Radiation and Climate Change

— Earth’s Energy Balance

— Forcing and Feedback

— Implications for climate change
including the global water cycle
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Introduction / Motivations

Past societies

— e.g. Jared Diamond: Collapse

Impacts on an already stressed world
e Driver:

— Earth’s radiative energy balance

How much change?

— Forcings and feedbacks

Complexity of the climate systems

— Need for models



http://www.nceo.ac.uk/
http://www.walker-institute.ac.uk/index.htm

How do we predict climate change?

e Need to know what processes are important for
determining the present day and past climate
change

— FORCINGS (e.g. solar output)
— FEEDBACKS (e.g. ice-albedo)

e How will forcings change in the future?

e Will ocean/atmosphere/land processes amplify or
retard this forcing of climate?

e What are implications for the global water cycle?

_Earth’s Radiation balance.
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Radiation (S/4)(1-a)

There is a balance between the absorbed sunlight and the
thermal/longwave cooling of the planet

(S/4)(1-a) = OLR =06 T?
OLR= (S = 1361 Wm?2, 0~0.3)
T= (6=5.67x108 Wm-2K-4)
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Top of Atmosphere Radiative Energy Fluxes
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Natural

Forcing or feedback?

1) Climate forcing, feedback or response?

2) Positive or negative?
— Solar output

Water vapour
Volcanic eruptions
Carbon Dioxide (CO,)
Cloudiness

Rainfall
Chlorofluorocarbons (CFCs)
Sulphate Aerosol
Sea Ice

Nitrogen (N,)

Radiative Forcing of Climate since 1750
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A Simple Climate Model

AR = AQ + YAT,
t t t

atmosphere forcing  feedback - lac€
radiation parameter temperature
(Wm-=2K-1)
AQ - _YATS The climate sensitivity
At equilibrium parameter, A=1/Y

(units: K/IWm-2)

A Simple Climate Model

Climate Feedback Parameter (Y)
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Black body x denotes feedback variable, e.g. cloud,

feedback . .
water vapour, ice-albedo, etc. Non-linear
effects are ignored.

OR

—_— - 4 T'3 Sometimes referred to as the
0 T\, =~ o ' “nofeedback” or “black body”
' response

Bony et al. (2006) J Clim - they use A instead of Y for Climate Feedback Parameter



An example of
feedback: ice-albedo
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vapour feedback response to
Pinatubo volcanic eruption
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What about liquid and frozen
water in the atmosphere?

e Most of the water in the atmosphere
is gaseous vapour

— clouds are the tip of the iceberg
— ...water vapour with attitude

e Strong interaction with longwave and
shortwave radiation (emission,
absorption, scattering)

e Many types of cloud feedbacks are
plausible




Contrasting radiative effects of cloud

Day Night
Solar Shading Greenhouse Effect
Dominates: Cooling || I Donminates: Warming
T

High clouds _‘ Low clouds N

Strong greenhouse effect weak green:ouse effect

e El——

How will cloud properties respond to warming? Will they amplify or
diminish warming? How are cloud height, water content, ice content,
droplet sizes, thickness, duration, time of occurrence, expected to vary?
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Cloud feedback: a more complex problem
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Non-trivial relationship

» Depends on:

Feedback Parameter, Y (Wm?/K)
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— Type of cloud

— Height of cloud

— Time of day/year

— Surface characteristics

between cloud and
temperature

Response of cloud to
warming is uncertain

Uncertainty in strength

of cloud feedback
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Implications for the Water Cycle

The radiative and thermodynamic
impact of water vapour is central to

some of the most important

processes for determining climate
change including the response of the

global water cycle

Radiative-convective equilibrium

If we assume that only radiative
processes are operating, the
equilibrium surface temperature
is very high, tropospheric
temperatures very low and the
profile is strongly
superadiabatic*.

In reality, convection removes
heat from the surface, warms the
atmosphere and adjusts the
lapse-rate towards that
observed?”.

From the classic paper by Manabe
and Wetherald, JAS, 1967
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F16. 5. Solid line, radiative equilibrium of the clear atmosphere
with the given distribution of relative humidity; dashed line,
radiative equilibrium of the clear atmosphere with the given
distribution of absolute humidity; dotted line, radiative convective
equilibrium of the atmosphere with the given distribution of
relative humidity.
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Global Energy Flows W m?

Precipitation change (%4)
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How should global precipitation
change in a warming world?
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Allen and Ingram (2002) Nature

13



Precipitation response depends upon
radiation: forcing and the feedback
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Andrews et al. (2009) J Climate

Partitioning of energy between atmosphere and
surface is crucial to the hydrological response

Conclusions

e Radiative Forcing drives climate

e Radiative feedbacks determine response of climate to
a forcing (climate sensitivity)

We will explore this further in the activity!

e Radiative-convective balance an important constraint
upon future changes in the water cycle

— crucial for human societies and the ecosystems upon which
they depend
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