

National Centre for Earth Observation

NATURAL ENVIRONMENT RESEARCH COUNCIL

Evaluating clouds, precipitation and climate over Southern West Africa

Caroline Dunning Peter Hill Emily Black Richard P. Allan **Christine Chiu**

Motivation

- Southern West Africa region:
 - > rapid growth in population and air pollution
 - > variability of the West African monsoon rains
 - > vulnerable to climatic impacts e.g. health, food security
- Earth Observation datasets vital in monitoring climate and evaluating/improving prediction models

Key Points

- Deficiencies in climate model simulations of cloud, radiation, and precipitation in southern West Africa identified
- Low cloud below high cloud limits cloud radiative heating of the atmosphere but is poorly captured in simulations
- Coupled climate models fail to capture Little Dry Season over coastal west Africa due to sea surface temperature biases

Figure 5: schematic of combined clouds and radiation satellite product (CCCM B1 release, see Kato et al. 2011) used to construct cloud radiative effect by primary cloud types over southern West Africa June-September 2006-2010 in Fig. 6 below.

TOA

11±6

Figure 6:

10°E

14

16

18 20

12

radiative effect

(b) Precipitation(mm day⁻¹) (a) Total cloud cover 20°N 20°N 80 10°N 10°N 0° 0° 0° 10°E 10°W 0° 10°W 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 10 0.0 0.1 8

Figure 1: June–July mean MODIS cloud cover (2002-2014) & TRMM precipitation (2000-2014) with DACCIWA project region shown as box [Hill et al. 2016]

Figure 2: schematic of atmospheric energy budget (left) for box in Fig. 1. Variability in precipitation primarily balanced by dry static energy divergence [Hill et al. 2016]

observations Obs Dunning et al. 2017

References

Dunning, C., R. P. Allan and E. Black (2017), Identification of deficiencies in seasonal rainfall simulated by CMIP5 climate models Environ. Res. Lett., 12, 114001, doi:10.1088/1748-9326/aa869e

Hill, P., R. P. Allan, J. C.Chiu, T. Stein (2016), A multi-satellite climatology of clouds, radiation and precipitation in southern West Africa and comparison to climate models, J Geophys. Res., doi:10.1002/2016JD025246.

Hill, P, Allan, J. C.Chiu, A. Bodas-Salcedo, P. Knippertz (2018), Quantifying the contribution of different cloud types to the radiation budget in southern West Africa, J. Climate, 31, 5273-5291, doi:10.1002/2016JD025246

Kato, S., et al. (2011), Improvements of top-of-atmosphere and surface irradiances with CALIPSO, CloudSat, and MODIS derived cloud and aerosol properties, J. Geophys. Res., 116, D19209, doi:10.1029/2011JD016050.

Acknowledgement: Work supported by NCEO and the EU DACCIWA project FP7/2007-2013

Contact information

- Department of Meteorology, University of Reading, Whiteknights, RG6 6AH
- Email: r.p.allan@reading.ac.uk | www.met.reading.ac.uk/~sgs02rpa