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SUMMARY

Particle size distributions measured by the UK C-130 aircraft in ice stratiform cloud around the British
Isles are analysed. Probability distribution functions over large scales show that the zeroth, second and fourth
moments (equivalent to concentration, ice water content and radar reflectivity) as well as mean particle size
have monomodal distributions. Rescaling of the size distributions requiring knowledge of two moments reveals a
‘universal’ distribution that has been fitted with analytically integrable functions. The existence of the ‘universal’
distribution implies that two-moment microphysics schemes are adequate to represent particle size distributions
(PSDs). In large-scale models it may be difficult to predict two moments, and so power laws between moments
have been found as functions of in-cloud temperature. This means that a model capable of predicting ice water
content and temperature can predict ice PSDs to use for calculations requiring knowledge of the size distribution
(e.g. precipitation rate, radar reflectivity) or to make direct use of the power laws relating moments of the size
distribution.
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1. INTRODUCTION

Knowledge of the shape of the ice-particle size distribution (ice PSD) is crucial for
the prediction of processes such as precipitation and radiative effects within large scale
models. Accurate PSDs can also be used to predict the radiative and radar properties
of clouds. Here, we investigate PSDs of mid-latitude stratiform cloud associated with
frontal systems that have been sampled around the British Isles.

Recently, analysis of size distributions has utilized rescaling of the data to iden-
tify underlying universal distributions. The rescaling of PSDs is well known within the
aggregation community (e.g. Meakin 1992) and rescaling has been applied to raindrop
size-distribution data (Sekhon and Srivastava 1971; Willis 1984; Sempere-Torres et al.
1998; Illingworth and Blackman 1999; Testud et al. 2001; Lee et al. 2004). Sempere-
Torres et al. (1998) attempted to scale drop size distributions with single-moment nor-
malizations, but a lot of scatter in the underlying distribution still remained. Sekhon and
Srivastava (1971) and Willis (1984) used two moments to rescale the data, but assumed
an underlying functional form to the data. Testud et al. (2001) went on to show that
drop size distributions could be successfully scaled by normalizing with liquid-water
content and mean volume radius without any knowledge of the underlying universal
distribution. Finally, Lee et al. (2004) have produced a mathematical framework that
generalizes the two-moment scaling of drop size distributions using any two moments,
and has shown that the results of previous work are special cases within this general
scaling approach. Field and Heymsfield (2003) showed that ice-crystal PSDs could be
rescaled using precipitation rates and characteristic sizes, and Tinel et al. (2005) have
recently rescaled ice size distributions by first converting the ice particle sizes to equiva-
lent melted diameters by assuming a mass–size relationship. Westbrook et al. (2004a,b)
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have described a framework for scaling PSDs, and showed that scaling can be applied to
ice PSDs obtained in cirrus cloud using two moments of the size distributions without
any knowledge of the universal distribution. Westbrook et al. have also shown that the
universal size distribution is expected to have an exponential tail. These scaling methods
show that measured size distributions can be reduced to a single underlying ‘universal’
size distribution from which the original measured size distribution can be reconstituted
given knowledge of two moments. In this work we show that the ‘universal’ size dis-
tribution is applicable for a wide range of ice PSD data, whereas previous work used
droplet size distributions. We give best fit curves to the universal distribution that are
easily integrable and can be implemented in large-scale models.

Ideally, we would like to reduce the number of moments required to predict the PSD
from two to one through the use of power laws that relate one moment to another, as Liu
and Illingworth (2000) and Hogan et al.∗ have done. In these papers the authors relate
radar reflectivity to measured ice water content (IWC) with power laws that vary with
in-cloud temperature. Here, we follow a similar procedure but we just use the measured
size distributions to generate moments and do not make any assumptions about small-
particle contributions or density variations. In this way the user will be able to predict
a PSD from the parametrization presented here, and then apply any assumptions they
care to make. However, to link these observations to modelling efforts, a mapping from
size to mass is required. There is empirical evidence (e.g. Locatelli and Hobbs 1974;
Brown and Francis 1995; Heymsfield et al. 2004) as well as theoretical evidence from
direct simulation of the aggregation process (Westbrook et al. 2004a,b) that aggregate
ice-crystal mass is proportional to the square of the particle size. In the light of this,
we assume that the second moment of the ice-crystal size distribution is proportional to
the IWC and use this as our reference moment. Numerous prefactors for the mass–size
power law exist and it should be noted that they will vary, based on the properties of the
basic monomer crystals that form the larger aggregate. Thus, in this work we investigate
the moments of the PSDs so that the minimum number of assumptions about crystal
properties are included in the analysis.

In the next section we outline the data and data analysis. In section 3 the observed
probability distribution functions of moments of the measured PSDs are presented.
Section 4 concerns the correlations between moments, and introduces power laws to
relate the second moment of the ice PSD to other moments. Rescaling of the ice PSDs
is shown in section 5 and a discussion and conclusions are given in section 6.

2. DATA ANALYSIS

The aircraft data were obtained from flights around the British Isles in cloud
(Ns, As, Cs, Ci) associated with mid-latitude cyclonic depressions (‘frontal systems’).
Table 1 is a list of flights used in this paper. On these flights the clouds were sampled
with Particle Measuring Systems (PMS) 2D optical-array probes (2D-C and 2D-P).
The 2D-C and 2D-P probes have nominal size ranges of 25–800 and 200–6400 μm,
respectively. The data are split into ten-second segments that have a median length of
∼1.2 km, with 90% of the segment sizes in the range 1.0–1.4 km. The data consist of
∼9000 × 10 s (∼1.2 km) segments of in-cloud data (where the 2D probe concentration
of super-100 μm particles greater that one per litre). PSDs that were deemed to consist
of raindrops were also eliminated on the basis of shape analysis.

∗ Hogan, R. J., Mittermaier, M. P. and Illingworth, A. J. (2005), paper submitted to the Journal of Applied
Meteorology.
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TABLE 1. FLIGHT SUMMARY

Flight Date Location around the UK In-cloud temperature range
(◦C)

A806 21 Nov 2000 Central England −23 to +4
A803 18 Oct 2000 South-central England −32 to +5
A661 30 Mar 1999 South-central England + southern North Sea −15 to +4
A656 8 Mar 1999 South-west Approaches −32 to +5
A643 8 Dec 1998 North Sea − 5 to −2
A639 19 Nov 1998 Bristol Channel −36 to +5
A627 13 Oct 1998 South-central England −30 to +10
A606 27 Jul 1998 North Sea −42 to +3
A290 9 Oct 1993 North Scotland −50 to −10
A289 7 Oct 1993 North Scotland −55 to −15
A288 6 Oct 1993 North Scotland −45 to −5
A287 5 Oct 1993 North Scotland −50 to −10
A286 3 Oct 1993 North-west Approaches −50 to −2
A282 23 Sep 1993 North-west Approaches −30 to −15
A280 19 Sep 1993 Wick −50 to −10
A279 18 Sep 1993 Scottish Western Isles −50 to −3

Satellite images for these flights are available from www.sat.dundee.ac.uk.

All of the 2D probe data were processed using software supplied by Sky Tech
Research Inc. Details about the processing and image recognition algorithms can be
found in the paper by Korolev (2003).

Particles were rejected for the following reasons: (i) aspect ratio of the particle >8;
(ii) particles were too long (>300 pixels) in the along-flight direction (due to shedding);
(iii) gaps in the image in the along-flight direction; (iv) particles that touched the edge of
the array were termed partial and have not been used for this analysis—we decided not to
reconstruct partial images because this required some assumptions about the geometry
of the particles.

Image recognition was carried out on particles measured by the 2D-C only using
the method described by Korolev and Sussman (2000). For complete images that did
not touch the edges of the array, a particle needs to occult more than 20 pixels to be
classified. Particles that touched the edges (partial images) were classified if they contain
more than 180 pixels. This latter classification allows the identification of large dendritic
features.

For computation of the size distributions, we have considered only particles that
were complete and have used the maximum extent of the particles in the direction
parallel to flight. We have repeated the analysis using the particle sizes defined by
the perpendicular span and found no significant differences in the results. The ratio of
the perpendicular to maximum span for ice-crystal aggregates is expected to be ∼0.65
(Westbrook et al. 2004a; Korolev and Isaac 2003). Given that the particles are sampled
with random orientation, the particle size measured using a single direction to define the
size will be, on average, 0.83 of the maximum span.

The combined ten-second size distributions used here have been produced by
abutting the bin-width normalized size distributions from the 2D-C (100–475 μm) and
2D-P (600–4400 μm). These distributions have then been used to compute moments of
the PSDs.

We have ignored particles smaller than 100 μm, as these are believed to be badly
sampled by the 2D-C probe (Strapp et al. 2001). We have made no attempt to estimate
what the small-particle contribution to the PSD is, as this requires assumptions based
on ice-crystal concentration measurements provided by the PMS Forward Scattering
Spectrometer Probe, which almost certainly suffers from the effects of ice-particle

http://www.sat.dundee.ac.uk
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shattering on the probe housing that can lead to artificially enhanced concentrations
(Field et al. 2003).

Occasionally, the large end of the size distribution can exhibit spurious counts in
large size-bins due to low sample rates that can adversely skew the computed moments
of the distribution. To avoid this problem we have used an upper size limit of 4400 μm
for the computation of moments from the PSDs.

3. OBSERVED PROBABILITY DISTRIBUTION FUNCTION

We begin by surveying the range of the data presented in this study by considering
the PSD moments obtained from the ten-second combined PSDs.

Mn =
∫ ∞

0
DnN(D) dD ≈

D=4400 μm∑
D=100 μm

DnND, (1)

where D is a particle size parallel to the flight direction, N(D) dD is the concentration
of particles with sizes between D and D + dD, ND is the particle concentration in the
size-bin with size D, and n is the moment order. The characteristic or mean particle
sizes are defined as (following Lee et al. 2004).

Lij =
(

Mj

Mi

)1/(j−i)

, (2)

where i and j are the moment orders.
We have plotted histograms of various parameters from different temperature

ranges (5C to −55 ◦C in 10 ◦C intervals). Figures 1–3 show the results for M0, M2
and M4 (M0 is the concentration for D > 100 μm). Assuming the ice-particle mass is
proportional to the square of the particle size means that M2 is directly proportional
to the IWC and, because radar reflectivity for Rayleigh scattering is proportional to
mass squared, M4 is directly proportional to the radar reflectivity (Z). It can be seen in
these figures that the distributions are generally monomodal, as Hogan and Illingworth
(2003) also found when looking at radar data. The mean and standard deviation of the
distributions were computed for the moments. The fractional standard deviation (FSD)
defined as the quotient of the standard deviation and the mean are given in each figure.
The mean and FSD of M0 (concentration for D > 100 μm) shows no significant varia-
tion with temperature, in agreement with observations reported by Korolev et al. (2000)
and Jeck (1998) that showed similar mean concentrations for super-100 μm ice parti-
cles. This is significant because many ice-nuclei parametrizations have increasing ice-
nuclei concentration with decreasing temperature, as discussed by Korolev et al. (2000).
The inference is that, either the temperature dependence of ice-nuclei concentration over
large scales is incorrect, or physical processes (such as diffusional growth, aggregation
and secondary ice production) decouple the super-100 μm particles from the primary
nucleation concentrations. The mean of M2 shows a consistent increase with increasing
temperature, but the overall change is still within the spread of the distributions. Again,
the FSDs are similar for the distributions at different temperatures. An increase in the
mean of M4 with increasing temperature is more evident, but the natural variability
still swamps variations as a function of temperature. The FSDs for this moment show a
maximum at −30 ◦C.

Figures 4 and 5 show histograms of the mean particle size L23 (equivalent to mass-
weighted mean particle size) and L24 (reflectivity-weighted mean size), respectively.
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Figure 1. Observed probability distribution functions of the zeroth moment of the particle size distribution,
M0 (concentration for D > 100 μm), for six different temperature ranges (5 ◦C to –55 ◦C in 10 ◦C intervals).
The error bars are the Poisson counting error in each bin. The inset vertical axis is the normalized frequency.

N is the number of points in the histogram, μ is the mean, and σ/μ is the fractional standard deviation.

In these figures the mean size shows an increase of a factor ∼10 from the coldest to
the warmest temperature ranges. The FSDs of the distributions are smaller than the
FSDs for the distributions of moments. At the warmest temperatures, the histograms
show some skewing towards smaller sizes that are, perhaps, associated with sublimating
cloud elements. Also shown in Fig. 4 is the L23 estimated from exponential fits to
data obtained in the Tropical Rainfall Measurement Mission (TRMM) characterization
aircraft campaigns in tropical anvil cloud (Heymsfield et al. 2002). Ryan (2000) has
also suggested a dependence of mean particle size on temperature, based on examining
aircraft observations from stratiform cloud and that is also overplotted in Fig. 4.
For an exponential distribution of the form N(D) = N0 exp(−λD), the mean particle
size is given by L23 = 3/λ. There appears to be good agreement, given the difference
in cloud types and environments investigated. The match with the TRMM relationship
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Figure 2. As Fig. 1, but for the second moment of the particle size distribution, M2 (proportional to ice water
content if ice-crystal mass is proportional to size squared). The scale at the top shows the ice water content

assuming that ice-crystal mass (kg) = 0.069 × {ice crystal size (m)}2 (Wilson and Ballard 1999).

is encouraging as it suggests that these observations may be applicable outside of the
context of mid-latitude stratiform cloud. Further evidence for a wider applicability of
these results is the found in the study of Jeck (1998), which also shows an increase
in maximum ice-particle size as function of increasing temperature. The consistent
variation of mean size with temperature requires explanation. Although a complete
investigation of this relationship is outside the scope of this paper, we suggest that
a strong possibility is the dominance of the aggregation process in controlling the
evolution of the ice PSD. For aggregation we would expect mean size to be related
to depth below cloud top (e.g. Field 2000). But, because frontal clouds have grossly
similar height structures, this may mean that, on average, in-cloud temperature is a good
proxy for the depth below cloud top, and hence for the time available for aggregation to
occur.
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Figure 3. As Fig. 1, but for the fourth moment of the particle size distribution, M4 (proportional to radar
reflectivity for pure Rayleigh scattering if ice-crystal mass is proportional to size squared).

4. MOMENT RELATIONS

We now go on to examine correlations between moments. Figures 6(a) and (b) show
plots of M2 against M3 and M4. The different shading of the points indicates different
temperature intervals (darker shades represent warmer temperatures). Looking at all of
the data indicates that simply using M2 to predict M3 or M4 would result in a large
amount of scatter. However, if temperature information is used, power laws for different
moments of order n can be found for each temperature interval (Tc).

Mn = a(n, Tc)M
b(n,Tc)
2 . (3)

The exponents, b(n, Tc), and coefficients, a(n, Tc), of these power laws vary
monotonically and can be related simply to temperature. In order to allow the estimation
of a wide range of non-integer moments, we have fitted a two-dimensional polynomial
to the power law exponents and coefficients as a function of temperature and moment
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Figure 4. As Fig. 1, but for the characteristic size of the particle size distribution, L23. The × symbols and
associated error bars along the horizontal axis for each distribution represent estimates of L23 obtained from
the parametrization of λ from Tropical Rainfall Measuring Mission (TRMM) data (Heymsfield et al. 2002).

The � symbols represent the parametrization of λ suggested by Ryan (2000).

order (see Table 2). Figures 7(a) and (b) show the coefficients and the exponents from
power laws fitted to integer moments zero to five, and the lines are the fitted polynomial
function for the relevant moment orders. It can be seen that the exponent varies with
temperature, which contrasts with the results from Lui and Illingworth (2000) and
Hogan et al. (personal communication) who reported that power laws between IWC
and the radar reflectivity Z have a constant exponent. We interpret this difference as
arising from the fact that, in this study, we do not introduce any small particles into the
PSD for sizes smaller than 100 μm. The choice of a 100 μm minimum particle size
and 1 l−1 minimum concentration leads to a convergence of the moments. If the PSDs
were monodisperse we would expect a convergence for M2 and M4 at 10−5 m−1 and
10−13 m, respectively, which is similar to the convergence seen in Fig. 6(b). The addition
of a small-particle component to the PSD will have the effect of moving the point at
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Figure 5. As Fig. 1, but for the characteristic size of the particle size distribution, L24.

which the moments converge to much smaller values, depending on the assumptions
made, and change the values of the power-law exponents. Our aim here is to reproduce
good estimates of measured PSDs, and to this end we believe that, in this case, it is
better to introduce no assumptions about the nature of the PSD at sub-100 μm sizes
and accept that a contribution from small particles is neglected. However, we can still
gauge the importance of the small-particle contribution and consider it in the discussion.
After prediction of the PSDs the user can then subsequently modify the PSD to introduce
a more realistic small-particle contribution.

Given the measured value of M2, the measured temperature and the moment
required we can now compare moments derived using the power law with the measured
values. Figure 8 shows four comparisons of the measured and derived values of M2,
M3, M4, M2.53. The moment of order 2.53 is of interest as it is proportional to the snow
precipitation rate in the Met Office numerical weather model (Wilson and Ballard 1999).
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Figure 6. Scatter plots of moments obtained from ∼9000 ten-second particle size distributions (PSDs).
The shading represents different temperature intervals. The darker shading represents the warmer temperatures.
Best-fit power laws are also shown. (a) The second moment of the PSD, M2, versus the third moment of

the PSD, M3. (b) The second moment of the PSD, M2, versus the fourth moment of the PSD, M4.

It can be seen that the derived moments are in good agreement with the measured ones
and that the scatter increases with increasing moment order. We have tested whether our
filtering of the data, using a minimum particle size and concentration, will affect the
prediction of moments using the power laws derived above, by filtering out PSDs with
concentrations 50 times greater than that used in the previous analysis. Although the
best-fit lines are slightly different, the previous relations used to predict other moments
are still valid and scatter plots of the predicted versus measured moments are merely a
subset of those shown in Fig. 8 based on the new filtering applied. Therefore, we are
confident that the power laws can be used to predict other moments.

The variability and hence an estimate of the standard deviation of the fractional
error (SDFE∗) incurred by using the power laws and temperature to estimate the
moments is shown in Fig. 9. Figure 9 is similar to the result found by Lee et al. (2004) in
that the error associated with estimating moments increases with the absolute difference

∗ Defined as the standard deviation of (Mn,derived − Mn,measured)/Mn,measured.
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TABLE 2. COEFFICIENTS AND EXPONENTS OF MOMENT

POWER LAWS Mn = a(n, Tc)M
b(n,Tc)
2 (SI units)

x ax bx

1 5.065339 0.476221
2 −0.062659 −0.015896
3 −3.032362 0.165977
4 0.029469 0.007468
5 −0.000285 −0.000141
6 0.312550 0.060366
7 0.000204 0.000079
8 0.003199 0.000594
9 0.000000 0.000000

10 −0.015952 −0.003577

n = moment order,
Tc = in-cloud temperature (◦C),
log10 a(n, Tc) = a1 + a2Tc + a3n + a4Tcn + a5T

2
c + a6n

2

+ a7T
2
c n + a8Tcn

2 + a9T
3

c + a10n
3,

b(n, Tc) = b1 + b2Tc + b3n + b4Tcn + b5T
2

c + b6n
2

+ b7T
2

c n + b8Tcn
2 + b9T

3
c + b10n

3.

between the order of the reference moment (in this case, two) and the predicted moment.
The errors here are a combination of the variability within the PSDs and the polynomial
fit used to represent the exponents and coefficients of the power laws. The smallest
SDFE of 7% is as expected for M2 and should, theoretically, be zero if there we no
error contribution from the polynomial fit to the power laws. Given accurate estimates
of M2 and in-cloud temperature, the estimate of the precipitation rate given by M2.53
has an SDFE of 25% and radar reflectivity M4 has an SDFE of 115%. If an estimate of
the measured PSD is required, then we can combine the relationships between moments
described here with the scalable nature of the ice PSDs that is described in the next
section.

5. SCALING OF THE PARTICLE SIZE DISTRIBUTION

For aggregating systems, after the initial PSD has evolved enough to ‘forget’ the
starting conditions it will approach a universal shape (see Westbrook et al. 2004a,b for
more details). The generalized scaling function that can be used to represent the PSD
that has evolved during ice-crystal aggregation (and droplet coalescence) was given by
Lee et al. (2004) for any pair of moments of the PSD.

N(D) = M
(j+1)/(j−i)
i M

(i+1)/(i−j)
j φij (x) (4)

x = D

(
Mi

Mj

)1/(j−i)

(5)

Where i, j can take any value � 0 (must be the same for both Eqs. 4 and 5), and φij

is the universal function that is scaled to give the observed PSD. The moments of the
distribution are given by

Mn = M
(n−i)/(j−i)
j M

(j−n)/(j−i)
i mn (6)

where mn = ∫ ∞
0 xnφij (x) dx is the nth moment of the universal function. It can be seen

that, for self consistency, when n = i, j then mn = 1. This is a property that the universal
function must possess.
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Figure 7. (a) The prefactor, a, of the moment-relating power laws, of the form Mn = a(n, Tc)M
b(n,Tc)
2 , as a

function of temperature for moments of different orders, n (see symbol key). The solid lines represent the solutions
of the two-dimensional polynomial fit given in Table 2. (b) The exponent, b, of the moment-relating power laws
as a function of temperature for moments of different orders. The solid lines represent the solutions of the two-

dimensional polynomial fit given in Table 2.

The combination of moments prefixing the universal distribution has previously
been termed Nw or N∗

0 (= M
(j+1)/(j−i)
i M

(i+1)/(i−j)
j ) by Illingworth and Blackmann

(1999) and Testud et al. (2001) for raindrop size distributions, but has recently been
used by Tinel et al. (2005) to describe ice PSDs. Although it should be noted that
Tinel et al. first apply a mass–size relationship to convert observed ice-particle size
to a melted diameter before rescaling. In Fig. 10(a) we show N∗

0 derived using the
second and third measured moments as a function of in-cloud temperature. There is
an exponential relationship with temperature and a best fit line is shown overplotted
(N∗

0,23 = 5.65 × 105 exp(−0.107Tc) m−4). In Fig 10(b), histograms of the logarithm
of the ratio of measured N∗

0,23 to that derived by using the temperature relation given
above (grey line) and a value derived by predicting the third moment from the measured
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(a) (b)

(c) (d)

Figure 8. Comparison of measured moments and moments derived using the power-law relations combined
with measured values of second moment of the particle size distribution (PSD), M2, and temperature from ∼9000
ten-second PSDs. (a) The second moment of the PSD, M2; (b) the third moment of the PSD, M3; (c) the fourth
moment of the PSD, M4; and (d) two-point-five third moment of the PSD—equivalent to precipitation rate in

some models, M2.53.

second moment, in-cloud temperature and the moment-relating power laws (black line).
It can be seen that there is not much difference between the two methods. However,
as an estimate of the third moment is required to convert the dimensionless size to
actual particle sizes for the predicted PSD (Eq. (5)), then it is more consistent to use
just the moment-relating power laws given in Table 2. An interesting aside is that these
two moments can be used to compute N0 for the classic exponential size distribution
(N(D) = N0 exp(λD)), which is simply N0 = 13.5 × N∗

0,23. The current Met Office
precipitation scheme (Wilson and Ballard 1999) parametrizes N0 as a function of
temperature. These data suggest that the current parametrization is underestimating N0
by about a factor of two.

It can be seen from Eq. (4) that any pair of moments can be used to rescale the
data to obtain a universal distribution that does not require any assumptions to be made
about the form of the universal distribution. Here, we show the results of rescaling the
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Figure 9. Standard deviation of fractional error (see text) for the derived moment of order, n, obtained from
using the measured values of the second moment of the particle size distribution, M2, and temperature combined

with the moment-relating power laws.

∼9000 ten-second size distributions for three pairs of moments: (M2, M3), (M2, M4),
and (M3, M4) (Fig. 11). Each point in Figs. 11(b), (c) and (d) represents the rescaled
contents of a single size bin from the original measured distribution in Fig 10(a).

The universal distributions revealed in Fig. 11 are bimodal, as found by Westbrook
et al. (2004a,b). The shoulder in the universal distribution is close to x = 1 and, hence,
this feature in the observed size distributions follows the mass-weighted mean size.
For x � 1 the size distribution appears exponential, as expected (Westbrook et al.
2004a,b). For x < 1 the size distribution is much steeper. Similar results are obtained
if different moments are used from the ones presented here for rescaling the size
distributions.

Using these rescaled size distributions, we present fits to each rescaled distribution
using a combination of exponential and gamma distributions φEG,i,j (x) to represent φi,j .

φEG,i,j (x) = κ0 exp(−�0x) + κ1x
ν exp(−�1x), (7)

where κ0, �0, κ1, ν and �1 are the shape parameters. It is shown in the appendix that,
because of the self consistency criterion required for the universal distribution, κ0 and
κ1 can be found in terms of the other three shape parameters �0, ν and �1, and so
only these three parameters need to be found. We have experimented with generalized
gamma functions that only require two shape parameters (e.g. Lee et al. 2004) but find
that they cannot simultaneously capture both the shoulder feature and the exponential
tail of the distribution that theoretical work predicts (Westbrook et al. 2004a,b).

To obtain �0, ν and �1 we have chosen many values randomly and select the set
that provides the minimum least-squares difference between log{φEG,i,j (x)} and the
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(a)

(b)

Figure 10. (a) N∗
0,23 = M4

2M−3
3 computed from measured values for ∼9000 ten-second ice particle size distri-

butions versus in-cloud temperature. The grey solid line is a least-squares fit: N∗
0,23 = 5.65 × 105 exp(−0.107Tc)

(m−4). (b) Histograms of the logarithm of the ratio of the measured N∗
0,23 to that derived using the temperature fit

shown in (a) (grey line), and to the value derived using a predicted value of M3 from the measured values of M2,
in-cloud temperature and the moment-relating power-law equations (black line).

logarithm of the rescaled measured PSDs. The results of the fitting exercise are given
in Table 3, and the graphical solutions can be seen overplotted in Fig. 11. A fit from
Lee et al. (2004) to drop size distributions using the third and fourth moments is also
shown in Fig. 11(d), and shows good agreement up to x = 2 with the fit found here for
ice PSDs. For larger sizes the generalized gamma fit decreases more rapidly than the
exponential distribution.

We can now test the ability of the universal distribution φEG,2,3 combined with
the power-law relations between moments to reproduce the observed PSDs. We have
decided to use the second and third moments in combination with the appropriate
universal distribution to predict the PSDs. Using too high or too low a moment would
emphasize the small or large end of the PSDs, which are known to be badly sampled
by 2D probes due to the probe response time, resolution and sample-volume issues.
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(a) (b)

(c) (d)

Figure 11. (a) Plot of ∼9000 size distributions used in the analysis. The points represents the bin contents for
each ice particle size distribution (PSD). (b) The rescaled PSDs from (a) as a function of dimensionless size using
the second moment of the PSD, M2, and the third moment of the PSD, M3. The solid line is the combination of
exponential and gamma fit. (c) The rescaled PSDs from (a) as a function of dimensionless size using the second
moment of the PSD, M2 and the fourth moment of the PSD, M4. The solid line is the combination of exponential
and gamma fit. (d) The rescaled PSDs from (a) as a function of dimensionless size using the third moment of the
PSD, M3, and the fourth moment of the PSD, M4. The solid line is a combination of exponential and gamma fit.
The dashed line is the generalized gamma function of Lee et al. (2004) for raindrop distributions. The functional

fits are given in Table 3.

TABLE 3. EXPONENTIAL AND GAMMA FUNCTION FITS TO THE RESCALED SIZE DISTRIBUTIONS

i j �0 ν �1 φEG,i,j (x)

2 3 20.78 0.6357 3.290 490.6 exp(−20.78x) + 17.46x0.6357 exp(−3.290x)

3 4 32.78 0.8128 4.750 2837 exp(−32.78x) + 97.95x0.8128 exp(−4.750x)

2 4 29.13 0.6496 3.909 1244 exp(−29.13x) + 33.12x0.6496 exp(−3.909x)

Figure 12 shows some random example distributions selected to show good fits (rows
(a) and (b)) defined as those PSDs where the difference between the predicted M3 and
measured M3 was less than 25%. Mediocre fits are shown in row (c), where the ratio
between the predicted M3 and measured M3 was ∼2. Bad fits are illustrated in row (d),
where the ratio between the predicted M3 and measured M3 was ∼5. Using predicted
PSDs it is possible to make additional assumptions about the small particle population
and recompute the moments if so desired, or to use the PSDs directly in radiation
calculations, for example.
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(a)

(b)

(c)

(d)

Figure 12. Randomly chosen measured (ten-second average) particle size distributions (PSDs) (stepped line)
and PSDs predicted using measured values of the second moment of the PSD, M2, and temperature to estimate
the third moment of the PSD, M3, combined with the exponential + the gamma fit to the universal distribution

given in Table 3 for φEG,2,3: (a) and (b) good fits, (c) mediocre fits, and (d) bad fits.

6. DISCUSSION AND CONCLUSIONS

It has been shown that ice PSDs can be accurately described using knowledge
of two moments and the scalable universal distribution only. No assumptions relating
particle size to mass are required. Numerical weather prediction models commonly
only predict one moment, and so we require a method of estimating a second moment.
We have demonstrated that using temperature we can obtain power laws to link a
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Figure 13. Contribution to the second moment of the particle size distribution, M2, from small particles
represented by a monodisperse distribution with size Dsmall and concentration Nsmall.

reference moment, in this case the second-order moment, to any arbitrary moment.
Thus, moments representing snowfall rate can be directly predicted from the known
reference moment and temperature. This approach has the advantage that the shape of
the ice PSDs are inherent in the power laws relating the moments. Alternatively, ice
PSDs can be predicted and used in radiation codes, or assumptions about the small-
particle population or other particle properties can be applied.

The small-particle component of ice PSDs is subject to uncertainty and in this anal-
ysis we have decided to ignore the contribution from particles smaller than 100 μm.
However, we can still attempt to gauge whether these small particles will be important
by looking at the contribution to M2 that a monodisperse distribution of small particles
would make. In Fig. 13 a contour plot of the contribution to the second moment from
small particles is given as a function of small-particle size and small-particle concen-
tration. From Fig. 2 the contribution from small particles would become important if
it exceeded 3 × 10−4 m−1. It can be seen that, to reach this level, the small particles
would have to be dominated by 50 μm particles at concentrations of 0.1 cm−3, or by
20 μm particles with concentrations of 1 cm−3. We would maintain that the contribu-
tion from small particles to the second moment will only become important where size
distributions are narrow, which from these data appears to be at colder temperatures
(T < −40 ◦C).

While, in this study, we have dealt with ice PSDs, it is interesting to note that
the universal distributions found for drop size distributions show a good match to
the rescaled ice PSDs if we use the same moments to scale the data. The agreement
of the other overplotted function in Fig. 10(d) of Lee et al. (2004) suggests that it
may be possible ultimately to treat the ice and raindrop populations with the same
approach. We suggest that the similarity between the universal distribution found for
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the ice PSDs and the drop size distributions results from the dominant physical process
in the evolution of the size distributions: aggregation and coalescence (e.g. Cardwell
et al. 2002, 2003; Field and Heymsfield 2003; Westbrook et al. 2004a,b). For both ice
crystals and droplets the collection kernel is controlled by differential sedimentation.
It is this similarity in the form of the collection kernel that leads to the same universal
distribution.

The use of temperature to predict another moment, given knowledge of one, may
be useful for mid-latitude weather prediction, but may not be a completely satisfactory
solution globally or for climate prediction. It remains to be seen whether these power
laws will hold for the tropics or convective clouds—however, as pointed out earlier it
is encouraging that the TRMM data appear to agree in terms of characteristic size as a
function of temperature.

We have examined aircraft-mounted 2D probe data from flights carried out in
frontal cloud around the British Isles. Analysis of the moments of the ∼9000 ten-second
size distributions, and the PSDs themselves, revealed the following:

• Probability distribution functions of ice PSD moments M0,2,4 and characteristic
size (L23, L24) display monomodal distributions. The spread in characteristic sizes is
smaller than that seen for individual moments.

• The concentration of particles larger than 100 μm is independent of in-cloud
temperature over large scales.

• There is a correlation between characteristic size (L23, L24) and temperature.
This correlation results in the series of temperature-dependent power laws relating
moments. One possible explanation for the good correlation is the action of aggregation
as particles fall from colder to warmer temperatures.

• Power-law relations between moments of order n and the second moment as a
function of temperature have been found. It is possible to combine measured tempera-
ture and a measurement of the second moment of a PSD to obtain another moment, such
as precipitation rate, for use in numerical weather-prediction models. In addition, PSDs
can be estimated from knowledge of the second moment and in-cloud temperature.

• The observed ice PSDs have been rescaled using two moments of the size
distribution to reveal a universal distribution. No assumptions needed to be made about
the conversion of particle size to mass to obtain this result.

• The successful rescaling of the size distributions suggest that two-moment
schemes can adequately represent ice and raindrop size distributions in mid-latitude
stratiform clouds sampled around the UK. We have fitted analytically integrable func-
tions to the rescaled size distributions to represent the universal distributions.
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APPENDIX

In this appendix we reduce the number of shape parameters required for the
combination of exponential and gamma distributions from five to three by making
use of the self consistency constraint. The form of the combined exponential gamma
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distribution that will be used to model the universal distribution after rescaling with
moments of order i and j is

φEG,i,j (x) = κ0 exp(−�0x) + κ1x
ν exp(−�1x), (A.1)

and the moments of this function are given by

mn =
∫ ∞

0
xnφEG,i,j (x) dx (A.2)

mn = κ0�(n + 1)

�n+1
0

+ κ1�(n + ν + 1)

�
(n+ν+1)
1

. (A.3)

For self consistency we require
mi = mj = 1, (A.4)

and so substituting i, j into Eq. (A.3), and rearranging we can find κ1:

κ1 = κ0

�(i + 1)

�i+1
0

− �(j + 1)

�
j+1
0

�(j + ν + 1)

�
j+ν+1
1

− �(i + ν + 1)

�i+ν+1
1

. (A.5)

By substituting Eq. (A.5) into (A.3), and letting mi = 1, we obtain κ0:

κ0 = 1

�(i + 1)

�i+1
0

+ �(i + ν + 1)

�i+ν+1
1

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

�(i + 1)

�i+1
0

− �(j + 1)

�
j+1
0

�(j + ν + 1)

�
j+ν+1
1

− �(i + ν + 1)

�i+ν+1
1

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

. (A.6)

Thus φEG,i,j is a function of three shape parameters only: �0, ν and �1.
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