of the cumulus types (V
and VI) much less frequently than the UK4 model. The decrease
in occurrence of cumulus types in the NAE model is compensated
by an increase in the number of well-mixed boundary-layer types
diagnosed. The occurrence of decoupled stratocumulus cloud is
very similar in all data sets.
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Figure 7. The frequency of occurrence of hourly boundary-layer types for UK4
and NAE models and observations during the period 1 September 2009–31 May
2010.

The SEDI score has been calculated for each of the decisions
described in section 4.2.1. As in section 4.2.2, data from all of
the forecast lead-time periods has been used. Figure 8 shows the
SEDI skill score for each decision in turn. To aid comparison with
the 12 km grid of the NAE model, rather than using the nearest
grid point to the CFARR in the UK4 grid the most commonly
occurring boundary-layer type in the nearest nine grid points is
used instead.

Within the 95% confidence intervals (calculated as in Eq.
(4)), there is no significant difference in skill between the UK4
and NAE models for any of the decisions. This is supported by
Mittermaier (2012), who could not draw any conclusion about
the impact of horizontal resolution on the Symmetric Extreme
Dependency Score of cloud-base height and total cloud amount
in the NAE, UK4 and UKV (a 1.5 km resolution version of the
Met Office Unified Model). Conversely, Lean et al. (2008) found
that increasing horizontal resolution increased the Fractions Skill
Score of precipitation events over the UK for a forecast lead time
of 6 h. Small differences in skill as model resolution increases
were also seen in the NCEP Eta model by Mass et al. (2002). They
found that more realistic mesoscale structures and evolution
were seen as the resolution increased from 36 to 12 km. This

gave improvements in precipitation amount, 10 m winds, 2 m
temperature and surface pressure. However, there was not much
impact on skill as the resolution was further increased from 12 to
4 km.

Also shown in Figure 8 is the SEDI score for the presence of
low cloud (below 3 km) in the UK4 and NAE models. This score
is significantly higher than all of the cloud decisions related to
boundary-layer type. This shows that the model does a reasonable
job of predicting low cloud despite incorrectly predicting the cloud
type. This is because in the model cloud presence is controlled by
the large-scale humidity field, rather than more subtle features in
the thermodynamic profile.

5. Conclusions

In this article, we have demonstrated how numerical weather
prediction boundary-layer parametrization schemes may be
verified utilizing continuous Doppler lidar and sonic anemometer
observations. Designing the observational verification data to
match the model forecast dataset closely allows the boundary-
layer parametrization scheme to be verified in a more direct
way, making it easier to identify model bias and areas for model
improvement.

Firstly, the climatology of boundary-layer type has been
compared. In general, the seasonal and diurnal cycles seen in the
model and observations are not dissimilar to the most common
boundary-layer type in both model and observations, being stable
followed by well mixed. However, there is a tendency for the
model to diagnose decoupled stratocumulus-capped boundary-
layers over well-mixed boundary layers, particularly during the
morning hours in spring and summer. In addition, the model
underpredicts the presence of unstable boundary layers during
the night-time in spring, summer and autumn but overpredicts
during the winter.

The ability of model forecasts to predict boundary-layer type
at the correct time has been evaluated in an absolute sense
relative to persistence and random forecasts. Overall, there is
good skill when predicting stable and unstable boundary-layer
types, due to the strong diurnal cycle. Consistent with previous
studies, it was shown that the skill of predicting cloud presence
is much greater than persistence. However, when considering
different cloud types the skill reduces. The skill of the model
in predicting cumulus-capped and stratocumulus-capped stable
boundary layers is low but greater than persistence. In contrast,
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the prediction of decoupled boundary layers and boundary layers
with multiple cloud layers is lower than persistence. This is likely
due to the fact that the presence of cloud in the model depends
on smoothly varying fields (e.g. temperature and humidity);
however, cloud type in the model depends on the gradients in
these fields, which are much more difficult to forecast.

The verification method described can also be used to judge the
model skill in relative terms. Thus it is possible to determine how
changes in the model resolution, lead time and seasonality affect
the skill of the forecast. It was found that there is no significant
impact of changing model resolution from 12 to 4 km. This is likely
to be due to the fact that the boundary-layer scheme used at both
4 and 12 km resolution is the same and at 4 km the model is still
not able to resolve turbulent processes within the boundary layer.
It would be interesting to evaluate a model running at several
hundred metres or better, where the largest eddies in the the
boundary layer are resolved and there would be less dependence
on the boundary-layer parametrization. No decrease in model
skill was found with increasing lead time. However, it was found
that decisions that discriminate between boundary-layer types in
winter are predicted with less skill than in all other seasons.

An obvious further extension to this study would be to evaluate
the model skill at a different site to see whether the model bias
identified at the rural site is also present at other locations. It
would also be interesting to compare the skill and climatology of
boundary-layer type over an urban surface, which may exhibit
different seasonal and diurnal evolution.

The UK Met Office is the only modelling centre to use the Lock
boundary-layer scheme, but many other models have a similar
tree of decisions, which is used to determine which parametriza-
tion schemes are applied, i.e. whether to apply a local or non-local
mixing scheme. An example of this is the European Centre for
Medium-range Weather Forecasts (ECMWF) model, which uses
an eddy-diffusivity mass-flux framework (Kohler et al., 2011).
With this in mind, it would be possible to extend this type of com-
parison to models from other forecast centres around the world.
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