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Global verification of cloud fraction in models using CloudSat

and CALIPSO data

Robin J Hogan1,2, Andrew I Barrett2,3, Thorwald H M Stein2, Hélène Garçon1,2*,

Julien Delanoë4, Richard M Forbes1 and Alejandro Bodas-Salcedo5

In this paper, the CloudSat radar and CALIPSO lidar are used to

evaluate the global distribution of vertically resolved cloud fraction

in two forecast models. A new method is used to estimate the loca-

tion of the base of liquid clouds from the lidar, exploiting the fact

that multiple scattering leads to a monotonic relationship between

the integrated backscatter and the cloud optical depth. Modeled

mean cloud fraction is found to be about right in the upper tropo-

sphere, but at most latitudes mid-level cloud fraction is half that

observed. We then use forecast verification measures to perform

the first global evaluation of the extent to which the full profile of

clouds are forecast at the right time and place. We find that winter-

hemisphere upper-tropospheric clouds are most accurately forecast,

while tropical and sub-tropical boundary-layer clouds are predicted

with very little skill.

1. Introduction

Clouds have long been implicated as one of the largest sources
of uncertainty in climate prediction [Wielicki et al., 1995; Boucher
et al., 2013], but spaceborne cloud radar and lidar [Stephens et al.,
2002] are revolutionizing our ability to test the representation of
clouds in models, and hence potentially to narrow this uncertainty.
Global cloud distributions in models have been tested both using
radar-lidar retrievals of quantities such as ice water content [e.g.
Delanoë et al., 2011], and by ‘forward modeling’ the observations
from the model variables and comparing the distribution of mod-
eled and actual observations [e.g. Bodas-Salcedo et al., 2008].

However, such studies typically only evaluate the mean or the
distribution of cloud properties, but not whether clouds are fore-
cast at the right time. The problem of evaluating the association of
forecast and observed cloud fields we refer to as cloud verification,
and has previously been carried out using ground-based radar and
lidar data [e.g. Mace et al., 1998; Jakob et al., 2004; Hogan et al.,
2009]. Cloud verification is important because, assuming that the
large-scale dynamics is approximately correct in a short-range fore-
cast, we can test whether the model produces clouds correctly in
response to particular dynamical structures. Global cloud verifica-
tion was demonstrated by Wilkinson et al. [2008], but their use only
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of spaceborne lidar, which is subject to significant attenuation, led
to ambiguity in the common situation that clouds at one level (in
either the model or reality) obscured clouds below.

In this paper we demonstrate how CloudSat and CALIPSO data
may be used to evaluate the cloud fraction predicted by global fore-
cast models, where cloud fraction is simply the fraction of each
model gridbox that is filled with cloud. This is done in terms of
both the monthly mean cloud fraction, and the extent to which
clouds were forecast at the right time and location. We use fore-
casts by the Met Office and the European Centre for Medium Range
Weather Forecasts (ECMWF), and while the duration of the com-
parison is limited to 1–2 months, this is sufficient to obtain robust
signals and therefore to demonstrate the potential of the technique.

In section 2, we outline the method to estimate cloud fraction
from CloudSat and CALIPSO, including a new method to estimate
the thickness of liquid clouds. In section 3 we describe the model
data and the verification measures used. In section 4, the cloud
fraction climatology is evaluated, and in section 5, several verifica-
tion measures are used to evaluate the extent to which the models
forecast cloud at the right time.

2. Observations

2.1. The DARDAR product

We use as a starting point the ‘DARDAR’ CloudSat-CALIPSO
cloud classification of Delanoë et al. [2010], in which the radar
and lidar data are composited on to the same grid and each pixel
is assigned a category such as clear sky, ice cloud, liquid cloud,
rain, aerosol, mixtures of ice and supercooled liquid droplets, and
mixtures of rain and liquid cloud droplets. The complementary
sensitivities of spaceborne radar and lidar give us confidence that
virtually all ice clouds are detected [e.g. Stein et al., 2011]. We will
not repeat the description provided by Delanoë et al. [2010], but
highlight some properties of the observations that should be borne
in mind:

• No attempt is made to distinguish ‘ice cloud’ from ‘snow’.
Hogan et al. [2001] argued that the two form a continuum and
there is no sensible way to separate them in either ground-based
or spaceborne observations. Hence all ice is considered as cloud in
the observations. This is the same assumption as made in the Met
Office model but it is different from the ECMWF model at the time
of the comparison, which separated the ice cloud from snow with
snow not interacting with radiation.

• As in models, rain in the observations is not treated as cloud.
This means that when a melting layer is present, the observed cloud
fraction can jump from 1 in the ice above to 0 in the rain below.

• Liquid clouds are identified from high-intensity lidar returns,
but in optically thick clouds the lidar signal is strongly attenuated
and affected by multiple scattering, presenting a challenge to lo-
cating cloud base. The radar is rarely useful for liquid cloud base
because in warm clouds, the radar return tends to be dominated by
drizzle which we do not classify as cloud. We overcome this prob-
lem by exploiting the lidar multiple scattering: in section 2.2 it is
explained how this enables cloud optical depth to be estimated, and
then in section 2.3 how cloud thickness can be estimated enabling
us to modify the DARDAR cloud product.
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Figure 1. (a) Relationship between cloud optical depth and in-
tegrated backscatter for simulated lidar returns using multiscat-
ter. Error bars show 1 standard deviation of the spread related to
varying effective radius and adiabaticity assumptions. (b) Fre-
quency density plot of integrated backscatter from five orbits of
CALIPSO data.

The extent to which these issues affect the comparison of mean
cloud fraction will be discussed in section 4, but the best verifica-
tion measures used in section 5 are largely insensitive to whether
there is a bias in the model or the observations.

2.2. Estimating liquid cloud optical depth from lidar

integrated backscatter

As discussed above, the base of liquid clouds cannot be esti-
mated accurately using either spaceborne radar or lidar. However,
the presence of lidar multiple scattering from satellite platforms
[e.g. Wilkinson et al., 2008] means that the vertically-integrated at-
tenuated backscatter through a liquid cloud is monotonically re-
lated to optical depth, which is in turn monotonically related to
physical depth. Our method to estimate optical depth from inte-
grated backscatter is now described.

To build a look-up table to capture this relationship, we simu-
lated CALIPSO backscatter profiles for liquid clouds with different
properties using multiscatter [Hogan, 2008; Hogan and Battaglia,
2008], a fast multiple-scattering algorithm, assuming a satellite al-
titude of 705 km and a receiver footprint on the cloud of diameter
91 m. The cloud properties were systematically varied through re-
alistic ranges so that together with a best estimate of cloud fraction
we also produce uncertainty ranges due to the assumptions made
about cloud properties. The properties altered were cloud depth,
cloud top temperature, adiabaticity and cloud-droplet effective ra-
dius.

Cloud adiabaticity is the ratio of the actual liquid water path
(LWP) to that of an adiabatic cloud with the same depth and cloud
base. Stratiform boundary-layer clouds are frequently close to adi-
abatic [Wood, 2012; Albrecht et al., 1990], but can be sub-adiabatic
if entrainment or drizzle are locally important [Wood, 2012]. In cu-
mulus clouds, adiabaticity at cloud base is near 1, but falls to 0.2
near cloud top [Warner, 1955; Albrecht et al., 1985; Nicholls and
Turton, 1986]. Zhou et al. [2006] found that adiabaticity was typ-
ically around 0.79. Based on these values we choose a range of
0.8±0.2 for adiabaticity.

The cloud droplet effective radius strongly affects the scattering
properties of the liquid clouds. Miles et al. [2000] reported typical
values of 9.6±2.4 µm (1 standard deviation) for marine clouds and
5.4±2.1 µm for continental clouds. We choose a range of 10±5
µm for effective radius to cover these reported clouds. For all sim-
ulated clouds, the cloud top temperature was varied from −20 to
20◦C in 10◦C intervals and cloud optical depth was varied from 0
to 1000.

The geometric-optics extinction profile for these clouds was cal-
culated and the total attenuated backscatter from each of the clouds
was simulated using the multiscatter algorithm. Fig. 1a depicts the
resulting lookup table for estimating optical depth (and its 1-sigma
error) from integrated backscatter and temperature. It can be seen
that there is good sensitivity to optical depth throughout the ob-
served range of CALIPSO integrated backscatter (Fig. 1b). Note
that for ground-based radar with a much smaller receiver footprint
on the cloud, the relationship saturates at a particular value of inte-
grated backscatter [e.g. O’Connor et al., 2004].

2.3. Modifying the DARDAR cloud mask

Using the lookup table and the observed integrated backscatter
in each profile (integrated from 500 m above liquid cloud top to
1,500 m below), we estimate the optical depth, τ , of each cloud
layer, and its uncertainty. This is converted to an estimate of physi-
cal depth, H , in meters, using the relation from Chiu et al. [2014]:

H =

{

(513± 51)τ 0.16±0.03 for drizzling clouds,

(308± 15)τ 0.25±0.01 for non-drizzling clouds.
(1)

A cloud is determined to be drizzling if the peak radar reflectiv-
ity in the cloud layer exceeds −15 dBZ, consistent with the Chiu
et al. [2014] formulation. The Chiu formulation was derived from
clouds over land, so we also estimate cloud depth separately using
a relation based on clouds over the ocean [Minnis et al., 1992; Chiu
et al., 2014],

H = 58τ 0.56, (2)

which gives smaller geometric cloud depths and does not discrim-
inate between drizzling and non-drizzling clouds. The uncertainty
range for cloud depth is determined using (2) as the lower bound,
and the largest values from (1) together with the upper uncer-
tainty from the adiabaticity and effective radius ranges as the upper
bound.

The DARDAR cloud mask is modified by adding or removing
liquid cloud pixels at the base of the highest liquid layer identified
in each profile to match the estimated H . The same procedure is
applied to any layers lower in the profile, but because their lidar
return may be significantly attenuated, if the retrieved H of such
layers is smaller than the mean H of all unattenuated clouds at the
same height in the two-month dataset used in this paper, then that
mean cloud depth value is used instead. The presence of ice cloud
is not modified.

3. Models and verification measures

3.1. ECMWF and Met Office global forecast models

We use the same Met Office and ECMWF model data as De-
lanoë et al. [2011]. The data were extracted under CloudSat and
CALIPSO, and the pixels from the combined radar-lidar grid were
associated with the nearest model gridbox. The model data avail-
able are the last three weeks of July 2006 (both models) and the
entire month of February 2007 (ECMWF only). The Met Office
data are from the forecast version of the Unified Model, cycle C40,
with a horizontal resolution of around 40 km and 50 vertical levels.
Model data are extracted in a similar way to Bodas-Salcedo et al.
[2008]: 3-hourly snapshots are constructed from the 6-hourly anal-
yses and intervening 3-hour forecasts, and the closest snapshot in
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time is used for the comparison such that it is always within 1.5 h
of the CloudSat overpass time. Cloud fraction in this model is di-
agnosed from the liquid and ice mixing ratios using a scheme based
on Smith (1990).

The ECMWF data are from model cycle 32r3 with a horizontal
resolution of around 40 km and 91 vertical levels. Three-hourly
snapshots are extracted from a series of 12–33 h forecasts along
the CloudSat track, such that the snapshot is again always within
1.5 h of the overpass time. In comparing the skill of the two mod-
els it should be borne in mind that the oldest ECMWF forecast
used is 33 h old, while only 3 h for the Met Office. Cloud frac-
tion in the ECMWF model is a prognostic variable as described
by Tiedtke [1993], although the scheme has evolved considerably
since his original paper.

3.2. Verification measures

The verification of cloud fraction forecasts is carried out in a
similar way to Hogan et al. [2009]: each forecast cloud fraction is
deemed to be a ‘hit’ if it and the corresponding observation both
exceed the threshold of 0.1, a ‘false alarm’ if it is less than or equal
to the threshold while the observed fraction exceeds the threshold,
and likewise for ‘misses’ and ‘correct negatives’. Then for each
4◦ latitude range and 1-km height range, the numbers of hits, false
alarms, misses and correct negatives are summed and denoted a, b,
c and d, respectively. The total number of forecasts in each latitude-
height bin is n = a+ b+ c+ d.

Four verification measures are computed from these variables.
The first is the Gilbert Skill ScoreGSS = (a− ar) / (a+ b+ c− ar)
[Gilbert, 1884], where ar = (a + b)(a + c)/n is the expected
number of ‘hits’ by a random forecasting system. This measure
is widely used in routine forecast verification under the name Eq-
uitable Threat Score. However, it is only strictly equitable (i.e.
random forecasts yield a fixed expected score of zero) in the limit
of large n, which led Hogan et al. [2010] to describe it as ‘asymp-
totically equitable’. The second measure is the Log of Odds Ratio
LOR = ln (ad/bc) [Stephenson, 2000], and is also asymptotically
equitable. Stephenson et al. [2008] showed that both GSS and LOR
are degenerate for rare events, that is they tend to a meaningless
limit (zero for GSS, infinity for LOR) as the base rate s = (a+c)/n
tends to zero. The first measure proposed that is non-degenerate for
rare events while retaining asymptotic equitability is the Symmetric
Extreme Dependency Score SEDS = ln(ar/a)/ ln(a/n) [Hogan
et al., 2009], which constitutes our third measure. The fourth is the
Symmetric Extremal Dependence Index of Ferro and Stephenson
[2011]:

SEDI =
ln [F (1−H)]− ln [H(1− F )]

ln [F (1−H)H(1− F )]
, (3)

where H = a/(a + c) is the hit rate and F = b/(b + d) is the
false-alarm rate. Like SEDS, SEDI is asymptotically equitable and
non-degenerate for rate events, but it is also base-rate independent
and non-degenerate for overwhelmingly common events. Indeed,
it was shown by Hogan and Mason [2011] to be the measure that
combined the greatest number of desirable properties of any yet de-
vised. In section 5, these measures are compared in the verification
of global cloud forecasts, particularly in regard to their degeneracy
in regions where cloud occurrence is very low.

The confidence interval in SEDI may be estimated using the for-
mula given by Hogan and Mason [2011]. We account approxi-
mately for serial correlation in the time-series by assuming that the
number of independent samples per month in each latitude band is
1000: there are around 500 orbits in a month, each involving two
over-passes of a particular latitude band. Since the return period is
16 days, much longer than the decorrelation time of the clouds, the
orbits may be considered uncorrelated. The contingency table cell
counts are scaled such that a+ b+ c+ d = 1000 before applying
the error formula of Hogan and Mason [2011].

4. Comparison of mean cloud fraction

In this section the mean cloud fraction is compared between
models and observations. Figures 2a–2c depict mean cloud fraction
from the observations and the two models in July 2006, while Figs.
2f and 2g depict the same but for the observations and ECMWF
model in February 2007. Several features may be observed:

• Cloud fraction in the upper few kilometers of the troposphere
was generally well captured by both models;

• Tropical upper-tropospheric cirrus was well captured by both
models in July 2006, with models and observations all giving a
peak cloud fraction of around 0.35 at an altitude of around 13 km;

• Mid-level cloud fraction (3–8 km) was underestimated in both
models at all latitudes, missing as much as half of the total cloud
fraction;

• Boundary-layer cloud fraction was predicted within the ob-
servational uncertainty, except in the Southern Ocean where both
models underestimate cloud fraction by one-third, and both appear
to overestimate the cloud fraction associated with Arctic summer-
time stratus;

• The one-third underestimate of Southern Ocean cloud fraction
extended up to 6 km during both months;

• In July 2006, observed cloud fraction included polar strato-
spheric clouds south of 70◦S up to 20 km, although their absence
from the models is unsurprising given their very different physics.

To investigate the impact of the method to estimate cloud base
height described in section 2, Fig. 3 shows profiles of observed and
model cloud fraction at five latitudes, together with the range of un-
certainty due only to the observational uncertainty in determining
liquid cloud depth. The observed cloud fraction after modifying
cloud depth is systematically less than the raw DARDAR cloud
fraction, particularly in the tropical and subtropical boundary layer.
This is because lidar multiple scattering has a ‘pulse stretching’ ef-
fect on the observed backscatter profile. For physically thin liquid
clouds this tends to cause apparent signals below the true cloud
base, which DARDAR interprets as cloud. Figures 3b and 3c show
that after these modifications, the modeled boundary-layer cloud
fraction in the tropics tends to lie within the observed uncertainty
range. This range is almost entirely a result of the difference be-
tween the Minnis et al. [1992] and Chiu et al. [2014] relationships
between optical depth and geometric depth, which may originate
from their studies having been over ocean and land, respectively.
Our perturbations of the cloud microphysical and macrophysical
properties made much less difference to the retrieved cloud frac-
tion, because the liquid cloud layers were mostly too thin to be
sensitive to these assumptions (Fig 1b).

The underestimate of mid-level cloud fraction in mid-latitudes
has been reported for a number of models [Hogan et al., 2001;
Zhang et al., 2005; Illingworth et al., 2007]. Hogan et al. [2001]
found that the mid-level bias in the ECMWF model could be im-
proved if ‘snow’ in the model, which at the time was treated diag-
nostically, was added to the model cloud fraction using suitable as-
sumptions on fall speed and vertical overlap of precipitation. How-
ever, snow cannot be the whole story since the Met Office model,
in which snow contributes to cloud fraction, exhibits the same un-
derestimate in Fig. 2c, a result also found by Bodas-Salcedo et al.
[2008] using a radar forward-modeling approach. Another likely
cause of the mid-level difference is the tendency of many models
to underestimate the occurrence of mixed-phase layer clouds [e.g.
Xie et al., 2008]. The Supporting Information includes plots of
cloud fraction split into frequency of occurrence and mean amount
when present.

5. Cloud placement verification

The verification measures introduced in section 3.2 are now used
to evaluate the skill with which the models predict clouds in the
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Figure 2. Evaluation of the ECMWF and Met Office models versus latitude and height. Results for July 2006 are shown in the left panels:
(a) observed mean cloud fraction, (b) mean cloud fraction in the ECMWF model, (c) mean cloud fraction in the Met Office model, (d)
Symmetric Extremal Dependence Index (SEDI) for the ECMWF model, and (e) SEDI for the Met Office model. Results for February
2007 (ECMWF model only) are shown in the right panels: (f) observed mean cloud fraction, (g) modeled mean cloud fraction, and (h)
SEDI.

right place and right time. We first compare the behavior of the four
measures: Fig. 4 shows these for the ECMWF model in July 2006.
Although the color scales are different, each measure awards zero
to random forecasts, and all have an upper bound of 1 correspond-
ing to a perfect forecast except for LOR which is unbounded. The
most obvious differences in behavior occur where cloud fraction in
either or both model and observations tends to zero, which (as can
be seen in Fig. 2) occurs near the tropopause, in the southern hemi-
sphere mid- and upper-troposphere subtropics, and in the Antarctic
stratosphere. In these regions the degeneracy of the first two mea-
sures to meaningless limits is apparent: GSS tends to zero and LOR
to large values, as predicted by Stephenson et al. [2008]. The be-
havior of SEDS and SEDI, both designed to be non-degenerate, is
much more satisfactory. In particular, in the winter mid-latitudes
at a height of around 12 km, where mean cloud fraction is very
low, we expect the clouds to be associated with the same large-
scale weather systems that generate the clouds a few kilometers
below. Since the score awarded should be a measure of the skill
with which these weather systems were predicted, a good measure

should report an approximately constant score with height in this
region. SEDI achieves this, while SEDS has a modest increase
of skill with height towards the tropopause. This behavior, together
with the theoretical advantages of SEDI [Hogan and Mason, 2011],
lead us to use SEDI for the remainder of this paper.

Figures 2d and 2e depict SEDI for the ECMWF and Met Of-
fice forecasts in July 2006. The patterns are very similar, although
the Met Office appears to score consistently higher than ECMWF.
This is most likely to be simply due to the fact that the Met Office
forecasts are up to 30 h more recent than the ECMWF ones. How-
ever, some of the difference at mid-levels may be due to the Met
Office’s prognostic treatment of ice and snow, and indeed Hogan
et al. [2009] found that in 2003–2004 the Met Office model pre-
dicted mid-level clouds with the greatest skill of the six models
they evaluated.

In both July 2006 and February 2007, the highest skill is in
the winter-hemisphere mid-latitude mid- and upper troposphere.
Illingworth et al. [2007] also found higher skill in winter, which
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Figure 3. Mean cloud fraction profiles at five different latitudes (58◦S, 36◦S, 10◦N, 40◦N, 66◦N) for observations and both models
during July 2006. The shaded gray region shows the uncertainty in cloud fraction related only to uncertainty of liquid cloud depth.

they attributed to more predictable large-scale cyclonic systems
in winter versus less predictable small-scale convective systems
in summer. However, they used GSS, so their seasonal cycle in
skill will have been amplified by the dependence of GSS on cloud
occurrence, which is higher in winter. Interestingly, Figs. 2d and
2h are not mirror images of each other: mid-latitude clouds in
the southern-hemisphere (SH) summer are significantly better pre-
dicted by ECMWF than those in the northern-hemisphere (NH)
summer. Specifically, SH summer values of SEDI above the bound-
ary layer between 50◦S and 70◦S typically lie in the range 0.65–
0.85 (95% confidence intervals ±0.07), while NH summer values
in latitudes 50–70◦N lie typically in the range 0.50–0.65 (±0.08).
This difference is likely due to the absence of major land masses in
latitudes 50–70◦S leading to a much reduced occurrence of sum-
mertime convection.

The tropical mid- and upper troposphere exhibits much less skill
than in mid-latitudes, because tropical cloud systems are associ-
ated with convection, which is intrinsically less predictable than
mid-latitude cyclones. To investigate the potential role of the di-
urnal cycle, SEDI was computed separately for daytime and night-
time (not shown), using A-Train equator crossing times of approxi-
mately 0130 and 1330 local time. The results in all parts of latitude-
height space are very similar to those shown in Fig. 2. This implies
that the reduced skill in the tropics is not so much due to a poor
diurnal cycle in the model as to the generally poor placement of
convective clouds in the model. Note that this is not simply a mea-
sure of the skill of the convection scheme in triggering a particular
gridbox at exactly the right time (which would be expected to have
virtually no skill at all), but more of the the skill of clouds origi-
nating from convective detrainment that may persist long after the
convection was triggered.

Finally, we consider boundary-layer clouds, which are predicted
with much less skill than those at higher altitudes. The poorest
performance occurs in the tropics below 1.5 km; for example, in
2006 the ECMWF value of SEDI at 1-km above the equator was
0.10 ± 0.12, implying that the cloud fraction forecast is not sig-
nificantly better than a random forecast. In mid-latitudes the skill
is a little higher (and significantly better than random), and there
is a tendency for lower skill in the SH in both winter and summer.
These findings can be explained by the fact that cumulus clouds,
which are ubiquitous over tropical oceans, are associated with small
spatial and temporal scales that are inherently unpredictable. An-
other factor is that satellite sounders rarely provide useful infor-
mation down into the boundary layer, so assimilation systems are
more dependent on surface and radiosonde observations, which are
much sparser in the tropics and SH.
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Figure 4. Four verification measures applied to ECMWF cloud
fraction in July 2006: (a) Gilbert Skill Score, (b) Log of Odds
Ratio, (c) Symmetric Extreme Dependency Score, and (d) Sym-
metric Extremal Dependence Index.

6. Conclusions

In this paper we have demonstrated how combined spaceborne
radar and lidar may be used to evaluate cloud fraction predictions
by weather forecast models, both in terms of bias and skill. While
the two model versions used here are not particularly recent, they
are sufficient to demonstrate the promise of the technique. We find
that both models under-predict mid-level cloud fraction at all lat-
itudes and boundary-layer cloud in the Southern Ocean, in agree-
ment with previous studies. We then performed the first verification



X - 6 HOGAN ET AL.: GLOBAL CLOUD VERIFICATION USING CLOUDSAT AND CALIPSO

of the full vertical profile of cloud forecasts on a global scale. A
comparison of the behavior of different verification measures re-
vealed the strong dependence of the Gilbert Skill Score, GSS (also
known as the Equitable Threat Score), on the frequency of cloud
occurrence. Its widespread use in operational verification is there-
fore rather concerning, since variations purely due to a correlation
with frequency of occurrence may be being misinterpreted as a
change in performance of the underlying forecast system. Much
more reliable behavior was found with the Symmetric Extremal
Dependence Index, SEDI.

We discovered a very wide range in the skill of forecasts of
different global cloud types, from tropical boundary-layer clouds
having SEDI < 0.2 through tropical convection and cirrus with
0.4 < SEDI < 0.6 to mid-latitude winter-season cyclonic sys-
tems with 0.6 < SEDI < 0.85. These differences are partly be-
cause convective clouds are inherently less predictable than larger-
scale weather systems, but they also suggest that the physics of
boundary-layer clouds and deep convection has the greatest scope
for improvement in global models. The approach to cloud verifica-
tion presented in this paper could be used in an operational context
within the model development cycle to objectively assess the im-
pact of changes to model physics.
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