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Learning outcome  Readivg
*  Quantify the main ferms of Earth's energy budget

« Describe how satellite instruments make measurements of radiative
fluxes

« Appraise methods for evaluating global climate simulations

« TIdentify influence of clouds and water vapour on Earth's radiative
energy balance

- Estimate radiative forcing, feedback and response using simple
energy balance model

« Define Earth's energy imbalance/discuss implications for climate

 Discuss how the global energy and water cycles are linked



“ ' Earth’s Radiation Balance
' 'Tﬁermal/lhffa-red of. |
_">Outgoing Longwave

~ Radiation (0LR)=(5Te4~ |

Absorbed Solar or Shortwave ! el 2

) Radiation, ASR = (S/4)(1-a)) 3

S=solar “constant” a=albedo (fraction feflec,ted)

There is a balance between the absorbed sunlight and the
thermal/longwave cooling of the planet

(S/4)(1-0) = OLR = oT.*
OLR= (S = 1362 Wm, a~0.3)

T,= (0=5.67x10% Wm=2K*)



Satellite measurements of radiative fluxes
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Broadband radiation budget instruments:
— Low Earth orbit: ERB/Nimbus 1970s/80s; ERBE
1980s/90s; ScaRaB; CERES 2000s...
— Geostationary: GERB 2000s...
Measure directional radiance from geolocated
satellite footprint; shortwave & total
spectrum, longwave by subtraction

Convert to radiative energy flux using angular
dependence models (theoretical or built up
from many directional measurements)
Depends on scene type (e.g. clear ocean, high

cloud, efc) so an imager is also required
(e.g. CERES/MODIS, GERB/SEVIRT)

Diurnal/seasonal sampling must be considered
Excellent stability over time (~0.2 Wm-2/decade); combine with

ocean heat content observations for 0.1 Wm-2 absolute accuracy
(Loeb et al. 2012; Johnson et al. 2016) 4



http://www.nature.com/ngeo/journal/v5/n2/abs/ngeo1375.html
http://www.nature.com/nclimate/journal/v6/n7/full/nclimate3043.html
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Top of Atmosphere Radiative Energy Fluxes B3 Reading
CERES/TERRA, September 2004
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Global annual average energy budget
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Flgure 2.11: | Global mean energy budget under present-day climate conditions. Numbers state magnitudes of the individual energy fluxes in W m2, adjusted within their
uncertainty ranges to close the energy budgets. Numbers in parentheses attached to the energy fluxes cover the range of values in line with observational constraints. (Adapted
from Wild et al., 2013.)
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http://www.metlink.org/wp-content/uploads/2014/05/2.111.jpg

All-sky Clear-sky r*

Model-GERB OLR Model-GERB OLRc
T : .

Model Cloud  (d) CloudSat X 30N '7

)

"h ‘ >
ek :. c;;,
N 10N 5N 55 Latiio 5 0 (-
@)

—

Model
evaluation
with GERB

-20-10 0 10 20 -20-10 0 10 20
Model-GERB RSW Model GER’B RSWc

R

Shortwave

-60-30 0 30 60 -60-30 0 30 60

Allan et al. (2007) QJRMS

11


http://www.met.reading.ac.uk/~sgs02rpa/PAPERS/allan_et_al07QJ.pdf
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Systematic model bias in southern ocean cading

Large biases in net energy
budget identified over
Southern Ocean - linked
to cloud processes e.g.
cold air outbreaks. See:
Trenberth & Fasullo, 2010;
Karlsson & Svensson, 2011 ;
Bodas-Salcedo et al., 2012;

control ifi MODIS ch4

< Field et al. (2014) QJRMS
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http://journals.ametsoc.org/doi/abs/10.1175/2009JCLI3152.1
http://link.springer.com/article/10.1007/s00382-010-0758-6
http://journals.ametsoc.org/doi/abs/10.1175/JCLI-D-11-00702.1
http://onlinelibrary.wiley.com/doi/10.1002/qj.2116/abstract

Causes/consequences of hemispheric B3 Reading
asymmetry in Earth’s energy budget
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Hemispheric asymmetry
in energy budget and
precipitation are linked:

Frierson et al. (2013)

Nature Geoscience ;
Haywood et al. (2016) GRL;

Stephens et al. (2015) Rev
Geophys
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http://www.nature.com/ngeo/journal/v6/n11/abs/ngeo1987.html
http://onlinelibrary.wiley.com/doi/10.1002/2015GL066903/abstract
http://onlinelibrary.wiley.com/wol1/doi/10.1002/2014RG000449/abstract
http://www.met.reading.ac.uk/~sgs02rpa/latest/Hemispheric1602.html
http://www.met.reading.ac.uk/~sgs02rpa/latest/Hemispheric1602.html
http://link.springer.com/article/10.1007/s00382-015-2766-z
http://onlinelibrary.wiley.com/doi/10.1002/2015JD023264/full

Radiative forcing
of cirrus contrails

Havwood et aI (2009) JGR
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http://onlinelibrary.wiley.com/doi/10.1029/2009JD012650/abstract
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Radiative forcings and B Reading
© SSM/I Satellite data, Dec 2006
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B3 Reading
Volcanic eruption as

a test of radiative
forcing & feedback

1. Radiative forcing by 1991
eruption of Mt. Pinatubo

2. Resulting cooling drives
decreased water vapour in
upper troposphere

3. Diminished greenhouse
effect amplifies cooling
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http://science.sciencemag.org/content/296/5568/727
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Simple model of forcing & feedback

Net radiation budget change (AR = AASR - AOLR) depends on
Forcing (AF) and response which depends on Feedback, ¥ (Wm-2K1):

AR = AF + YAT,

 Feedbacks are additive:

_dR_aR 6R6x+ 62R6
CdT, a'rs x 0x 0T, lﬁ@y aTZ
« xdenotes feedback varlable, e.g. cloud, water vapour, ice-

albedo, etc. Non-linear effects are generally ignored.

« First term is known as the Planck or Black Body or No Feedback
response: IR

— =~ —40T?3
0T, €

« See Bony et al. (2016) J. Clim (note, the reciprocal of feedback
parameter Y is termed climate sensitivity, A=1/Y in K/Wm-2)
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http://journals.ametsoc.org/doi/abs/10.1175/JCLI3819.1
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Exercise: Equilibrium Climate Change ¥ Reading

1. Calculate the radiative forcing from a doubling of CO, using:
AF = 5.35In(C,/C,) [C;and C,are initial and final CO, concentrations]

When climate responds and reaches a new equilibrium, AR = O:
AR = AF +YAT, =0

2. Calculate equilibrium temperature response AT, with "Planck”
feedback, Y = 9R/0T, ~-40T3 [T.=255K, 0 =5.67x108 Wm2K]

3. Re-calculate equilibrium temperature with water vapour
feedback assuming water vapour increases with warming at
~10%/K and R increases with water vapour at ~0.15 Wm-2/%

~ OR . dR oW
0T, OW 9T,

18
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Cloud Feedback

OoR 0x
/S 0x 01\

Depends on: . - -
Tp ‘ loud Non-trivial relationship

- VPe or clou between cloud and

— Height of cloud temperature

— Time of day/year

— Surface characteristics

In addition, aerosol can influence clouds, thereby providing
indirect radiative forcings which are also highly uncertain

19
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Lapse Rate (LR), Cloud (C) and Albedo (A) feedbacks
simulated by climate models [IPCC AR5 WG1 Fig. 9.43]
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http://www.ipcc.ch/report/graphics/images/Assessment Reports/AR5 - WG1/Chapter 09/Fig9-43.jpg
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Earth’s global annual average energy budget
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Flgure 2.11: | Global mean energy budget under present-day climate conditions, Numbers state magnitudes of the individual energy fluxes in W m=2, adjusted within their
uncertainty ranges to close the energy budgets. Numbers in parentheses attached to the energy fluxes cover the range of values in line with observational constraints. (Adapted

from Wild et al., 2013.)

solar absorbed

solar reflected thermal outgoing

TOA

atmospheric

window he .

greenhouse

latent heat :
M gases

reflected
surface

84 20

(70, 85) (15, 25)

evapo- sensible thermal thermal
ration heat up surface down surface

IPCC AR5 WG1

Fig. 2.11

23


http://www.metlink.org/wp-content/uploads/2014/05/2.111.jpg
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Earth’s energy imbalance o Reading

« It takes time to reach climate AR =AF+YAT
equilibrium due to the vast heat AF AYAT
capacity, C,, of the oceans

_ - v
AR = AF+YAT = H atmosphere
« Therefore we have a radiative H
imbalance as oceans take up heat, H
W
C. dA;- (t) ~ R(t) ocean
t

* Note that AT depends on ocean mixed
layer heat content so vertical
redistribution of energy is important
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B3 Reading
Current changes in Earth’s energy imbalance
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http://www.nature.com/ngeo/journal/v5/n2/abs/ngeo1375.html
http://onlinelibrary.wiley.com/doi/10.1002/2014GL060962/full
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Flgure 2.11: | Global mean energy budget under present-day climate conditions. Numbers state magnitudes of the individual energy fluxes in W m2, adjusted within their
uncertainty ranges to close the energy budgets. Numbers in parentheses attached to the energy fluxes cover the range of values in line with observational constraints. (Adapted

from Wild et al., 2013.)
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http://www.metlink.org/wp-content/uploads/2014/05/2.111.jpg
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Energy balance & the global water cycle B2 Reading

Andrews et al. (2009) J CI|m
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Partitioning of radiative forcing AF between the
atmosphere f,.AF & surface (1-f,¢)AF is crucial for
hydrological response, LAP.

(see also Allen & Ingram 2002 Nature, Allan et al. 2014 Surv. Geophys.)

27


http://www.nature.com/nature/journal/v419/n6903/abs/nature01092.html
http://link.springer.com/article/10.1007/s10712-012-9213-z
http://journals.ametsoc.org/doi/abs/10.1175/2008JCLI2759.1

Summary B2 Reading

There is a balance between absorbed sunlight and emitted
thermal infrared (longwave) radiation that determines climate

Satellites instruments (e.g. CERES) can measure Earth's
radiation budget by converting radiance measurements to fluxes
using angular dependence models that require scene-type
information from imagers (e.g. MODIS)

Systematic biases in simulated radiation balance can reveal
deficiencies in cloud processes but comparisons also help
quantify and evaluate radiative forcings (e.g. cirrus contrail,
aerosol) and feedbacks (e.g. water vapour, cloud)

It takes 100s of years for climate to reach a new equilibrium
following a radiative forcing due to the large heat capacity of
the ocean: this results in an imbalance in the radiation budget

Radiative forcings and response also dictate how the global
water cycle will respond to a warming world. )8



