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Fast Reverse-Mode Automatic Differentiation using Expression
Templates in C++

ROBIN J. HOGAN, University of Reading

Gradient-based optimization problems are encountered in many fields, but the associated task of differ-
entiating large computer algorithms can be formidable. The operator-overloading approach to performing
reverse-mode automatic differentiation is the most convenient for the user but current implementations
are typically 10-35 times slower than the original algorithm. In this paper a fast new operator-overloading
method is presented that uses the expression template programming technique in C++ to provide a compile-
time representation of each mathematical expression as a computational graph that can be efficiently tra-
versed in either direction. Benchmarking with four different numerical algorithms shows this approach to be
2.6–9 times faster than current operator-overloading libraries, and 1.3–7.7 times more efficient in memory
usage. It is typically less than 4 times the computational cost of the original algorithm, although poorer
performance is found for all libraries in the case of simple loops containing no mathematical functions. An
implementation is freely available in the Adept C++ software library.
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1. INTRODUCTION

Many problems in the physical sciences amount to the optimization problem of find-
ing the vector x of n real-valued state variables that minimizes a real-valued function
J(x). When n is large and J is a well-behaved differentiable function, the quasi-Newton
method (e.g., Liu and Nocedal [1989]), conjugate gradient or other gradient method is
typically used. These methods make repeated estimates of x, at which they require not
only the value of J but also the vector of gradients ∂ J/∂x in order to know in which
direction to search next. Numerical gradients, found by perturbing each element of x
a small amount and recalculating J, are subject to round-off error as well as being ex-
tremely inefficient for large n. On the other hand, coding the adjoint model to compute
∂ J/∂x can be a formidable task; not only must each line of code be differentiated, but
also the gradients must be passed back through the adjoint code (“reverse mode” differ-
entiation) requiring intermediate states to be stored. For large codes, this presents a
memory problem and check-pointing may be needed to recompute intermediate values.
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Hand-written adjoint codes are generally the most efficient, typically involving 2–4
times the computational cost of the original algorithm, but they are also very time
consuming to write and debug. This has motivated the development of automatic dif-
ferentiation for generating tangent-linear and adjoint codes (i.e., forward- and reverse-
mode, respectively) automatically from the original algorithm code [Griewank and
Walther 2008]. Two main approaches exist. The first employs a source-to-source com-
piler (e.g., Giering and Kaminski [1998] and Voßbeck et al. [2008]), to analyze the
original source and produce the source code for the equivalent adjoint model that may
then be compiled in the usual way. While the resulting executable can have efficiencies
approaching hand-coding, there are restrictions on the language features that may be
used in the original code; C++ templates are not supported by any current tool and
many tools have incomplete support for other C++ and Fortran-2003 features such as
object orientation with inheritance. The second, more recent approach employs oper-
ator overloading (available in many modern languages) whereby those variables for
which a gradient is needed are declared as a new “active” type and the standard arith-
metic operators and mathematical functions are overloaded such that when applied to
this new type they automatically perform the additional operations behind the scenes
to ensure the gradients are properly computed. Provided all necessary operators are
defined, this approach is compatible with all available language features and is much
more convenient for the user. Forward-mode automatic differentiation is straightfor-
ward to implement in this way, with the new active type being composed of not only the
value of the variable but also its derivative with respect to one or more independent
input variables [Griewank and Walther 2008]. The reverse mode is much more difficult
to implement since in the forward pass of the algorithm it is necessary to create a record
in memory of each statement, and then traverse this in reverse order. Examples are
ADOL-C [Griewank et al. 1996], CppAD [Bell 2007], Sacado [Gay 2005] and FADBAD
[Bendtsen and Stauning 1996], but the best reported performance is a factor of 10
slower than the original algorithm [Gay 2005], while Willkomm and Bücker [2007]
reported factors between 23 and more than 100.

This article demonstrates that reverse-mode automatic differentiation using opera-
tor overloading can be implemented in C++ such that it is typically only 2.7–4 times
slower than the original algorithm, and therefore comparable to hand-coding. This
is achieved by the use of expression templates, a technique introduced by Veldhuizen
[1995] originally to enable C++ statements involving operations on arrays to be com-
piled to avoid the generation of temporary arrays. Expression templates were used by
Aubert et al. [2001] to accelerate an operator-overloading implementation of forward-
mode automatic differentiation, and since incorporated into Sacado [Bartlett et al.
2006]. They have also been used to accelerate the differentiation of individual expres-
sions via “expression-level reverse mode” within an overall forward-mode automatic
differentiation framework [Phipps and Pawlowski 2012]. The present paper is novel in
its application of the technique to full reverse-mode, and also its efficient storage of the
differential information that contributes significantly to the performance.

A C++ library “Adept” (Automatic Differentiation using Expression Templates) has
been written by the author to demonstrate the technique.1 Section 2 introduces the user
interface, along with a simple set of operations to illustrate the technique throughout
the paper. Section 3 outlines the way that the gradient information is stored in mem-
ory. Section 4 describes how expression templates are used to create this gradient
information efficiently from C++ statements, and Section 5 describes how this infor-
mation is parsed to compute adjoints and Jacobian matrices. Then, in Section 6, the
speed of the new technique is compared to hand-written adjoint codes and to existing

1“Adept” is available from http://www.met.reading.ac.uk/clouds/adept/ under a free-software license.
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operator-overloading implementations of reverse-mode automatic differentiation, for
four different algorithms. The speed of computing the Jacobian is also compared.

2. USER INTERFACE

In this section, we illustrate how simply automatic differentiation may be invoked
from a user perspective. The user need have no knowledge of C++ templates, let alone
expression templates, to use the library. Consider, the following algorithm to calculate
one dependent variable y from two independent variables x0 and x1, indicated by the
sequence of statements in the left-hand column:

y ← 4; δy ← 0; (1)

s ← 2x0 + 3x2
1 ; δs ← 2δx0 + 6x1δx1; (2)

y ← y sin(s); δy ← sin(s)δy + y cos(s)δs. (3)

Note that “←” indicates the assignment operator. Obviously, this algorithm could be
contracted into a single statement, but it has been contrived for didactic purposes, with
the three statements representing cases that must treated carefully: a constant on the
right-hand side, different variables on the left- and right-hand sides, and the same
variable on the left- and right-hand sides. The equivalent differentiated statements are
shown in the right-hand column, where formally δa for any variable a is defined as a
function of the n independent variables as δa = ∑n−1

i=0 (∂a/∂xi)δxi. The three expressions
(1)–(3) will be used to illustrate concepts throughout this article. The equivalent adjoint
algorithm consists of the following sequence of statements where δ∗ is defined such that
the adjoint δ∗a = ∂ J/∂a:

δ∗s ← δ∗s + y cos(s)δ∗y; (4)
δ∗y ← sin(s)δ∗y; (5)

δ∗x0 ← δ∗x0 + 2δ∗s; (6)
δ∗x1 ← δ∗x1 + 6x1δ

∗s; (7)
δ∗s ← 0; (8)
δ∗y ← 0. (9)

This sequence is derived following the well-known rules of adjoint coding (e.g., Giering
and Kaminski [1998]) that will not be repeated here. It can be seen that these expres-
sions are in reverse order to those of the original algorithm: (4)–(5) correspond to (3),
(6)–(8) correspond to (2), and (9) corresponds to (1).

The original algorithm could be implemented in C or C++ trivially as follows.

double algorithm(const double x[2]) {
double y = 4.0;
double s = 2.0*x[0] + 3.0*x[1]*x[1];
y *= sin(s);
return y;

}

From a user perspective, using Adept to create an equivalent adjoint function is very
similar to using ADOL-C, CppAD or Sacado: we define all active variables as of a
special type adouble. Since all variables in this algorithm are active, this would involve
a simple search-and-replace of double with adouble in the code above. The code to
compute the adjoint could then look like this.

double algorithm_ad(const double x_val[2], // Input values
double* Y_ad, // Input-output adjoint
double x_ad[2]) { // Output adjoint
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using namespace adept; // Import Stack and adouble from adept
Stack stack; // Where differential information is

stored
adouble x[2] = {x_val[0], x_val[1]}; // Initialize adouble inputs
stack.new_recording(); // Start recording derivatives
adouble Y = algorithm(x); // Version overloaded for adouble args
Y.set_gradient(*Y_ad); // Load the input-output adjoint
stack.reverse(); // Run the adjoint algorithm
x_ad[0] = x[0].get_gradient(); // Extract the output adjoint for x[0]
x_ad[1] = x[1].get_gradient(); // ...and x[1]
*Y_ad = Y.get_gradient(); // Input-output adjoint has changed too
return Y.value(); // Return result of simple computation

}

More commonly the Stack object would be declared once in a higher level part of the
program, enabling memory allocated in the first call to algorithm ad to be reused in
subsequent calls, avoiding the overhead of allocating memory each time.

3. MEMORY STRUCTURES

In this section, we consider how the information necessary to compute the adjoint may
be stored efficiently, which is as important for the speed of the algorithm as the use
of expression templates. It is not possible to store the gradients within each adouble
object because many such objects will be local to individual functions and loops, and
so become undefined when the function exits or when a loop finishes a cycle and
therefore no longer available when the adjoint needs to be computed. Instead, each
adouble object stores an index into the array of gradients that will be created when
needed for the adjoint computation. When an adouble object is created, its constructor
requests the next free index from the currently active Stack object, accessed via a
global pointer that is defined as thread-local in multi-threaded applications.2 When an
adouble object’s destructor is called it informs the Stack object so that the index can
be used again. By default, indices are stored as 4-byte unsigned integers, sufficient to
index 32 GiB of double-precision numbers.

The storage of the gradient information is best illustrated by considering the differ-
entiated statements in the right-hand column of (1)–(3). In this case, we have three
statements, each of which has an expression on the right-hand side composed of zero or
more operations. This information is stored in a “statement stack” and an “operation
stack”, and Figure 1 illustrates what would be stored as a consequence of the algorithm
and algorithm ad function listings in Section 2 (with double replaced by adouble in
algorithm). The order in which adouble objects are created leads to the variables x[0],
x[1], Y, y and s being assigned indices 0–4, respectively. Equation (1), δy ← 0, is repre-
sented by the 0th entry in the statement stack: δy is represented by the index 3, and the
zero on the right-hand side of the statement is indicated by the fact that the indices to
the first operation of the 0th and 1st statements are the same. Equation (2) represented
by the next entry in the statement stack, results in three operations on the right-hand
side represented by entries 0–2 in the operation stack. The reason that there are three
rather than two entries as in (2) is that the code treats the two occurrences of x[1]
in the term 3*x[1]*x[1] independently, and so produces two entries with a multiplier
of 3x1 rather than one of 6x1. Unfortunately, it seems impossible to detect whether a

2Using a global but thread-local pointer to the current storage object is more efficient than in some operator-
overloading implementations of automatic differentiation where each active variable keeps its own pointer
or reference to the current storage object, which is then passed from one variable to another in each mathe-
matical operation. It is also thread-safe, unlike others that simply store the information in ordinary global
variables.
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Fig. 1. Illustration of the contents of the statement and operation stacks (stored within a Stack object) for
the algorithm given by (1)–(3). Note that all variables would normally be stored as unsigned 4-byte integers,
except for the multiplier in the operation stack which would be of type double.

variable appears twice on the right-hand side of a statement at compile time, and while
it would be possible to parse the stack at run-time to combine operations such as 1 and
2, this would be more computationally costly than simply performing one extra opera-
tion. Equation (3) leads to entries 3 and 4 in the operation stack. Finally, y is returned
from the algorithm function and copied into Y, leading to entry 3 in the statement stack
and entry 5 in the operation stack, which represents the simple assignment δY ← δy.
Section 5 describes how the adjoint is calculated from this information.

4. IMPLEMENTATION USING EXPRESSION TEMPLATES

It is now demonstrated how expression templates may be used to build the stacks
shown in Figure 1. Expression templates were originally proposed as a means to speed
up mathematical expressions involving operations on arrays [Veldhuizen 1995] and
this technique is now widely used in C++ vector/matrix libraries, including the GNU
implementation of the Standard Template Library (STL) “valarray” class. The idea is
that mathematical operators are overloaded not to return the result of the operation
immediately, but to return an object derived from a base “expression” class whose
template parameters describe the type of expression. The key capability this adds
for the purposes of this article is that information can be propagated not only from
the most nested part of the expression outwards, as in the case of ordinary operator
overloading, but also from the outermost expression in to the most nested. Moreover,
the compiler can inline the function calls that mediate information between expressions
and subexpressions resulting in very efficient compiled code.

To illustrate how this works, we consider the line y *= sin(s) from the simple al-
gorithm in Section 2. The “*=” operator is implemented as if the line had been written
y=y*sin(s), which is a case that must be treated carefully since it involves y appear-
ing on both sides of the assignment. Figure 2(a) depicts a computational graph of this
expression, where the arrows indicate the conventional flow of information from the
most nested subexpression outwards eventually to be returned to the variable on the
left-hand side of the statement. Expression templates are implemented by overloading
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Fig. 2. Computational graphs representing the propagation of data or types for the expression y*sin(s):
(a) ordinary propagation of data from the most nested subexpression up to the main expression;
(b) compile-time propagation of types in the Adept library resulting in an expression template represent-
ing the full expression; (c) propagation of gradient data when the calc gradient member function of the
Multiply<adouble,Sin<adouble> > object is called.

the operator “*” and the function sin such that they take Expression objects as ar-
guments and return Multiply and Sin objects, respectively, with template arguments
representing the type of the arguments to this operator and function. Figure 2(b) in-
dicates the types that are passed up the chain and which are known at compile time.
Thus the expression on the right-hand side of the statement resolves to an object of
type Multiply<adouble,Sin<adouble> >. The classes adouble, Multiply and Sin are all
derived from a common base class Expression, which is what allows them to be used
as arguments to arithmetical operators and mathematical functions. This behavior is
implemented using the concept of static polymorphism, where an object of one type can
masquerade as another, but in a way that is known at compile time, thus avoiding the
extra overhead of virtual function look-up.

Why is this design useful? Well it enables the operation stack in Figure 1 to be popu-
lated efficiently by propagating gradient information in the other direction. Essentially,
we wish to build up the differential statement by applying the chain rule of differen-
tiation to a statement, and letting each object that represents an elemental function
contribute a derivative to the chain. Thus, an object representing a unary function f (a)
(e.g., Sin in this example) would implement a member function calc gradient that can
take a real number w representing the numerical value of the chain of derivatives up
to that point, multiply it by ∂ f/∂a and pass the result to the object representing its ar-
gument. In this example, the Sin object is passed the value of y and then passes y cos s
to the adouble object representing s. Likewise, objects representing binary operators
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and functions f (a, b) (e.g., the “*” operator) would implement a calc gradient member
function that passes w∂ f/∂a to a and w∂ f/∂b to b. The calc gradient function of an
adouble object behaves differently: it simply adds an entry to the operation stack con-
sisting of multiplier w and its own index to its gradient. It can be seen from Figure 2(c)
that this results in the correct information being added to the operation stack in the
case of y=y*sin(s).

The implementation is now described. The base Expression class is defined as follows.

template<class A>
struct Expression {
const A& cast() const { return static_cast<const A&>(*this); }
double value() const { return cast().value(); }
void calc_gradient(Stack& stack) const { cast().calc_gradient(stack); }
void calc_gradient(Stack& stack, const double& multiplier) const

{ cast().calc_gradient(stack, multiplier); }
}

It can be seen that Expression takes one template parameter A, and that all its member
functions simply use a static cast to convert the Expression object into type A and
then call the equivalent function for that type. The meaning of each member function
will be described later. The derived class adouble is then defined as follows.

struct adouble : public Expression<adouble> {
enum { n_active_vars = 1 };
// ...constructors and other member functions here...
template<class R>
adouble& operator=(const Expression<R>& rhs)

{ val_ = rhs.value(); // Compute value of the expression
_stack->push_lhs(gradient_offset_); // Add an entry to statement stack
_stack->check_space(R::n_active_vars); // Ensure is space for operations
rhs.calc_gradient(*_stack); // Add gradient data to op. stack
return *this; }

double value() const { return val_; }
void calc_gradient(Stack& stack) const { stack.push_rhs(1.0, gradient_offset_); }
void calc_gradient(Stack& stack, const double& multiplier) const

{ stack.push_rhs(multiplier, gradient_offset_); }
private:
double val_;
const unsigned int gradient_offset_;

}

This is an example of the “Curiously Recurring Template Pattern”: adouble inherits
from Expression<adouble>. This facilitates the required behavior: when an adouble
object is used in an expression requiring Expression arguments, the inheritance re-
lationship enables it to be interpreted as an Expression<adouble> object, and the be-
havior of each member function in the definition of Expression to defer to its template
parameter (in this case adouble) means that it behaves as an adouble object. Note that
in practice adouble could be implemented as active<double>, that is, there could be
a generic active type that could be specialized for underlying floating-point variables
including float and complex<double>. This would mean that Expression would need
to take another template argument and promotion rules would be required to ensure
that an active<double> object multiplied by an active<float> results in an expression
in terms of double objects. Since this extra layer of complexity detracts from the main
discussion, we have assumed all active variables have an underlying double type in
this article.

ACM Transactions on Mathematical Software, Vol. 40, No. 4, Article 26, Publication date: June 2014.



26:8 R. J. Hogan

The Multiply and Sin classes are implemented as follows.

template <class A>
struct Sin : public Expression<Sin<A> > {
enum { n_active_vars = A::n_active_vars };
Sin(const Expression<A>& a) : a_(a.cast()), result_(sin(a_.value())) { }
double value() const { return result_; }
void calc_gradient(Stack& stack) const {a_.calc_gradient(stack, cos(a_.value()));}
void calc_gradient(Stack& stack, const double& multiplier) const
{ a_.calc_gradient(stack, cos(a_.value())*multiplier); }

private:
const A& a_; // A reference to the argument of the sin function
double result_; // The numerical value of sin(a)

};

template <class L, class R>
struct Multiply : public Expression<Multiply<L,R> > {
enum { n_active_vars = L::n_active_vars + R::n_active_vars };
Multiply(const Expression<L>& l, const Expression<R>& r)
: l_(l.cast()), r_(r.cast()) { }

double value() const { return l_.value() * r_.value(); }
void calc_gradient(Stack& stack) const
{ l_.calc_gradient(stack, r_.value());
r_.calc_gradient(stack, l_.value()); }

void calc_gradient(Stack& stack, const double& multiplier) const
{ l_.calc_gradient(stack, r_.value()*multiplier);
r_.calc_gradient(stack, l_.value()*multiplier); }

private:
const L& l_; // A reference to the left argument
const R& r_; // A reference to the right argument

};

Note that these two classes take template parameters that define the types of their
arguments. They also store references to their arguments in order they can propagate
information to their arguments as shown in Figure 2(c). The sin function and “*”
operator are overloaded to return these two classes.

template <class A> inline
Sin<A> sin(const Expression<A>& a) { return Sin<A>(a); }

template <class A, class B> inline
Multiply<A,B> operator*(const Expression<A>& a, const Expression<B>& b) {
return Multiply<A,B>(a, b);

}

We are now in a position to outline what happens when y=y*sin(s) is invoked. First,
the overloaded sin function returns an object of type Sin<adouble>, whose constructor
is passed a constant reference to the adouble object s, which it stores. It also stores
the numerical value of sin(s) in result to avoid it being recalculated if its member
function value is called more than once; this optimization was also used by Phipps and
Pawlowski [2012] for forward-mode automatic differentiation. Next, the “*” operator
is invoked, which returns a Multiply object; this time constant references to both ar-
guments are stored within Multiply. Ultimately, the right-hand side of the statement
resolves to a Multiply<adouble,Sin<adouble> > object. The operator= member func-
tion of y is then invoked on the expression (labeled rhs in the definition of adouble
above). After obtaining the actual value of the expression via rhs.value(), it passes to
the currently active Stack object (accessed via a thread-local but global pointer stack)
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the index to the location of δ∗y (stored as gradient offset ). The stack is informed (via
the Stack::check space function) how many operations will appear on the right-hand
side of the differential statement, in order that enough space can be allocated on the
operation stack. This is simply the number of adouble objects that appear on the right-
hand side of the statement and is determined at compile time when the n active vars
enumeration is computed for each sub-part of the expression.

This information is sufficient to add entry 2 to the statement stack depicted in
Figure 1. The final step is to add the gradient terms to the operation stack, which
is achieved by calling rhs.calc gradient. Each object then calls the calc gradient
function of its stored arguments in order to propagate the gradient information through
the entire tree, as shown in Figure 2(c). For efficiency, each class has two calc gradient
functions, one with a multiplier and the other without (corresponding to the multiplier
being assumed to be one). In some expressions this avoids a redundant multiplication
by one. When the calc gradient function of an adouble object is called, it instead
simply pushes the differential expression on to the operator stack resulting in entries
3 and 4 in Figure 1.

Thus, the efficient memory layout described in Section 3 can be built at the time
the statements are parsed. While the reader may be struck by the large number of
function calls that are necessary to perform a simple calculation in order to place the
entries on the relevant stacks, it should be stressed that the compiler is able to inline
all of these function calls leaving little more than the underlying computations. For
a fully functional library that can differentiate any code, it is necessary to overload
all arithmetic operators, comparison operators and mathematical functions. This has
been implemented in the Adept library.

5. ADJOINT AND JACOBIAN COMPUTATION

We now describe how the adjoint calculations proceed given a particular statement and
operation stack illustrated in Figure 1. The first time the Stack::set gradient function
is called (see the listing for the algorithm ad function in section 2), a real-valued vector
is allocated of just the right size to store the gradients. One or more calls to set gradient
then set the gradients of the dependent variables. The Stack::reverse function then
performs the adjoint computation by looping in reverse through the statement stack
and executing the adjoint of each differential statement.

A general differential statement may be written as

δy ←
k−1∑

i=0

wiδxi, (10)

where in the terminology of Figure 1, δy is the left-hand side gradient, k is the number of
terms on the right-hand side (which may be zero), wi is a multiplier equal to the partial
derivative ∂y/∂xi, and δxi is an right-hand side gradient. The recipe for forming the
equivalent adjoint statements is usually described in the literature in terms of taking
the transpose of the local Jacobian matrix. However, it turns out that the equivalent
adjoint statements may be expressed by a very simple algorithm given by the following
pseudocode:

a ← δ∗y,

δ∗y ← 0,

If a �= 0 then for i between 0 and k − 1 do:
δ∗xi ← δ∗xi + wia. (11)
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This is applied to all the statements in the stack in reverse order, and may be coded in
a few lines of C or C++. The use of a temporary variable a was proposed by Griewank
and Walther [2008] in their Table 4.6, and ensures the correct behavior in the three
contrasting cases exemplified by (1)–(3). Equation (1) has no active variables on the
right-hand side of the statement, so the statement stack in Figure 1 has the same
number for elements 0 and 1 of the list of indices to the operations, and hence k = 0.
This leads to the loop in (11) not being executed so the corresponding gradient is
correctly set to zero as in (9). Equation (2) has different active variables on the left- and
right-hand sides, so the gradient corresponding to the left-hand side of the statement
is not changed from zero by any action within the loop and so (8) is correctly applied.
Finally, (3) has the same variable on both sides of the statement, which means that
the gradient δ∗y is the same as one of the δ∗xi gradients in (11). Therefore, it is set to
zero before the loop but is then modified within the loop, resulting in (5). The test to
see whether a is nonzero removes many unnecessary multiplications and is found to
speed up the reverse pass by 20–50%.

We may also use the stack information to compute the full m× n Jacobian matrix,
that is, the rate of change of each of the m dependent variables y with respect to each
of the n independent variables x, sometimes written as ∂y/∂x. If n > m, then this is
fastest achieved by m executions of (11), each time setting the input values of ∂ J/∂y
to zero except for a single value that is set to 1. Each iteration results in a row of
the Jacobian matrix. If n < m then the Jacobian may be calculated by n executions
of the forward “tangent linear” code, which is simply a direct implementation of (10)
for each statement in the stack. Each iteration then yields a column of the Jacobian
matrix. In practice, to facilitate compiler optimizations such as loop unrolling and
vectorization instruction sets (such as SSE2 on Intel hardware), “strips” of several
rows or columns of the Jacobian are computed at once. The more common approach to
computing “n < m” Jacobians would be using a forward-mode automatic differentiation
library that replaces each intermediate scalar with an object containing not only the
value of the scalar but also a vector containing the derivatives of the scalar with respect
to each of the independent variables. This approach avoids the memory expense of
storing the stack needed for reverse mode, but on the other hand much more memory
is needed to store working variables for large n. It will be shown in the next section
that this is typically no more efficient than the use of a stack as described in this
article.

6. BENCHMARKING

In this section, we compare the speed of reverse-mode automatic differentiation as
implemented in the Adept library with the speed of the original algorithm, a hand-coded
adjoint algorithm, and the reverse-mode automatic differentiation of the ADOL-C,
CppAD and Sacado libraries [Griewank et al. 1996; Bell 2007; Gay 2005]. We further
compare the speed of computing Jacobian matrices both in forward and reverse mode.
Memory usage and compile times are also compared.

6.1. Description of Test Algorithms

The four algorithms we use for testing consist of two simple cases for which the code will
be shown here, and two more complex real-world algorithms. The simple algorithms
each solve the 1D linear advection equation ∂q/∂t = −u∂q/∂x in a periodic domain,
where q is the quantity being advected, t is time, x is the spatial coordinate and u is the
velocity, which is constant with x. A uniform grid of 100 points is used, which includes
two dummy points to deal with the periodic boundary conditions. The first algorithm
uses the linear scheme of Lax and Wendroff [1960] as follows.
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#define NX 100
void lax_wendroff(int nt, double c, const adouble q_init[NX], adouble q[NX]) {
adouble flux[NX-1]; // Fluxes between boxes
for (int i=0; i<NX; i++) q[i] = q_init[i]; // Initialize q
for (int j=0; j<nt; j++) { // Main loop in time

for (int i=0; i<NX-1; i++) flux[i] = 0.5*c*(q[i]+q[i+1]+c*(q[i]-q[i+1]));
for (int i=1; i<NX-1; i++) q[i] += flux[i-1]-flux[i];
q[0] = q[NX-2]; q[NX-1] = q[1]; // Treat boundary conditions

}
}

where nt is the number of timesteps to run, c is the Courant number (i.e., the velocity
expressed as the fraction of a spatial step traversed in a timestep), q init is the initial
distribution of q (the 100 independent variables) and q is the final distribution that is
output (the 100 dependent variables).

The second algorithm solves the same problem but using the nonlinear scheme of
Toon et al. [1988], which was designed to treat concentrations of a tracer that may
vary by orders of magnitude across the domain and treats q as varying exponentially
between gridpoints. It is implemented simply by replacing the sixth line of the previous
listing with the following.

for (int i=0; i<NX-1; i++) flux[i] = (exp(c*log(q[i]/q[i+1]))-1.0)
* q[i]*q[i+1] / (q[i]-q[i+1]);

While sharing the same structure, these two algorithms are very different in terms
of performance because of the presence of transcendental functions only in the second
case; this is discussed in detail in Section 6.2.

The third and fourth algorithms are real-world radiative transfer models that sim-
ulate the measurements made by a satellite-borne atmospheric lidar instrument for
probing clouds.3 Both models predict the profile of apparent backscatter (the dependent
variables) at N = 50 equally spaced height intervals that would be measured given
an input profile described by 7N active independent variables that describe the prop-
erties of the atmosphere by seven values at each of the N height intervals. The third
algorithm uses the Photon Variance-Covariance (PVC) method of Hogan [2008] and
computes the contribution to the measured signal from light that has been scattered
multiple times, but only by a small angle, between the lidar transmitter and receiver. It
uses only five of the seven independent variables at each range interval and integrates
four coupled ordinary differential equations forward in space. It has a computational
cost proportional to N. The fourth algorithm uses the Time-Dependent Two Stream
(TDTS) method of Hogan and Battaglia [2008] and computes the contribution to the
measured signal from light that has been scattered multiple times by any angle. It uses
only four of the seven independent variables at each range gate and integrates four
coupled partial differential equations forward in time for 2N timesteps. Its computa-
tional cost is proportional to N2. Both of these last two algorithms have been coded
in C using C-style arrays, and can be adapted to Adept, ADOL-C, CppAD and Sacado,
and compiled in C++ with virtually no code modifications beyond relabeling most of
the double objects as adouble.4

3The radiative transfer models form part of the Multiscatter package freely available from http://www.
met.reading.ac.uk/clouds/multiscatter.
4The Multiscatter package makes extensive use of variable-length arrays, defined in the C99 standard but
not part of C++; therefore, we rely on the GNU compiler extension to permit variable-length arrays in C++.
It would be straightforward to use std::vector<adouble> instead.
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Table I. Speed Comparison for Reverse-Mode Differentiation Applied to the Advection Schemes of Lax and
Wendroff [1960] (LW) and Toon et al. [1988] (Toon) using 2000 Timesteps, and to the Radiative Transfer

Models based on the Photon Variance-Covariance (PVC) and Time-Dependent Two Stream (TDTS) Methods
for Profiles of Atmospheric Variables at N = 50 Height Intervals, Taken from Version 1.2.10

of the Multiscatter Package

Algorithm LW Toon PVC TDTS
Time of original algorithm 0.60 ms 13.1 ms 0.013 ms 0.85 ms
Relative cost of computing the adjoint

Hand coded 2.1 (1.0 + 1.1) 2.3 (1.0 + 1.3) 3.0 (1.0 + 2.0) 3.5 (1.0 + 2.5)
Adept (thread unsafe) 32 (21 + 11) 2.7 (2.1 + 0.6) 3.7 (2.8 + 0.9) 3.8 (2.6 + 1.2)
Adept (thread safe) 33 (22 + 11) 2.8 (2.2 + 0.6) 3.8 (2.9 + 0.9) 3.9 (2.7 + 1.2)
ADOL-C 106 (81 + 25) 9.2 (7.2 + 2.0) 25 (18 + 7) 20 (15 + 5)
CppAD 214 (120 + 45 + 49) 16 (8 + 4 + 4) 29 (15 + 7 + 7) 34 (17 + 8 + 9)
Sacado::Rad 238 (125 + 113) 15 (8 + 7) 10 (7 + 3) 30 (16 + 14)

The tests were performed on a 2.5-GHz 64-bit Intel E5200 Pentium with a 2-MB cache running Linux 2.6.27
(openSUSE 11.1). The versions used were Adept 1.0, ADOL-C 2.3.0, CppAD 20120101.3 and Sacado::Rad
(the reverse-mode version of Sacado) from Trilinos 11.0.3. All algorithms were compiled using the 64-bit
GNU C++ compiler version 4.3.2, with SSE2 instructions enabled by default, and optimization arguments
-O3 -DNDEBUG, the latter which eliminates error checking for CppAD and approximately halves its execu-
tion time. All algorithms were run at least a thousand times with memory reuse to minimize the overhead
of memory allocation, where possible, although the tapes and stacks were recomputed each time. ADOL-C
was configured to ensure that all data were kept in memory rather than temporary files being written to
disk. “Relative cost” is the execution time divided by the time to run the original algorithm. In parentheses
these times are split into the time of the forward pass (first number), the time of the reverse pass (last
number), and in the case of CppAD, the time to generate the ADFun object ready for the reverse pass
(middle number).

6.2. Results

The results of the comparisons in terms of computational cost divided by the cost of
the original algorithm are shown in Table I. All algorithms have been repeated at
least a thousand times, with available options to maximize memory reuse enabled to
eliminate time spent dynamically allocating memory. However, all tapes and stacks
have been recomputed each time to best mimic real-world applications where differ-
ent independent input variables may lead to different paths of execution. Considering
the two advection algorithms first (Lax and Wendroff 1960; Toon et al. 1988), run for
2000 timesteps, we see that, in both cases, Adept is 3.3–7 times faster than the other
three libraries. The thread-safe version of Adept is a few percent more computation-
ally expensive due to the global variable that stores a pointer to the currently active
Stack object being declared “thread-local”, which leads to an extra level of indirection
whenever it is accessed. However, the most striking aspect is how much poorer all the
libraries appear to perform for the Lax-Wendroff scheme. What actually happens is
that the loop to compute the flux vector in the original Lax-Wendroff scheme can be
aggressively optimized by the compiler. When transcendental functions are added to
this line to convert it to the Toon et al. scheme, they not only incur their own cost, but
optimization is impeded, and the algorithm is slowed by more than a factor of 20. The
use of automatic differentiation libraries impedes much of this optimization, and the
Toon et al. scheme is only 50–90% slower than Lax-Wendroff. These two schemes can be
thought of as representing extreme cases, with one having more use of transcendental
functions per ordinary arithmetic operation than most real-world applications, and the
other having none at all.

We consider next the real-world algorithms shown by the final two columns of Table I,
for the case when N = 50 (described in Section 6.1). This time the results are more
consistent: Adept is 3.7–3.9 times the computational expense of the original algorithm,
and 10–25% more computationally expensive than the hand-written adjoint codes. The
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Table II. Same as Table I but for the Memory Usage Associated with an Adjoint Calculation

Algorithm LW Toon PVC TDTS
Number of statements/variables stored by Adept

Number of statements 398101 398101 1363 58721
Mean no. of active variables on RHS of a statement 3.5 4.5 2.6 4.3
Number of gradients to store 305 305 475 1598

Memory footprint (kB)
Hand-coded adjoint minus original 0 1632 20 168
Adept 19796 24548 54 3348
ADOL-C 31102 46888 84 4504
CppAD 34398 44115 106 7308
Sacado::Rad 110912 168504 416 23904

The first three rows are statistics from Adept and indicate, respectively, the length of the state-
ment stack, the ratio of the lengths of the operation and statement stacks, and the length of the
vector holding the gradients in the reverse pass. The final five rows indicate the memory usage
in kilobytes needed to store the information carried between the forward and reverse passes, and
in the first two of these also the storage used to execute the reverse pass. For the hand-coded
adjoint, this is largely the intermediate model states. For Adept, it is the memory associated with
the first three rows of this table. For ADOL-C, it is the size of the files written when the user
requests the tape not to be held in memory. For CppAD, it is the sum of the values returned from
the memory() member function of the tape object and the size op seq() member function of the
ADFun object. For Sacado, it is computed from the number of ADmemblock objects allocated.

existing automatic differentiation libraries are considerably slower: ADOL-C is 5–7
times more expensive than Adept, CppAD is 7–9 times more expensive and Sacado
is 2.6–8 times more expensive. The fact that these algorithms show a performance
more similar to Toon et al. than Lax-Wendroff is because they both contain some use of
transcendental functions, or have a serial dependence between loops, which impedes
aggressive optimization of the original algorithm by the compiler.

It is interesting to look at a more detailed breakdown of these timings for all four
algorithms. The benefit of expression templates is revealed when we consider the
forward pass (the first number in parentheses in Table I), for which Adept is 2.4–7
times faster than the others. However, there is also an indirect speed-up due to the fact
that Adept stores the differential information in a very efficient form for the reverse
pass (see Section 3). ADOL-C and CppAD, by contrast, store a complete description of
the algorithm including a symbolic representation of every operator and mathematical
function, resulting in the reverse pass being 2.3–12 times slower than in Adept (com-
pare the last numbers in parentheses). Sacado is most similar to Adept in that only
differential information is stored, yet the reverse pass is 3.3–12 times slower than in
Adept. The reason that Adept can sometimes spend half as much time in the reverse
pass as the hand-coded adjoint is because it does most of the extra differential compu-
tations in the forward pass, while the hand-coded adjoint simply stores intermediate
values in the forward pass with all the extra computation in the reverse pass.

In terms of memory, Table II shows that Sacado uses 5.6–7.7 times as much as
Adept in these examples, which appears to be due to Sacado storing 4 doubles and 9
pointers for every binary operation. CppAD uses close to twice as much as Adept due to
CppAD’s need to process the tape in the forward pass to produce one that is suitable for
the reverse pass; each tape individually is about the same size as the memory footprint
of Adept. ADOL-C only generates one tape and its memory footprint lies between those
of CppAD and Adept. The relative difference in memory usage between Adept and
the hand-coded adjoints is very variable. The linearity of the Lax-Wendroff algorithm
means that in fact no intermediate values need to be stored in its hand-coded adjoint
function. For the Toon and TDTS algorithms, Adept uses 15–20 times more memory
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Table III. Same as Table I, but Showing the Relative Time to Compute the Jacobian
Matrix using a Forward or a Reverse Pass

Algorithm LW Toon PVC TDTS
Size of Jacobian matrix (m× n) 100 × 100 100 × 100 50 × 350 50 × 350
Relative cost of computing the Jacobian matrix in a forward pass

Adept 309 18 133 129
ADOL-C 371 34 318 250
CppAD 3197 244 1793 1799
Sacado::ELRFad 166 20 134 157

Relative cost of computing the Jacobian matrix in a reverse pass
Adept 360 21 20 19
ADOL-C 558 52 80 68
CppAD 4535 402 355 456
Sacado::Rad 10426 715 170 789

In the case of Adept, ADOL-C and CppAD, the same tape or stack is recorded, but then
processed by different functions for the forward and reverse methods. In the case of
Sacado, two completely different versions of the library are used. In the forward case
we use Sacado::ELRFad (expression-level reverse mode for forward-mode automatic
differentiation), which does not store a tape but rather replaces every intermediate
scalar with an object containing the derivative of the scalar with respect to each of
the independent variables. In the reverse case we use Sacado::Rad (reverse-mode
automatic differentiation), which is the same as used for the adjoint calculations in
Table I but with m calls to the reverse pass, where m is the number of dependent
variables.

than hand coding. In these examples, the hand-written adjoints recompute certain
variables in the reverse pass, which leads to a big saving in memory. For example, for the
Toon algorithm, only the values of q at each timestep were stored for the reverse pass,
but not the values of the fluxes between grid points. In the case of the PVC algorithm,
Adept uses only 2.7 times the memory of the hand-coded adjoint, which in this case is
due to the latter storing a much greater fraction of the intermediate variables.

Next, we consider the speed of the calculation of the full Jacobian matrix, and the
results are shown in Table III. Both the forward and reverse approaches to computing
the Jacobian matrix are considered, as outlined in Section 5. Consider first the re-
verse approach, which is generally the most efficient in the case of the PVC and TDTS
algorithms that have seven times as many independent variables as dependent vari-
ables. In this case, a forward pass is used to store a stack or tape, followed by mreverse
passes each with a different seed vector (where mis the number of dependent variables).
CppAD and Sacado::Rad follow this approach exactly, leading to a cost very close to
m times that of the reverse pass of the adjoint computation. ADOL-C and Adept treat
multiple seed vectors at once, leading to code that is more easily optimized by the com-
piler and a much faster Jacobian calculation. Adept is substantially faster for Jacobian
calculations using a reverse pass than the other libraries. As with the adjoint calcula-
tions, the Jacobian calculation for the Lax-Wendroff algorithm has a high relative cost
because the original algorithm could be aggressively optimized by the compiler. Now
consider the forward approach for computing the Jacobian matrix. Adept, ADOL-C and
CppAD take the same stack or tape and then perform n forward passes each with a
different seed vector (where n is the number of independent variables). The time taken
is then a little less than n/m the cost of using a reverse approach. Sacado::ELRFad does
not store a tape, but for every intermediate variable in the algorithm it carries forward
a vector of derivatives of that variable with respect to each of the n input variables.
This turns out to be marginally slower than Adept for the Toon, PVC and TDTS al-
gorithms, but appreciably faster for the Lax-Wendroff algorithm. Note that for these
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particular examples the Jacobian is relatively dense and we have neither attempted
to use a coloring approach to exploit sparsity in the Jacobian (e.g., Gebremedhin et al.
[2005]), nor attempted to speed-up the reverse pass by eliminating vertices from the
computational graph (e.g., Naumann [2004]).

Finally we consider the compile times of the various automatic differentiation li-
braries. When applied to source files in the Multiscatter package, the relative compile
times (i.e. divided by the time to compile the original code) for Adept, ADOL-C, CppAD,
Sacado::Rad and Sacado::ELRFad are 8.6, 3.5, 12, 14, and 22, respectively. This is for
the test system described in the caption of Table I. Thus, even though it uses expression
templates, the compile time of Adept is competitive to other libraries.

7. CONCLUSIONS

This article has demonstrated how the operator-overloading approach to first-order
reverse-mode automatic differentiation can be significantly accelerated using the tech-
nique of expression templates in C++, which enables the differential statements to be
computed and stored very efficiently. In addition to fast adjoint calculations, the effi-
cient storage of differential information allows fast calculation of the full Jacobian
matrix. A freely available software library, “Adept”, has been released with these
features.

In the four algorithms tested in this article, Adept is found to be 2.6–9 times
faster than three other state-of-the-art operator-overloading automatic-differentiation
libraries. Moreover, in three of the four algorithms it is only 2.7–3.9 times the cost of
the original algorithm. In the algorithm containing no transcendental functions, ag-
gressive optimization of the original algorithm by the compiler leads to a significantly
worse relative performance by all automatic-differentiation libraries tested, including
Adept. Nonetheless, for many real-world algorithms, this paper has demonstrated that
the operator-overloading approach to automatic differentiation holds out the promise
of having an efficiency approaching a source-to-source compiler, while being more con-
venient for the user and placing far fewer restrictions on the range of language features
(such as templates) that can be used in the code to be differentiated.

It is hoped that this speed-up will make automatic differentiation a more obvious
choice in the development of large codes for optimization problems. However, the library
described in this article applies only to expressions involving individual real numbers
and further development is needed to fully support active complex numbers, as well
as arrays of active variables using array containers that support operations on entire
arrays. An additional future area of work will be to investigate whether automatic
computation of the Hessian matrix can be sped up by the use of expression templates;
this would require second-order differential information to be stored during the forward
pass.
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