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[1] A variational method is described for retrieving profiles of visible extinction
coefficient, ice water content and effective radius in ice clouds using the combination of
ground-based or spaceborne radar, lidar and infrared radiometer. The forward model
includes effects such as non-Rayleigh scattering by the radar and molecular and multiple
scattering by the lidar. By rigorous treatment of errors and a careful choice of state
variables and associated a priori estimates, a seamless retrieval is possible between regions
of the cloud detected by both radar and lidar and regions detected by just one of these two
instruments. Thus, when the lidar signal is unavailable (for reasons such as strong
attenuation), the retrieval tends toward an empirical relationship using radar reflectivity
factor and temperature, and when the radar signal is unavailable (such as in optically thin
cirrus), accurate retrievals are still possible from the combination of lidar and radiometer.
The method is tested first on simulated profiles from aircraft data and then on real
observations taken in West Africa. It would be straightforward to expand the approach to
include other measurements simply by including a forward model for them.

Citation: Delanoë, J., and R. J. Hogan (2008), A variational scheme for retrieving ice cloud properties from combined radar, lidar,
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1. Introduction

[2] It is widely recognized that clouds play an important
role in both weather and climate forecasts [Stephens, 2005].
Since there remains a lack of information regarding the
properties of clouds globally, cloud radars, lidars and radio-
meters have been installed at a number of sites worldwide
[Stokes and Schwartz, 1994; Illingworth et al., 2007] with
the aim of monitoring the microphysical and radiative
properties of clouds. This has recently been extended to
space with the ‘‘A-Train’’ of satellites, comprising the cloud
radar CloudSat [Stephens et al., 2002], the lidar CALIPSO
(Cloud Aerosol Lidar and Infrared Pathfinder Satellite
Observations; [Winker et al., 2003]) and a large number
of radiometers, particularly on the Aqua satellite. The
challenge is to use the synergy of radar, lidar and radio-
meters to retrieve the cloud water content, visible extinction
coefficient and effective radius, from space or the ground.
[3] In this paper we propose a variational method that can

use all the available measurements to retrieve the properties
of ice clouds. A number of previous radar-lidar algorithms
have been proposed for ice clouds. The first was by Intrieri
et al. [1993] but this was limited to very optically thin
clouds since the effects of lidar attenuation were neglected.

More recently, Wang and Sassen [2002], Okamoto et al.
[2003] and Mitrescu et al. [2005] included a correction for
lidar attenuation, but a value for the lidar extinction-to-
backscatter ratio had to be assumed. A difficulty with this
approach is that the retrieved extinction is very dependent
on the exact value that is assumed, tending to make the
retrievals increasingly inaccurate as they penetrate further
into the cloud.
[4] A solution to this problem was provided by Donovan

et al. [2001] and Tinel et al. [2005], who used the radar
signal to assist in the correction for lidar attenuation. It was
demonstrated by Hogan et al. [2006a] that these approaches
are both able to retrieve accurate visible extinction coeffi-
cient, av, without specifying the extinction-to-backscatter
ratio. Indeed, the retrieval of av was found to be indepen-
dent of the microphysical assumptions that were made (e.g.,
the density-diameter and area-diameter relationships). This
is a very convenient property since this variable is of
foremost importance in determining the way the cloud
interacts with natural radiation. The microphysical assump-
tions do have an effect on the retrieved ice water content
and effective radius, and the assumptions made in a number
of different algorithms were compared by Heymsfield et al.
[2008].
[5] The current radar-lidar methods suffer from the fol-

lowing limitations: (1) They only work in regions where
clouds are detected by both radar and lidar; the many
regions of cloud detected by only one instrument are
omitted, which is inconvenient when building a cloud
climatology [Illingworth et al., 2007]. (2) Noise in measure-
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ments results in noise in the retrieved variables. (3) Because
of the architecture of these algorithms it is often not possible
to make use of other measurements, such as radiances,
Doppler velocity, or lidar molecular scattering beyond the
cloud which provides an optical depth constraint. (4) It is
difficult to also retrieve the properties of liquid clouds in the
profile in a consistent fashion, particularly if they are
embedded within the ice cloud. (5) Often there is a difficulty
in incorporating the effects of lidar multiple scattering, and
the widely used lidar multiple-scattering model of Eloranta
[1998] is too slow to take to greater than third- or fourth-
order scattering in operational algorithms for spaceborne
instruments.
[6] In this paper we propose to address these limitations

using a variational scheme (also referred to as ‘‘Bayesian,’’
or based on ‘‘optimal estimation theory’’ [Rodgers, 2000]).
This is a very powerful tool in satellite retrievals and has
recently been applied to active instruments [e.g., Austin and
Stephens, 2001; Löhnert et al., 2004; Mitrescu et al., 2005;
Hogan, 2007].
[7] The structure of the paper is as follows. In section 2,

the new radar-lidar-radiometer method is described, includ-
ing the relevant background about optimal estimation the-
ory. A key component of this scheme is accurate and fast
forward models for each of the instruments, as described in
section 3. In section 4, the method is tested on synthetic
radar and lidar profiles, and then in section 5 it is applied to
a real ice cloud sampled over Niamey in West Africa.
Prospects for application to A-Train and other data will
then be discussed in section 6.

2. Retrieval Method

2.1. Overview

[8] This retrieval combines active and passive remote
sensing instruments, in particular radar, lidar and Infrared
radiometer, to estimate the properties of ice clouds. We
assume that all instruments have been calibrated, that the
nature of the random errors in the measurements is known,
and that the radar and lidar are coordinated such that they
are observing the same column of the atmosphere (see
section 3.7 for discussion of the consequences of mis-
matched fields of view). Profiles are analyzed in turn, and
the procedures undertaken for each are summarized in
Figure 1.
[9] The first task (indicated by box 1 in Figure 1) is to

classify the nature of the targets as a function of height into
liquid droplets, ice particles, aerosol, insects, melting ice,
rain, and combinations thereof. A method for doing this
from ground-based data as part of ‘‘Cloudnet’’ was de-
scribed by Hogan and O’Connor [2006] and Illingworth et
al. [2007].
[10] The retrieval is then applied to the parts of the profile

containing ice cloud. The algorithm described here is
restricted to ice clouds that are unobscured by liquid clouds
as far as the radar and lidar are concerned. Furthermore,
when liquid clouds are present at any height in the profile,
the Infrared radiometer observations are not used. Work is
in progress to remove these restrictions and to retrieve the
properties of ice clouds, liquid clouds, aerosol layers and
precipitation within the same variational framework.

[11] In a variational scheme, one must decide what
variables to use to describe the system being observed.
These variables will be retrieved and are represented as the
state vector, x. In the case of ice clouds, the visible
extinction coefficient, av, has the advantage that, in the
geometric optics limit, it is directly linked to the both the
lidar measurements and to the optical depth of the cloud.
For example, in the single-scattering limit and in the
absence of molecular scattering, the apparent lidar back-
scatter a range r from the instrument can be expressed as

b rð Þ ¼ b̂ rð Þ exp �2

Z r

0

av r0ð Þdr0
� �

; ð1Þ

where b̂ is ‘‘true’’ lidar backscatter coefficient, assumed
proportional to av via the extinction-to-backscatter ratio, S:

b̂ ¼ av=S: ð2Þ

Hence the second variable to be added to the state vector is
S. In common with Donovan et al. [2001] and Tinel et al.
[2005], this variable is assumed constant with height, for the
simple reason that without an independent measure of av

(e.g., from a Raman or high spectral resolution lidar), we
have no information on its height dependence. This was
shown by Hogan et al. [2006a] to cause only modest errors
in the retrieved av. In practice, (1) is replaced by a
formulation including molecular and multiple scattering, as
described in section 3.4.
[12] In order to relate av to other moments of the size

distribution such as radar reflectivity factor (Z) or ice water
content (IWC), it needs to be supplemented in the state
vector by another intensive or extensive variable, such as a
measure of particle size or number concentration. This
additional variable should ideally have two key properties.
Firstly, a good a priori estimate of it should be available as a
function of temperature. This ensures that in regions where
only the radar or the lidar is available, the scheme will tend
toward existing empirical relationships involving tempera-
ture, such as the formulae for IWC as a function of Z and
temperature [e.g., Liu and Illingworth, 2000; Hogan et al.,
2006b; Protat et al., 2007]. It was demonstrated by Hogan
et al. [2006b] that the temperature dependence in these
relationships must arise via the temperature dependence of
the number concentration parameter of a size distribution,
commonly referred to as N0. Secondly, it should be easy to
combine this additional variable with av to estimate any
other property of the size distribution. A good candidate is
the ice normalized number concentration parameter, N0*; it
was shown by Delanoë et al. [2005] and Field et al. [2005]
that for any intensive variable y and extensive variable Y
there is a near-unique relationship between the ratio av/N0*
and both y and the ratio Y/N0*.
[13] Given these requirements, the last variable we add to

the state vector is N0
0, defined as

N 0
0 ¼ N0*=a0:6

v : ð3Þ
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As shown in section 3.2, this variable is found to have a
strong temperature dependence. Furthermore, N0* can easily
be derived from the combination of av and N0

0, which then
enables any intensive or extensive variable to be estimated
(see section 3.1).

[14] To improve the computational efficiency, we seek to
reduce the number of elements in x. Naturally, av is only
retrieved at the n ranges where ice cloud is detected by
either the radar or the lidar. An additional efficiency is
obtained by not retrieving N0

0 directly at each gate, but
rather representing it by reduced set of m basis functions,

Figure 1. Flowchart showing the sequence of operations performed by the retrieval scheme. The
detailed description of each step is given in sections 2 and 3.
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Nb, such that smooth variation in range is guaranteed. The
same approach was used by Hogan [2007] to retrieve an
analogous variable for polarization radar in rain. Conse-
quently, the state vector for a single profile is

x ¼

lnav;1

..

.

lnav;n

ln S

lnNb;1

..

.

lnNb;m

0
BBBBBBBBBB@

1
CCCCCCCCCCA
: ð4Þ

Note that we use the logarithm of the entities av, Nb and S,
not the entities themselves, to avoid the unphysical
possibility of retrieving negative values.
[15] With the state vector now defined, we turn to the

observation vector, y. This contains the measurements Z (the
radar reflectivity factor), b (the apparent lidar backscatter),
Il (the Infrared radiance at wavelength l) and DI (the
difference between two Infrared radiances). Radiances mea-
sured in the Infrared atmospheric window provide informa-
tion on the extinction of the cloud within the nearest one or
two optical depths, provided that the temperature profile is
well known. The combination of ground-based radar and
Infrared radiometer was used by Matrosov et al. [1994] to
retrieve the properties of ice clouds, but here we consider
Infrared radiances measured by satellite in combination with
either ground-based or spaceborne radar and lidar. The
difference between two infrared radiances provides infor-
mation on ice particle size [Chiriaco et al., 2004; Cooper et
al., 2003].
[16] In daylight hours, information on cloud visible

optical depth dv is available from shortwave radiances
measured by satellite instruments. In practice, it can be
rather difficult to model such radiances directly because of
three-dimensional radiative effects [Várnai and Marshak,
2001] and (in the case of A-Train retrievals) the need to
know the spectrally dependent bidirectional reflection func-
tion of the surface at all points on the globe. We therefore
follow the example of Benedetti et al. [2003a] and Mitrescu
et al. [2005] and include in the formalism a way to include
an independent retrieval of dv (e.g., derived using the
method of Platnick et al. [2003]) as if it were a direct
observation with an associated error.
[17] Hence, the observation vector can be written as

y ¼

lnb1

..

.

lnbp

ln Z1

..

.

ln Zq
Il
DI

dv

0
BBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCA

: ð5Þ

Note that b and Z need not be on the same grid, as shown by
the different indices p and q. Moreover, in the case of the
lidar signal it is advantageous to include in y any gates
beyond the far end of the cloud. This enables any molecular
return measured here to be used automatically as a
constraint on optical depth [Cadet et al., 2005]. If
measurements are missing they are simply excluded from
y. As in the state vector, the logarithms of the entities b and
Z are used because of the large dynamic range that they can
span in a single profile. It is also found that the use of
logarithms in x and y results in much faster convergence to
the correct solution.

2.2. Optimal Estimation Formulation

[18] The essence of the technique is to start with a first
guess of the state vector and use a forward model (repre-
sented by the dot-dashed box in Figure 1 and described in
section 3) to predict each element of the observation vector.
This prediction is compared to the actual observations (box
11 of Figure 1) and the difference is used to calculate a
refined state vector that is fed back into the forward model.
This process is repeated until convergence. The aim is to
find the state vector that minimizes the difference between
the observations and the forward model in a least-squares
sense. This is achieved by minimizing a cost function J:

2J ¼
Xq
i¼1

lnZi � lnZ 0
i

� �2
s2
lnZi

þ
Xp
i¼1

lnbi � lnb0
i

� �2
s2
ln bi

þ
dv � d0v
� �2

s2
dv

þ
Il � I 0l
� �2

s2
Il

þ DI �DI 0ð Þ2

s2
DI

þ
Xnþmþ1

i¼1

xi � xai
� �2

s2
a;i

: ð6Þ

The first five elements on the right hand side of (6)
represent the deviation of the observations ln Z, ln b, Il, DI
and dv, from the values predicted by the forward model ln
Z0, ln b0, Il

0, DI0 and dv
0, with the root-mean-squared (RMS)

observational errors represented by sln Z, sln b, sIl, sDI and
sdv. In practice these include forward model errors as
discussed in sections 2.5 and 3.7.
[19] The last summation in (6) represents the deviation of

the elements of the state vector from some a priori estimate,
xa (referred to as the ‘‘background’’ in data assimilation).
This term assists in the stability of the algorithm and ensures
that if radar or lidar observations are missing then the
retrieval will tend toward the behavior of existing empirical
algorithms in the literature. In practice, an a priori is only
required for N0

0 (see section 3.2) and S, not for av. A wide
range of values of S have been reported in the literature;
following the evidence of Platt et al. [1987] and Chen et al.
[2002] of S typically varying between 20 sr and 50 sr, we
assume an a priori of ln S = 3.5 ± 0.5 sr. An a priori for
visible extinction coefficient is not required since this
variable is well constrained by both radar and lidar;
therefore, the corresponding term is simply omitted from
the cost function. In any case, extinction has a large
variability in nature so any a priori would be have to be
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assigned a large error and consequently have little impact on
the retrieval.
[20] In order to incorporate error correlations and smooth-

ness constraints, it is convenient to rewrite (6) in matrix
notation:

2J ¼ dyTR�1dyþ dxTaB
�1dxa þ xTTx ð7Þ

where dy = y � H(x), dxa = x � xa, H(x) is the forward
model operator, and R and B are the error covariance
matrices of the observations and the a priori, respectively. In
this application we assume that R is diagonal, i.e., that the
errors in the observations are not spatially correlated. By
contrast, the off-diagonal components of B play an
important role in extending information on N0

0 in the
vertical, as will be described in section 2.4.
[21] Unfortunately, the lidar (and to a lesser extent the

radar) measurements may be noisy, which can contaminate
the retrieved av, as shown by Hogan et al. [2006a]. So we
propose to add a smoothness constraint to the retrieved
extinction, represented by the final term in (7), in which T is
a ‘‘Twomey-Tikhov’’ matrix [Rodgers, 2000; Ansmann and
Müller, 2005]. This matrix penalizes the second derivative
of the av profile, resulting in a smooth av profile that is able
to closely forward model the lidar backscatter without
reproducing any of its random measurement noise. T is
of size (n + m + 1) � (n + m + 1), and for n = 6, the top left
n � n elements of the matrix (i.e., those that correspond to
the av elements of x) are given by

T1::n;1::n ¼ k

1 �2 1 0 0 0

�2 5 �4 1 0 0

1 �4 6 �4 1 0

0 1 �4 6 �4 1

0 0 1 �4 5 �2

0 0 0 1 �2 1

0
BBBBBB@

1
CCCCCCA
: ð8Þ

Note that if multiple cloud layers are present in the profile
then the av element corresponding to the lowest level of
one cloud layer will be adjacent in the state vector to the
element corresponding to the highest level of the cloud layer
below. The elements of T are therefore set independently for
each cloud layer, to avoid artificially smoothing between
nonadjacent layers. Since the smoothing is only applied to
av, the other elements of T are set to zero. The coefficient k
controls the degree of smoothing and in practice needs to be
chosen subjectively depending on the magnitude of the
random errors in the lidar signal.
[22] The cost function cannot be minimized in one step

because of the presence of the nonlinear forward model
operator H(x), so we use the Gauss-Newton method
[Rodgers, 2000] in which a linearized version of the cost
function is minimized iteratively. At iteration k we have an
estimate of the state vector, xk, and the corresponding
forward model estimate of the observations, H(xk). The
linearized cost function JL is obtained by replacing H(x) in
(7) by H(xk) + H � (x � xk), where H is the Jacobian, a
matrix containing the partial derivative of each observation

with each respect to each element of the state vector. In
this case H is a (p + q + 3) � (n + m + 1) matrix given by

H ¼

@b1

@av;1
� � � @b1

@av;n

@b1

@S
@b1

@Nb;1

@b1

@Nb;m

..

. . .
. ..

. ..
. ..

. . .
. ..

.

@bp

@av;1
� � � @bp

@av;n

@bp

@S

@bp

@Nb;1

@bp

@Nb;m

@Z1
@av;1

� � � @Z1
@av;n

@Z1
@S

@Z1
@Nb;1

@Z1
@Nb;m

..

. . .
. ..

. ..
. ..

. . .
. ..

.

@Zq
@av;1

� � � @Zq
@av;n

@Zq
@S

@Zq
@Nb;1

@Z1
@Nb;m

@Il
@av;1

� � � @Il
@av;n

@Il
@S

@Il
@Nb;1

@Il
@Nb;m

@DI
@av;1

� � � @DI
@av;n

@DI
@S

@DI
@Nb;1

@DI
@Nb;m

@dv
@av;1

� � � @dv
@av;n

@dv
@S

@dv
@Nb;1

@dv
@Nb;m

0
BBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCA

; ð9Þ

and is calculated at the same time as the forward model, as
will be described in section 3. In order to improve the
readability of H, we have not displayed the logarithm of the
variables b, Z, av, Nb and S, or the primes on any of the
forward modeled variables.
[23] By setting the derivative of JL with respect to each

element of x to zero and rearranging, an expression for the
state vector at the minimum of JL is obtained:

xkþ1 ¼ xk þ A�1 HTR�1dy� B�1 xk � xað Þ � Txk
 �

; ð10Þ

where the symmetric matrix A is known as the Hessian and
is given by

A ¼ HTR�1Hþ B�1 þ T: ð11Þ

For efficiency A is not inverted but rather kept on the left
hand side of (10) and the matrix problem is solved by
Cholesky decomposition.
[24] Since we are using an iterative process, a first guess

is required for the state vector, x0. For those variables with
an a priori (Nb and S), the a priori value is used, while for
av, a constant value of 10�6 m�1 is used. The process is
repeated until convergence, as determined by a c2 conver-
gence test.

2.3. Use of Cubic Spline Basis Functions for
Smoothing N0

0

[25] As mentioned previously, N0
0 is represented by a

reduced set of m basis functions, which ensures a shorter
computation time as well as achieving a certain degree of
smoothness in the retrieved N0

0. However the forward
model described in section 3 works on the lidar range grid,
so at the beginning of each iteration, the m amplitudes of the
basis functions Nb, within the state vector, have to be
converted to n values of N0

0. We treat this as a transforma-
tion from the state vector x to a high-resolution state vector
x̂, which is the same as defined in (4) but with the m values
of Nb replaced by n values of N0

0. This step is indicated by
box 2 in Figure 1, and is achieved using an (n + m + 1) �
(2n + 1) matrix W:

x̂ ¼ Wx: ð12Þ
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The top left (n + 1) � (n + 1) elements of W correspond to
the av and S elements of x that are unchanged by the
transformation, so are represented in W by an identity
matrix. The bottom right n � m elements of W contain the
basis functions. Following Hogan [2007], we use cubic
spline basis functions, resulting in the retrieved N0

0 being
continuous in itself and its first and second derivatives.
Details of how to set these elements of W may be found in
the appendix of Hogan [2007]. The Jacobian that is output
from the forward model, Ĥ, is also on the lidar range grid;
that is, it consists of derivatives with respect to N0

0 rather the
corresponding basis function amplitudes Nb. We convert
this high-resolution Jacobian to the standard Jacobian used
at the basis function resolution by simply postmultiplying
by W:

H ¼ ĤW: ð13Þ

2.4. Use of a Priori Error Covariances for Spreading of
Number Concentration Information in Height

[26] As described in section 3.2, an N0
0-temperature

relationship is used as an a priori constraint on N0
0.

Physically, this can be thought of as expressing the fact
that lower down in a cloud (i.e., at warmer temperatures),
the process of aggregation leads to a smaller number of
larger particles. Algorithmically, this ensures that the N0

0

retrieved by the scheme tends toward a physical value when
only one instrument is available. In the simplest case, the B
matrix is diagonal and the diagonal elements are the error
variances of the a priori estimate xa, i.e., Bi,i = sa

2 (see
section 3.2 for the value used).
[27] Very often in spaceborne radar-lidar retrievals, within

a single profile we have a region of cloud detected by both
radar and lidar, above which is a region detected by lidar
alone and below which is a region detected by radar alone.
In this case, if B is diagonal, the retrieved N0

0 would be
determined closely by the radar and lidar in the region
where both detect the cloud, but within the height span of a
single basis function, would switch back to a value much
closer to the a priori in the regions detected by just one
instrument.
[28] A more realistic retrieval would take account of the

fact that, if in the radar-lidar region the retrieved N0
0 is

higher than the a priori estimate, then we would expect it to
be higher in the radar-only and lidar-only regions as well.
This tendency is implemented via the off-diagonal elements
of B, which express the fact that the difference between the
actual value of N0

0 and the a priori value is spatially
correlated. Following Hogan [2007], if we assume that
the correlation coefficient between two basis function coef-
ficients centered at heights zi and zj decreases as an inverse
exponential with the separation distance, then the off-
diagonal covariance terms of B are given by

Bi;j ¼ Bi;i exp � zj � zi
�� ��=z0� �

; ð14Þ

where z0 is the decorrelation distance and it has been
assumed that sa

2 is constant with height.

[29] Note that an a priori is only used for N0
0 and S, so

(14) only applies to the N0
0 part of B. As yet, there is no

observational data to choose a particularly value of z0, a
problem common to many areas of data assimilation [Daley,
1991]. In principle this parameter could be estimated from a
large number of profiles of N0

0 derived where both Z and b
are available using the method of Hollingsworth and
Lönnberg [1986]. In the remainder of this paper a value
of z0 = 1 km is used.

2.5. Calculation of the Retrieval Error

[30] After the solution has converged, the error covari-
ance matrix, Sx, of the retrieved variables held in the state
vector is simply given by the inverse of the Hessian matrix,
i.e., Sx = A�1 [Rodgers, 2000]. Hence, the first n diagonal
terms of Sx represent the error variances in ln av, with the
remainder representing error variances in ln S and ln Nb.
The error covariance matrix of the high-resolution transfor-
mation of the state vector x̂ defined in (12) is given by
premultiplying and postmultiplying by the weighting func-
tion matrix W:

Sx̂ ¼ WTSxW: ð15Þ

The final n diagonal elements of Sx̂ represent the error
variances of N0

0 at the same resolution as av. Errors in any
other microphysical variables derived from av and N0

0 (in
particular IWC and re) may be calculated from Sx̂, as
described in Appendix A.
[31] It should be stressed that the retrieval errors obtained

in this way depend strongly on the observational errors that
are assigned in (6). For the retrieval error to be realistic it is
important that the observational errors include the error in
the forward model. Formally we may write that the obser-
vation error covariance matrix is given by R = O + M,
where O is the error covariance solely due to instrumental
error and M is the forward model error. Discussion of the
error associated with each component of the forward model
is given in section 3.7.

3. Forward Model

[32] In this section, the forward model H(x) used in the
scheme is described. As stated before, the forward model
produces an estimate of the observations y from the state
vector x, and is represented in Figure 1 by the dot-dashed
box. Readers who are familiar with the interpretation of
microphysical cloud properties and instrumental parameters
may wish to skip some or all of this section.
[33] In addition to the information held within the state

vector, a large amount of ancillary information is required
for each of the components of the forward model. This
includes the thermodynamic state of the atmosphere (in
particular, profiles of temperature, pressure, humidity and
ozone concentration), the properties of the surface (skin
temperature and emissivity at the radiometer wavelengths),
as well as the properties of the instruments themselves (in
particular the lidar field of view to calculate the contribution
from multiple scattering). Such information can be obtained
with adequate accuracy from standard analysis and forecast
products that are archived with both ground-based Cloudnet
data and within the CloudSat database.
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3.1. Normalized Concentration Parameter N0* and the
Look-Up Tables

[34] Nearly all components of the forward model require
the ability to predict arbitrary intensive and extensive
variables from the combination of av and N0

0. This is
achieved by first calculating N0* using (3), then using one-
dimensional look-up tables to relate the ratio av/N0* to either
an intensive variable y, or to Y/N0*, where Y is an extensive
variable. In this section it will be shown how these look-up
tables are generated, highlighting the strength of the N0*
concept.
[35] First, we need to decide on a microphysical model,

describing the shape of the particle size distribution and the
relationships between particle mass, cross-sectional area and
size. The distributions are formulated in terms of the
maximum particle dimension, D. The ice particle mass is
assumed to follow the Brown and Francis [1995] mass-D
relationship, which was found by Hogan et al. [2006b] to be
accurate when calculating Z from aircraft data in midlatitude

ice clouds. The corresponding area-size relationship is taken
from Francis et al. [1998], who used the same aircraft data
set as Brown and Francis [1995]. Adopting the formalism
of Delanoë et al. [2005] and Field et al. [2005], we describe
the size distribution as

N Dð Þ ¼ N0*F D=D0*ð Þ; ð16Þ

where N0* is the normalized number concentration para-
meter, given by

N0* ¼ M4
2 =M

3
3 ; ð17Þ

and Mn is the nth moment of the ice particle size
distribution. Particle size in (16) is normalized by D0*, a
measure of the mean size of the distribution and defined as

D0* ¼ M3=M2: ð18Þ

The function F in (16) is the ‘‘unified’’ size distribution
shape given by Field et al. [2005], and has been found to fit
measured size distributions when they are appropriately
normalized (i.e., F fits N/N0* versus D/D0*).
[36] To generate the look-up tables, we cycle through a

wide range of values of D0* and for each calculate av/N0*, y
and Y/N0* (where y and Y represent all intensive and
extensive variables of interest). Geometric optics is used
to calculate av via the area-size relationship discussed
above. In the case when Y represents radar reflectivity factor
Z, Mie theory is applied assuming the particles to be
homogeneous ice-air spheres of diameter D and mass m.
Similarly, the ice water content, IWC, is simply the inte-
grated particle mass across the size distribution. The inten-
sive variable effective radius, re, is derived using [Foot,
1988]

re ¼
3

2

IWC

avri
; ð19Þ

where ri is the density of solid ice. Other variables are
derived in a similar fashion.
[37] To demonstrate the strength of this approach, Figure 2a

shows av as a function of 94-GHz Z derived from the same
large in situ aircraft database used by Delanoë et al. [2005]
and Protat et al. [2007]. There is clearly no unique
relationship between the two variables, but Figure 2b shows
that when both are normalized by N0*, the points collapse on
to a much tighter curve. These observations are well fitted
by the gray line, which indicates the look-up table derived
using the unified size distribution shape discussed above.
The same behavior is exhibited for all other extensive
variables. Hence this can be used to predict Z and an other
microphysical variables required in the forward model from
the combination of av and N0* using one-dimensional look-
up tables. In principle, any other pair of moments could be
used to generate the required variables, but if one of them
was not N0* then the look-up tables would have to be two-
dimensional.

Figure 2. (a) Visible extinction coefficient av as a function
of 94-GHz radar reflectivity factor Z for the large in situ
aircraft database of Delanoë et al. [2005]. (b) The same but
after dividing both variables by the normalized number
concentration parameter N0*. The gray line corresponds to
the fit calculated using the unified size distribution shape of
Field et al. [2005]. The curved shape in the relationship is
due to the transition between Rayleigh scattering at small
particle sizes to Mie scattering at larger sizes.
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3.2. A Priori of the Normalized Concentration
Parameter N0*

[38] As discussed in section 2.1, a desirable property of at
least one of the state variables is that we have a good a
priori estimate of it from temperature (T ), in order that when
only the radar or the lidar are available, the retrieval is at
least as accurate as existing empirical relationships based on
temperature in the literature [e.g., Hogan et al., 2006b].
[39] Figure 3a shows the temperature dependence of N0*

using the same in situ database as used in Figure 2. It can be
seen that, although there is such a relationship, it is not IWC
independent. For both this reason, and in order to reduce the
scatter, we divide it by a power of the visible extinction
coefficient. A range of powers has been tested and it is
found that the best results are found for a power of 0.6;
Figure 3b clearly shows that there is an IWC-independent
relationship between N0*/av

0.6 and temperature. Hereafter
this ratio will be represented by N0

0. Because a good a
priori is available for N0

0, it is used in the state vector rather
than N0*, but N0* needs to still be calculated as the first step

in the forward model (box 2 in Figure 1) before all the other
variables can be calculated. The spread of the points in
Figure 3b indicates that ln N0

0 has a variance of 1.0, so this
is the value used for the a priori error variance Bi,i discussed
in section 2.4.

3.3. Radar Forward Model

[40] The look-up tables calculated in section 3.1 are used
in the forward model to derive Z from av and N0*, using the
relationship between Z/N0* and av/N0* shown in Figure 2,
and represented by box 3 in Figure 1. Gaseous attenuation
at the radar wavelength is calculated using the look-up
tables generated from the line-by-line model of Liebe
[1985], coupled to estimated profiles of temperature, pres-
sure and humidity as part of the ancillary data. Ice attenu-
ation is believed to be small enough to be neglected [e.g.,
Hogan and Illingworth, 1999], and consideration of liquid
water attenuation is avoided by restricting application of the
retrieval to ice clouds unobscured by liquid layers. A future
development of the scheme will be to include the retrieval
of liquid water layers, in which case forward modeling of

Figure 3. (a) The temperature dependence of N0* for each size distribution within the large in situ
database of Delanoë et al. [2005] (dots), superimposed by the mean N0* in 5�C temperature ranges and
various ranges of ice water content IWC (lines and symbols). (b) The same but for the variable N0

0 = N0*/
a0.6.
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the associated radar attenuation will be incorporated. In
deep convective clouds observed by spaceborne radar, it has
been shown that multiple scattering can be important
[Battaglia et al., 2007]. In such situations, a number of
the assumptions made in this retrieval scheme would
become inappropriate, particularly the use of the Brown
and Francis [1995] mass-size relationship, which is suitable
for low-density aggregates. However, in principle a fast
radar multiple scattering model, such as the one of R. J.
Hogan and A. Battaglia (Fast lidar and radar multiple-
scattering models—2. Wide-angle scattering using the
time-dependent two-stream approximation, submitted to
Journal of the Atmospheric Sciences, 2007), could be
incorporated.
[41] When the radar and lidar are on different range grids,

av is retrieved at the resolution of the lidar, which is usually
the higher resolution of the two (e.g., CALIPSO is available
at a higher vertical resolution than CloudSat). Hence we
need a way to convert Z derived from the look-up table to
the radar observation grid, allowing for the possibility that
the radar is oversampled in range. This is represented in
Figure 1 by box 4 and is achieved using

yZ ¼ VŷZ ; ð20Þ

where ŷZ is a column vector containing the n high-
resolution Z values, yZ is a column vector containing the
q values of Z on the radar grid, and V is a precomputed q �
n matrix that plays a similar role to the weighting function
matrix in (12). To calculate the elements of V, we assume
that the radar has a Gaussian range-response function of
RMS width sz. Hence the response function with height z
for radar gate i is given by

Vi zð Þ ¼ 1ffiffiffiffiffiffi
2p

p
sz

exp � 1

2

z� zi

sz

� �2
" #

; ð21Þ

normalized such that its integral with height is unity. To
relate the radar reflectivity factor measured at gate i, Zi, to
the continuous field Z(z), we have the convolution Zi =

R
0
1

Vi(z)Z(z)dz. If the continuous field is approximated by ŷZ,
with the reflectivity factor at high-resolution gate j assumed
to be constant between heights zj�1/2 and zj+1/2, then the
elements of V are given by

Vi;j ¼
Z zjþ1=2

zj�1=2

Vi zð Þdz ¼ 1

2
erf

zjþ1=2 � zi

sz

ffiffiffi
2

p
� ��

� erf
zj�1=2 � zi

sz

ffiffiffi
2

p
� ��

;

ð22Þ

where erf denotes the error function. For computational
efficiency, Vi,j is set to zero when the heights of the
boundaries of high-resolution gate j are more than 3sz from
the center of radar gate i. The Jacobian of the radar forward
model, i.e., the partial derivatives of ln Z at each gate with
respect to ln av and ln N0

0, may be calculated efficiently
using the gradient of the relevant look-up tables.

3.4. Lidar Multiple-Scattering Forward Model

[42] A very simple lidar forward model is provided by (1),
but to include molecular scattering and multiple scattering,

we use the fast multiple-scattering model of Hogan [2006],
which has been found to be as accurate as the widely used
Eloranta [1998] model when taken to 5th order scattering,
but is over 3 orders of magnitude faster for a 50-point
profile. The model is represented by box 6 of Figure 1 and
takes as input the lidar ratio S (assumed constant with
height), and profiles of av and the ‘‘equivalent-area radius’’
ra, i.e.. the radius of a sphere with the same cross-sectional
area as the mean area of the entire size distribution. A look-
up table is used to convert av/N0* to ra (box 5 of Figure 1).
In order to estimate the molecular return, the profile of
atmospheric density (calculated from temperature and pres-
sure) is required. The model produces an estimate of the
profile of apparent backscatter b, the separate returns from
the cloud and the molecules (bcld and bmol), as well as the
top left p � n part of the Jacobian H in (9) that contains @ ln
bi/@ ln av,j. An alternative method to calculate the Jacobian
was provided by R. J. Hogan (Fast lidar and radar multiple-
scattering models—1. Quasi-small-angle scattering using
the photon variance-covariance method, submitted to Jour-
nal of the Atmospheric Sciences, 2007). Note that @ ln bi/@
ln av,j is lower triangular in the sense that bi only depends on
values of av,j earlier in the profile, so values corresponding to
j > i are zero.
[43] We also require the elements of the Jacobian

corresponding to the other terms in the state vector. The
Jacobian with respect to the cloud extinction-to-backscatter
ratio S is not affected by multiple scattering, and so from
(1) and (2) it can be shown that in the absence of molecular
scattering @ ln bi/@ ln S = �1. When molecular scattering is
included, we assume that the molecular extinction-to-back-
scatter ratio has a fixed value of 8p/3 sr, and the Jacobian
becomes @ ln bi/@ ln S = �bi

cld/bi. The Jacobian with
respect to N0

0 arises because of the particle size dependence
of multiple scattering. Since this is relatively weak, we
assume that @ ln bi/@ ln N0,j = 0.

3.5. Infrared Radiance Forward Model

[44] For each infrared radiometer channel, the radiance
forward model takes as input the relevant cloud variables
from the state vector (profiles of visible extinction coeffi-
cient av and N0

0) and estimates of other variables (profiles
of temperature, pressure, humidity, O3 and CO2 concen-
trations, as well as skin temperature and emissivity). It
produces an estimate of the radiance measured by the
instrument as well as the Jacobian with respect to each of
the cloud variables from the state vector.
[45] The scattering and absorption properties of ice are

taken from the database of Baran [2003], which assumes
aggregates. At each radiometer wavelength l, the ice
particle distributions described in section 3.1 have been
used to create look-up tables such that from an input profile
of av and N0*, profiles can be calculated of extinction
coefficient al, single-scatter albedo ~wl and asymmetry
factor gl. This is illustrated by box 7 of Figure 1.
[46] Gaseous absorption is represented using the corre-

lated k distribution method [Fu and Liou, 1993]; the
radiance code is essentially run multiple times to represent
the variation of absorption coefficient within the wavelength
band of a particular channel. Line-by-line calculations using
the code of Kato et al. [1999] have been performed to
determine the number of quadrature points required and to
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produce the necessary look-up tables for each satellite
channel of interest. The spectral features of different gases
within a channel are assumed to overlap randomly. For
example, for the 8.7-mm channel of the Spinning-Enhanced
Visible and Infrared Imager (SEVIRI) on Meteosat, a 6-point
integration is required over the H2O spectrum and a 2-point
integration over the O3 spectrum, resulting in 12 calculations.
The cloud properties are kept constant in each calculation.
The final radiance and Jacobian are computed as a weighted
average of the radiances and Jacobians from each individual
calculation, using Gaussian Quadrature.
[47] The individual radiance calculations employ the

‘‘two-stream source function technique’’ of Toon et al.
[1989], which is very fast but still represents scattering with
sufficient accuracy to be used in the infrared when clouds
are present. This is illustrated by box 8 in Figure 1. First, a
two-stream calculation is performed to estimate the upwell-
ing and downwelling monochromatic fluxes, F±. We use the
method exactly as described by Fu et al. [1997], in which
the fluxes are effectively radiances in the directions ±m1

(where m denotes the cosine of a zenith angle) and the
optimal value for two-stream calculations in the infrared is
m1 = 1/1.66 [Fu et al., 1997]. To account for the strong
forward scattering peak in the phase function, delta scaling
is applied to al, ~wl and gl as described by Joseph et al.
[1976]. A radiance calculation is then performed in the
satellite direction m, using the fluxes already calculated to
estimate scattering into the radiometer field of view:

m
dI d;mð Þ

dd
¼ I d;mð Þ � cþFþ dð Þ � c�F� dð Þ � 1� ~wð ÞB; ð23Þ

where d is the delta-scaled normal optical depth of the
atmosphere above the point in question, I(d, m) is the
radiance in direction m, B is the Planck function at that
point, and the subscript l has been dropped for brevity.
Again treating the fluxes as radiances in the directions ±m1,
we can use the two-stream phase function [Fu et al., 1997]
to obtain c± = ~w(1 ± 3gmm1)/2p. Assuming isotropic
emission and scattering at the surface, the surface radiance
in direction m is related to the surface upwelling flux by Is =
F+

s/p. The top-of-atmosphere radiance, I(0, m), is thus
calculated by numerically integrating (23) up from the
surface. Comparisons with the 16-stream DISORT code
(Discrete Ordinates Radiative Transfer Program [Stamnes et
al., 1988]) demonstrate that for zenith radiances our code is
accurate to better than 1%. The development above may be
easily adapted to the forward modeling of radiance
differences between channels, DI. Details of how the
Jacobian of the radiance model is calculated are given in
Appendix A.

3.6. Visible Optical Depth Forward Model

[48] From the A-Train during the day, an estimate of the
visible optical depth dv is available from the Moderate
Resolution Imaging Spectroradiometer (MODIS) on board
Aqua [Platnick et al., 2003]. In principle, similar estimates
may be made over ground-based sites using the solar
channels of geostationary satellites. As discussed in
section 2.1, we choose to treat dv as a direct measurement;

it is forward modeled simply by summing the visible
extinction coefficient through the cloud column:

dv ¼
Xn
i¼1

aviDzi; ð24Þ

where Dzi is the thickness of cloud layer i and av,i is the
corresponding visible extinction coefficient. This is repre-
sented by box 9 in Figure 1. In practice,Dzi is the width of a
lidar range gate and is constant with range.
[49] The part of the Jacobian corresponding to dv is easy

to compute: the partial derivatives of dv with respect av are
given by

@dv
@ lnav;i

����
N0*

¼ avDz: ð25Þ

Since dv is independent of N0* and S, the partial derivatives
with respect to them are zero.
[50] One of the problems of using an estimate of dv as if it

were a direct measurement is that many assumptions are
made in passive retrievals using solar radiances, particularly
on the value of asymmetry parameter, and these introduce
errors in the resulting estimate of dv. An aspiration is to
forward model the solar radiances directly, which would
have the advantage that the microphysical assumptions
would be consistent with those made in the other parts of
the retrieval, and in particular that the asymmetry parameter
used in the interpretation of the solar radiances would be
consistent with particle sizes inferred from the radar-lidar
information.

3.7. Forward Model Error

[51] As discussed in section 2.5, it is important to include
the contribution of forward model error to the observation
error covariance matrix R. In the case of the radar model,
the leading source of error is the fact that we represent the
size distribution by a single shape, as described in
section 3.1. If it is assumed that the av and N0* values input
to the forward model are exact, then the horizontal spread of
points in Figure 2b implies a root-mean-squared random
error in the modeled Z of 0.9 dB. An additional source of
error is due to the use of a single density function, but this is
very difficult to estimate. Hogan et al. [2006b] ‘‘forward
modeled’’ Z from aircraft size distributions with the same
density function as used here, and compared it to measured
values by a Rayleigh-scattering radar. They found that in
purely ice-phase clouds the average error in Z for an aircraft
run was around 0.6 dB, although it should be stressed that
this will contain substantial contributions from imperfect
matching between the radar and aircraft sample volumes. A
further error is due to the approximation of ice particles by
homogeneous ice-air spheres, required for Mie theory to be
applied. However, this only affects the regions of the cloud
containing substantial numbers of particles larger than
around 1 mm for a 94-GHz radar. Given these consider-
ations we estimate the total radar model error to be around
1.1 dB.
[52] The error in the lidar forward model is dominated by

the fact that a single value of the lidar ratio S is retrieved for
each profile, while in reality it can vary with height. The
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fractional error in the modeling of backscatter is therefore
approximately equal to the typical fractional standard devi-
ation of S within a profile. In section 2.2 the error in the a
priori value of ln S was set to 0.5, so for consistency this
value is also used for the forward model random error in ln
b. Note that the lidar model is also susceptible to errors in
our ability to represent multiple scattering, but these are
believed to be smaller than those due to variations in S.
[53] For the radiance model, the error includes a contri-

bution from the error in the assumed temperature profile and
the error in the assumed ice particle habit. Temperature is

typically taken from a model forecast or analysis, or in the
case of some ground-based sites, from interpolating be-
tween radiosonde ascents. The stated error for the temper-
ature provided by the European Centre for Medium Range
Weather Forecasts (ECMWF) beneath CloudSat is 0.6 K
[Benedetti, 2005], corresponding to an error in the radiance
I of 2% (for a brightness temperature of 220 K at l =
10 mm). In the case of modeling the radiance difference
between two channels, DI, the errors in the temperature
profile largely cancel. The error in modeling infrared
radiances due to different particle habit assumptions were

Figure 4. Demonstration of the performance of the algorithm when applied to simulated spaceborne
radar and lidar measurements. The algorithm has been run without the use of infrared radiances or
smoothness constraint on av, and the a priori error covariance matrix on N0

0 is assumed to be diagonal.
The gray solid lines represent the true cloud properties or the measurements, while the thin black lines
with error bars are the retrieved variables or the forward model simulations at the final iteration: (a) 94-GHz
radar reflectivity factor Z, (b) 532-nm apparent lidar backscatter b, (c) visible extinction coefficient av,
(d) effective radius re, (e) ice water content IWC, and (f) the retrieved and a priori profiles of N0

0. The
assumed observation error on Z was 1 dB and on ln b was the combination of a forward model error of
0.5 and the error due to photon counting statistics as described by Hogan et al. [2006a].
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estimated by Cooper et al. [2003] to be 1.5 K for I and 1 K
for DI. An additional source of error occurs for optically
thin scenes since then the skin temperature becomes impor-
tant; Morcrette [2001] found errors of around 3 K for
ECMWF forecasts of this variable over a midlatitude
continental site.
[54] For the error in the optical depth model, we note that

there is virtually no error associated with applying (24), so
the dominant source of error is in deriving d from shortwave
radiances that are subject to 3D effects. Since d is not used
in the examples presented in subsequent section, we defer
this discussion to a future paper.
[55] A further consideration is the mismatch in the size of

the fields of view of the various instruments, particularly in
the case of the A-Train where the CloudSat radar has a
footprint of approximately 1 km through which several
CALIPSO samples of 90-m width are made. Illingworth
et al. [2000] used the method devised by Hogan and
Illingworth [1999] to show the error associated with this
mismatch is equivalent to a radar model error of only 0.1 dB,
but if the centers of the radar and lidar samples were
separated horizontally by 3 km then this error would
increase to 2 dB.
[56] Finally it should be mentioned that some forward

model errors have vertical correlations, which strictly
should lead to R having off-diagonal elements. Unfortu-
nately, since these vertical correlations are almost all un-
known, they have been ignored in this paper. Nonetheless,
the formalism for including them in future is present in (10)
and (11).

4. Tests Using Synthetic Profiles

[57] To test the algorithm, it is first applied to synthetic
profiles of radar reflectivity factor and apparent lidar back-
scatter. Using the same methodology as ‘‘Blind test 2’’ in
the work by Hogan et al. [2006a], radar and lidar profiles
are simulated from the aircraft size spectra obtained during
the European Cloud Radiation Experiment (EUCREX) and
effects such as lidar attenuation, multiple scattering and
instrument noise are included. All profiles used by Hogan et
al. [2006a] have been tested, but for brevity only one (their
profile 7) is shown here. This has been chosen as it
demonstrates many of the strengths and weaknesses of the
method.

4.1. Description of the Synthetic Measurements

[58] The calculation of both IWC and radar reflectivity
factor is done assuming the mass-D relationship of Brown
and Francis [1995], while av is obtained directly from the
in situ measurements of ice particle cross-sectional area
using the geometric optics approximation. All processing is
the same as that done by Hogan et al. [2006a], except for
the following changes that were made to simulate the
CloudSat/CALIPSO satellites rather than the EarthCARE
(Earth Cloud, Aerosol and Radiation Explorer) satellite
[European Space Agency (ESA), 2004]:
[59] 1. The lidar wavelength is 532 nm rather than

355 nm.
[60] 2. The lidar full-angle beam divergence and field of

view are set to 0.1 and 0.13 mrad respectively.

[61] 3. Lidar multiple scattering is calculated with the
Hogan [2006] rather than Eloranta [1998] code.
[62] 4. The lidar sensitivity such that the receiver is a

photon counter with each photon corresponding to an
apparent backscatter of 10�7 m�1 sr�1, and appropriate
Poisson-distributed random instrument noise is added.
[63] 5. The radar pulse-response standard deviation is sz =

210 m.
[64] 6. The minimum detectable radar reflectivity factor is

set to �21 dBZ. Although this is worse than the actual
CloudSat sensitivity, it simulates the common situation
where the radar is unable to detect the top of the cloud that
is detected by the lidar. Random radar instrument noise is
added appropriate to the CloudSat pulse repetition frequency
of 4300 Hz.
[65] The radiance for each infrared window radiometer

channel of the SEVIRI radiometer is computed using the
radiance forward model previously described in section 3.5.
In this case, the radiance model takes as input the relevant
cloud variables (profiles of av and N0*) from the in situ
measurements, and other variables from the US Standard
Atmosphere [McClatchey et al., 1972].
[66] It should be noted that the simulations use a value of

S that is constant with height but is unknown to the
algorithms. The reason is that the sensitivity of radar-lidar
retrievals to variable S with height was already tested in
some detail by Hogan et al. [2006a]. They found that
variable S led to a retrieved av profile that tended to
underestimate the true value in regions where S was less
the mean S of the profile, and vice versa. In terms of the
retrieved optical depth (the vertical integral of av), there was
therefore always some degree of cancelation of the errors in
av, with underestimates at one height countering overesti-
mates at another.

4.2. Result of Applying the Algorithm

[67] We now examine retrievals from the algorithm, and
investigate the effect of the smoothness constraint, the a
priori error covariances, and the infrared measurements on
the performance. The gray solid lines in Figure 4 show the
measured signals and the true cloud variables for ‘‘Profile
7’’ of Hogan et al. [2006a]. This case has a total optical
depth of dv = 22, and is a particular challenge for radar-lidar
algorithms because the upper 2 km of the cloud (9–11 km
in Figure 4b) is detected only by the lidar, while the lower
2 km (2–4 km in Figure 4a) is detected only by the radar.
[68] The retrieved variables and error bars are displayed

by the thin black lines in Figure 4, for the case without the
smoothness constraint on av (i.e., with k = 0 in equation (8))
and without any a priori error covariances (i.e., with z0 = 0
in equation (14) such that B is diagonal). The retrieval
assumes observational errors that are a combination of the
instrumental errors used in the simulation, and the forward
model errors discussed in section 3.7. It can be seen in
Figures 4a and 4b that at the final iteration of the algorithm,
the observations are very closely modeled, including the
lidar measurement noise (except above 11 km where the
signal is entirely due to molecular scattering). Figure 4c
shows that av is reasonably well retrieved, but the noise in
the lidar measurements has propagated into the retrievals. It
should be stressed that this agreement is achieved despite
the fact that the optical depth down to the point at which the
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lidar is completely extinguished is 3.5, at which point the
lidar backscatter signal has been depleted to around 2.5% of
its unattenuated value (accounting for the multiple scatter-
ing enhancement).
[69] Ice water content and effective radius are somewhat

less accurately retrieved than av, in agreement with the
findings of Hogan et al. [2006a], and are also contaminated
by noise. The retrieval performs best between 4 and 9 km
where both radar and lidar are available, while at the top and
bottom of the cloud, the difference between retrieved and
true re reaches +15 mm and �10 mm respectively. Similar
errors are also present in IWC and (at the base of the cloud)
in av, which is not surprising given the mutual dependence
of these variables as shown by (19).
[70] As shown in Figure 4f, the lack of a priori error

covariances results in N0
0 reverting almost exactly to the

temperature-dependent a priori value at cloud top and base.

Therefore we would expect the retrieved IWC in the radar-
only region at cloud base to be similar to that from an
empirical algorithm dependent on Z and T [e.g., Hogan et
al., 2006b].
[71] Next we add a smoothness constraint to av using a

smoothness coefficient in (8) of k = 100, as well as a priori
error covariances corresponding to an error decorrelation
length in (14) of z0 = 1 km. The results are shown in
Figure 5. It can be seen immediately that the smoothness
constraint has removed all the unphysical noise from the
retrieved variables. Furthermore, the a priori error covarian-
ces appear to have resulted in a more accurate retrieval of
av, IWC and re at cloud base. This is because N0

0 is now
able to differ from the a priori value, as shown in Figure 5f,
ensuring that the information in the common radar-lidar
region is spread in the vertical. An intriguing aspect to this
behavior is that the additional constraints prevent the

Figure 5. As Figure 4 but with a smoothing constraint on av and a priori error covariances for N0
0

corresponding to z0 = 1 km in (14).
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algorithm from forward modeling the radar reflectivity at
cloud base as accurately, even though the retrieved variables
are better captured in this region.
[72] The remaining error in Figure 5 occurs at cloud top,

where the cloud is detected by the lidar alone and so the
only size information comes from the a priori. We therefore
consider the impact on the retrieval of incorporating radi-
ance measurements. As explained previously, zenith radi-
ances at the top of the atmosphere Il are simulated with l =
10.8 and 12.0 mm. In Figure 6, the radiance at 10.8 mm and
the radiance difference between channels 10.8 mm and
12.0 mm are added to the radar and lidar observations that
were used in Figure 5. The main benefit of infrared
radiances is in the extinction and particle size information
near cloud top [Chiriaco et al., 2004]. It can be seen in

Figure 5c that the cloud-top extinction retrieval without
radiances was already very accurate, so the main improve-
ment is in cloud-top re, where the previous overestimate has
been approximately halved. In Figure 6f it can be seen that
this is associated with the cloud-top N0

0 no longer tending to
the a priori value, but being considerably larger. We would
need to conduct an analysis of the information content
[Rodgers, 2000; Cooper et al., 2006] to quantify objectively
the contributions of the individual measurements. It should
be noted that even the modest impact shown here is only
achieved when the radiance error is set to 1%.
[73] To conclude this section, the capability of the algo-

rithm to accurately retrieve cloud variables (av, IWC and re)
in a simulated profile has been demonstrated even outside
the part of the cloud detected by both radar and lidar. In

Figure 6. As Figure 5 but making use of the zenith radiance I10.8 and the radiance differenceDI10.8–12 in
the retrieval process. The actual values with their assumed errors were I10.8 = 7.03 ± 0.07Wm�2 mm�1 sr�1

and DI10.8–12 = 0.3 ± 0.07 Wm�2 mm�1 sr�1.
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addition, the ability of infrared radiances to improve the
retrievals at cloud top has been demonstrated.

5. Application to Ground-Based Data

[74] The method has been applied to 94-GHz cloud radar
and 532-nm lidar measurements collected over Niamey in
West Africa by the ARM (Atmospheric Radiation Measure-
ment Program) Mobile Facility, as a part of the RADAGAST
project [Miller and Slingo, 2007]. The data have been
processed using the Cloudnet software [Illingworth et al.,
2007] in order to classify the targets and to correct for radar
gaseous attenuation. These observations are supplemented
by SEVIRI infrared radiance observations above the site from
a zenith angle of 13� (m = 0.97). Temperature, pressure and
humidity profiles are taken from the hourly forecasts of the
ECMWF model, linearly interpolated in time, while direct

measurements of surface temperature are used in modeling
the infrared radiances.
[75] Figure 7 shows time-height section through a mod-

erately thick ice cloud observed on 22 July 2006. This case
is a good illustration of the complementarity between the
radar and the lidar, since the radar detected the upper part of
the ice cloud between 0600 and 0800 UTC that was too
thick to be penetrated by the lidar, while the first part of the
cloud (0000–0400 UTC) is sampled by the lidar but only
the thicker parts are detected by the radar. The 10.8 and
12.0 mm brightness temperatures observed by SEVIRI are
shown in Figure 7c.

5.1. Retrievals With Only Radar and Lidar
Measurements

[76] Figure 8 shows the retrieved variables when only the
radar and lidar are used. Because the radar and lidar have
both been averaged over 30 s, the observational error is

Figure 7. Observations from the ARM Mobile Facility at Niamey on 22 July 2006: (a) 94-GHz radar
reflectivity factor, (b) 532-nm apparent lidar backscatter and (c) 10.8- and 12.0-mm brightness
temperature measured by SEVIRI.
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dominated by forward model error. Following the discus-
sion in section 3.7, we assume the observational error in Z
to be 1 dB and in ln b to be 0.5. The smoothness coefficient
and decorrelation length are the same as in section 4.2 and
Figure 5.
[77] The retrieved av is shown in Figure 8a. Although no

validation data are available, it is encouraging that there are
no obvious discontinuities between adjacent profiles or at

the transition between regions where both instruments
detect the cloud to regions detected by only radar or lidar.
[78] Figure 8b shows that effective radius lies within the

range 20 and 65 mm and tends to decrease toward cloud top,
particularly toward the end of the time period (shortly
before the cloud began to precipitate), although in this
region the lidar only penetrates around 2 km into the cloud
so most of the particle size information originates from the a
priori constraint on N0

0. There are some contaminated

Figure 8. Retrieved variables for the cloud observed in Figure 7, using the radar and lidar observations
but not the radiances: (a) visible extinction coefficient av, (b) effective radius re, (c) normalized number
concentration parameter N0*, and (d) the fractional error of the visible extinction coefficient slnav

.
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profiles, most obviously shortly before and after 0700 UTC,
where the retrieved re is significantly higher than in neigh-
boring profiles. This is due to the decreased lidar backscat-
ter in these profiles, evident in Figure 7, presumably due to
attenuation by liquid water clouds below 6 km. This high-
lights the need to exclude profiles containing liquid water
from the retrieval, or to develop a way to incorporate them
into the algorithm. The normalized number concentration
parameter N0* is shown in Figure 8c. The behavior is
opposite to that of re in the sense that the highest values
are observed near cloud top.

[79] Figure 8d shows the RMS error in ln av (approxi-
mately equivalent to the fractional error in av). The error is
clearly much less (typically 20–40%) in regions detected by
both radar and lidar, but rises to in excess of 50% where
only the radar is available and even higher in regions only
detected by the lidar.

5.2. Retrievals With Radar, Lidar, and Radiometer
Measurements

[80] The retrieval has been repeated but incorporating the
SEVIRI radiances by forward modeling Il for l = 10.8 mm
and DI for the wavelengths 10.8 and 12.0 mm. The stated

Figure 9. As Figure 8 but for a retrieval also making use of the infrared radiances.
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calibration performance of SEVIRI is 1 K [Schmetz et al.,
2002], but an additional error is due to the fact that the
SEVIRI observations have been interpolated linearly be-
tween each 15-min observation time. This then needs to be
combined with the model errors discussed in section 3.7.
For testing purposes we assign an RMS error of 10% to the
radiance corresponding to a temperature error of around 3 K
for a brightness temperature of 220 K.
[81] The results are shown in Figure 9. The effect is clearly

to increase av and N0*, particularly toward cloud top, while
reducing re in this region. This implies that the radiances
forward modeled by the retrievals shown in Figure 8 would
significantly overestimate the observed values, and it is only
by substantially increasing the cloud optical depth that
agreement can be obtained. The fractional error in av, shown
in Figure 9d appears to be much reduced because of the
complementary information provided by the radiances.
[82] However, the forward modeling of radiances requires

that the radar or the lidar detect all the way to cloud top. If
they do not then the forward model can find itself unable to
match the observed radiances because the top of the cloud is
too warm, and no matter how optically thick it is, the low
observed brightness temperatures cannot be modeled. This
is most likely to be a problem at the top of the thick ice
cloud after 0700 UTC in Figure 9, since it is known that
cloud radars can have difficulty in detecting thin cirrus,
particularly at a range of 15 km [Protat et al., 2006]. This
would explain the high av and N0* retrieved in this region.
Moreover, the retrievals of extinction in Figures 8a and 9a
approximately agree to within the error shown in Figure 8d,
except in this particular region. We conclude that satellite
radiances should be used in this way only when a lidar is
available that has a clear view to cloud top. It should be
noted that CloudSat and CALIPSO will be much less
susceptible to this problem since CALIPSO has an unob-
scured view of the top of the cloud, and is believed to be
able to detect even subvisual cirrus, so should easily be able
to detect the clouds that contribute most to measured
infrared radiances.

6. Discussion and Conclusions

[83] A new retrieval scheme has been described that
combines radar, lidar and infrared radiometer measurements
to retrieve profiles of the properties of ice clouds. In
common with the advances made by Donovan et al.
[2001] and Tinel et al. [2005], it does not need the lidar
to have already been corrected for attenuation, but rather
uses the radar and lidar together to find the combination of
microphysical variables that best forward models the obser-
vations in a least-squares sense. This variational approach
has a number of advantages over existing radar-lidar tech-
niques, most notably the ability to include other observa-
tions and constraints, allowing the full cloud profile to be
retrieved, not just the region that is detected by both radar
and lidar together. Furthermore, when only a subset of the
observations are available, it will automatically adopt sim-
ilar behavior to existing algorithms in the literature. For
example, if only the radar is available it will tend toward the
reflectivity-temperature relationship of Hogan et al.
[2006b], with radar and visible optical depth it will tend

toward the algorithm of Benedetti et al. [2003a], and if only
lidar and infrared radiances are available it will tend toward
the behavior of the method of Chiriaco et al. [2004].
[84] It has been tested on synthetic profiles generated

from aircraft microphysical observations and on real
ground-based observations, but there is clearly a need to
evaluate it using simultaneous in situ aircraft observations.
Work is in progress to apply it to observations from the A-
Train of satellites, to be reported in a future paper.
[85] The variational framework presented here is, in

principle, straightforward to expand to include both new
retrieved variables (by adding them to the state vector) and
new observations (by building a forward model for them). It
is our aspiration to retrieve the properties of ice clouds,
liquid water clouds, aerosol and precipitation within the
same unified algorithm, such that all the retrieved variables
are consistent with all the observations. This is counter to
the current paradigm of retrieving a number of separate
cloud products [e.g., Illingworth et al., 2007] which each
only use a subset of the available data, and often have to be
run in a specific order so that a derived variable from one
algorithm can be used to assist another (e.g., a liquid water
content retrieval being used to correct the radar for attenu-
ation). We envisage that the following satellite observations
could be incorporated into such a unified retrieval scheme:
[86] 1. The European Space Agency is planning the launch

of EarthCARE [ESA, 2004], to include a High Spectral
Resolution Lidar [Shipley et al., 1983] that can observe the
molecular signal even within cloud. By forwardmodeling the
molecular channel, more direct information on av would be
obtained in the first few optical depths of the cloud, allowing
the assumption of constant S to be relaxed. A similar
approach could be taken for Raman lidar from the ground.
[87] 2. The EarthCARE radar will be Dopplerized, pro-

viding information of particle size via the measured fall
speed [Matrosov et al., 2002; Delanoë et al., 2007]. By
forward modeling the Doppler velocity, independent parti-
cle size information will be available and it may be possible
to retrieve information on particle density.
[88] 3. Multiple field-of-view lidar provides information

on cloud optical depth [Cahalan et al., 2005], and with the
recent development of a fast forward model for wide-angle
lidar multiple scattering (Hogan and Battaglia, submitted
manuscript, 2007), there is the prospect of incorporating this
into a variational retrieval scheme.
[89] 4. Microwave radiances over the sea provide infor-

mation on liquid water clouds and precipitation, although
their use in synergy with radar and lidar may be question-
able because of the much larger footprint.
[90] 5. Finally, surface echoes from the sea from both

radar and lidar provide a constraint on the total attenuation
and could be forward modeled directly.
[91] The use of such measurements in a variational

retrieval scheme is an important precursor to directly
assimilating them into models [Benedetti et al., 2003b].

Appendix A

A1. Computing the Jacobian of the Radiance Forward
Model

[92] To calculate the exact Jacobian for the radiance
forward model as described in section 3.5 would by many
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times more expensive than the radiance calculation itself.
However, an approximate Jacobian may be calculated much
more efficiently in the limit of no scattering. In the absorp-
tion approximation [Fu et al., 1997], (23) becomes

m
dI da;mð Þ

dda
¼ I da;mð Þ � B; ðA1Þ

where da is the absorption optical depth. Following Fu et al.
[1997], this has been discretized assuming exponential
dependence of the Planck function on optical depth within
each layer. The result is the following expression for the
derivative of top-of-atmosphere radiance with respect to the
absorption optical depth of layer i, di

a:

@I 0;mð Þ
@dai

¼ e�da=m B1e
�dai =m � B0

mz � 1ð Þ2
mz
dai

� B1e
�dai =m

m mz � 1ð Þ

"
� Iiþ1

m
e�dai =m

#
;

ðA2Þ

where B0 and B1 are the Planck functions for the
temperatures at the top and bottom of the layer respec-
tively and z = ln(B1/B0)/d

a
i. The term Ii+1 is the radiance

entering layer i from the layer below, and for increased
accuracy is taken from the full two-stream source function
calculation described above, rather than from the absorp-
tion approximation.
[93] Given that the absorption optical depth of the layer is

related to the single-scatter albedo and infrared extinction
coefficient of the clouds in the layer by

dai ¼ 1� ~wið Þai þ agas
i½ �Dz ðA3Þ

(where Dz is the physical depth of the layer and ai
gas is the

extinction coefficient of the gases), it is relatively
straightforward to use the look-up tables to work out the
required derivatives @I(0, m)/@ ln av and @I(0, m)/@ ln N0

0 at
each layer.

A2. Computing the Retrieval Error in Ice Water
Content and Effective Radius

[94] As outlined in section 2.5, Sx̂ contains the error
variances and covariances of the retrieved ln av, S and
N0

0, with ln av and N0
0 both having n elements. In this

appendix we describe how the errors and error covariances
in IWC and re may be derived rigorously and in a way that
may be easily extended to any other extensive or intensive
variable. Defining column vector m as:

m ¼ ln IWC1 � � � ln IWCn re;1 � � � re;n
 �T

; ðA4Þ

the task is to compute the corresponding error covariance
matrix, Sm. As described in section 3.1, the look-up tables
can provide any variable in terms of N0* and the ratio av/N0*.
It is therefore convenient to consider an intermediate
column vector u that contains these entities:

u ¼ ln
av;1

N0;1
� � � ln av;n

N0;n
lnN0;1 � � � lnN0;n

� �T
: ðA5Þ

This may be obtained from x̂ using u = Ux̂, where the
matrix U describes how the elements of x̂ are transformed to
the elements of u. From (3) we derive ln N0* = ln N0

0 + 0.6
ln av and ln(av/N0*) = 0.4 ln av � ln N0

0. Therefore, for n =
2, the matrix U would be

U ¼

0:4 0 0 �1 0

0 0:4 0 0 �1

0:6 0 0 1 0

0 0:6 0 0 1

0
BB@

1
CCA; ðA6Þ

where the column of zeros in the middle corresponds to the
central element of x̂ that contains ln S; this is not
represented in u. Following (15), the error covariance
matrix for u is given by Su = USx̂U

T. The last step is to
define the matrix M such that we can write Sm = MSuM

T.
This matrix is similar to a Jacobian in the sense that it
contains the partial derivatives of each element of m with
respect to each element of u. The look-up tables are of the
form IWC/N0* = fIWC(av/N0*), or equivalently ln IWC = ln
N0* + ln fIWC(av/N0*), where fIWC represents the look-up
table for IWC. Hence for n = 2 we have

M ¼

@ ln IWC1=N0;1ð Þ
@ ln av;1=N0;1ð Þ 0 1 0

0
@ ln IWC2=N0;2ð Þ
@ ln av;2=N0;2ð Þ 0 1

@re;1

@ ln av;1=N0;1ð Þ 0 0 0

0
@re;2

@ ln av;2=N0;2ð Þ 0 0

2
666666664

3
777777775
; ðA7Þ

where the partial derivatives are simply the gradients of the
look-up tables. Bringing the preceding analysis together, the
error covariance ofm may be derived directly from the error
covariance of the state vector using Sm =MUWSxW

TUTMT.
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