NCAS Climate Department of Meteorology

WP5 - INDICES TIME EVOLUTION AND RELATIONS WITH THE ATMOSPHERE

European Research Area for Climate Services

Initial plans and status Richard Allan, Len Shaffrey, Emily Black, Ed Hawkins

1

STAFF INVOLVEMENT/DURATION

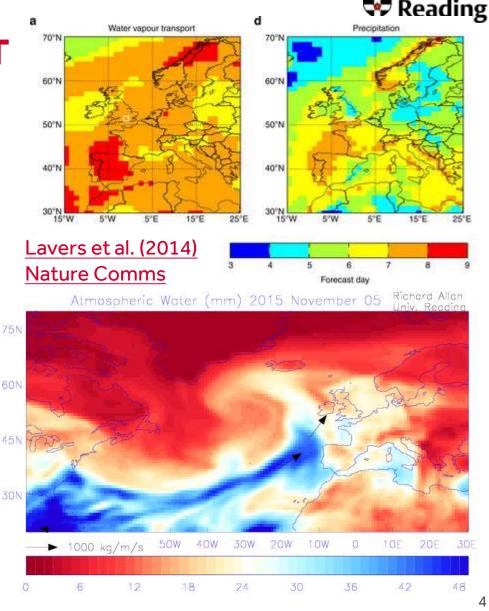
2

• Pls

- Richard Allan (<u>r.p.allan@reading.ac.uk</u>; @rpallanuk)
- Len Shaffrey (<u>l.c.shaffrey@reading.ac.uk</u>)
- Emily Black (<u>e.c.l.black@reading.ac.uk</u>; @emily_black3)
- Ed Hawkins (<u>e.hawkins@reading.ac.uk</u>; @ed_hawkins)
- PDRA yet to be decided, M10-M33

Deliverables:

- **D5.1** Inventory and Catalogue of Indicators of circulation variability for comparison with the INDECIS-ISD (M18)
- D5.2 Report on temporal evolution of the INDECIS-QCHDS and INDECIS-ISD, including the time-emergence of climate-change signals and relation with atmospheric patterns (M24)
- **D5.3** Report on the relation between INDECIS-QCHDS and INDECIS-ISD and atmospheric patterns (M33)


PLANS

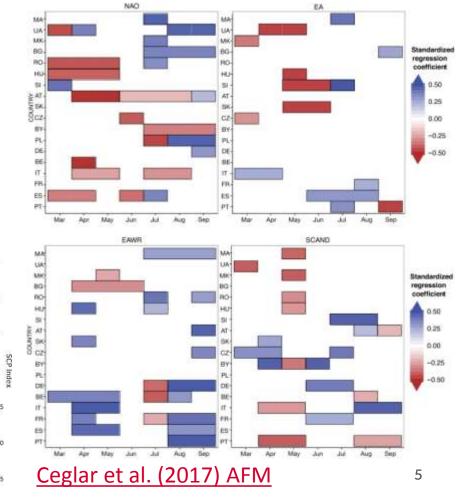
Tasks:

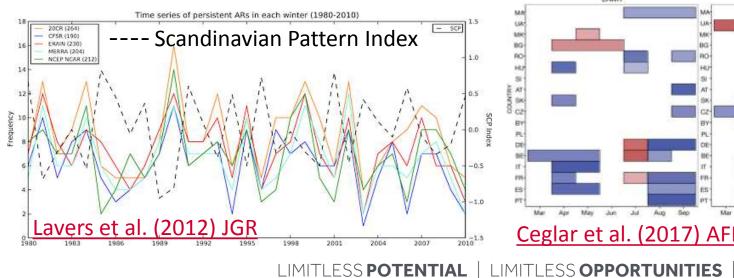
- Compilation of teleconnection indices, weather types, blocking patterns, Atmospheric Rivers and other indicators of atmospheric variability (M10-M13)
- Analysis of temporal evolution of the INDECIS-QCHDS & preliminary/ additional datasets, including derived extremes (M14-M21)
- Analysis of temporal evolution of the INDECIS-ISD (M22-M28)
- Investigation of the physical links between atmospheric variability, extremes and sectorial indices, with special emphasis on drought, heatwaves and agriculture (M24-M33)
- Investigation of time-emergence of observed climate change signal relative to variability (M24-M33)

MOISTURE TRANSPORT & EXTREME RAINFALL

- Example impact relevant metric e.g. Atmospheric Rivers
- Moisture transport linked with flooding
- Promising applications in forecasting and climate prediction
- Energy transport metrics can also be explored (e.g. role in drought/heatwave).

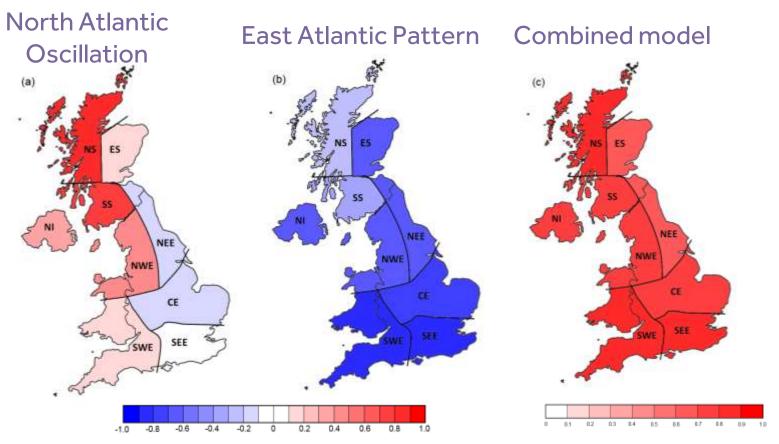
University of


LIMITLESS POTENTIAL | LIMITLESS OPPORTUNITIES | LIMITLESS IMPACT



LIMITLESS **IMPACT**

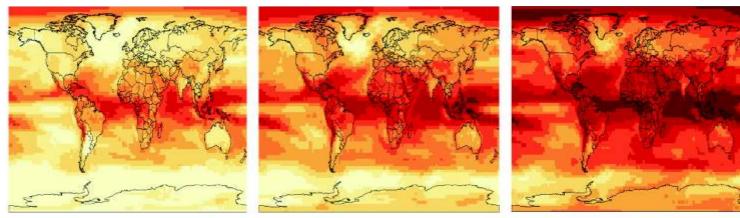
CLIMATE METRIC LINKS TO CIRCULATION INDEX


- Standard evaluation of INDECIS-QCHDS/ISDs:
- Temporal variability/trends and links to circulation pattern indices (e.g. NAO, EA, EAWR, SCAND)
- What is physical basis?

UK WINTER RAINFALL AND CIRCULATION

 Regional correlations of DJF precipitation with the two pressure indices (NAO and EAP) and a multiple linear regression model:

$$P_{lin} = a_i MSLP_{NAO} + b_i MSLP_{EAP} + c_i$$


Based on observation data from 1931-1991 (training period)

Work by Laura Baker

LIMITLESS **POTENTIAL** | LIMITLESS **OPPORTUNITIES** | LIMITLESS **IMPACT**

TIME EMERGENCE OF CLIMATE SIGNALS Reading

Signal-to-noise ratio at end of 21st century (RCP4.5, multi-model quantiles)

16th percentile CMIP5 ensemble

50th percentile CMIP5 ensemble

84th percentile CMIP5 ensemble

Frame et al. 2017

Standard (top) & "cartograms" (maps distorted by local population density, bottom)

LIMITLESS POTENTIAL | LIMITLESS OPPORTUNITIES | LIMITLESS IMPACT

2.2 2.8 3.6 4.4 5.4 6.7 9.0 25.5

WP5 TIMINGS/CONTRIBUTIONS

WP/MONTH	1	2	3	4	5	6	7	8	9	10	11	12	13	14)	15	16	12	18	15	20	21	22	25	24	25	26	21	26	29	30	31.	32	35	34	35	36
WP1					D	1.1					1	11.2					C	1.3																	0	1.4
WP2					D	2.1					1	12.2					0	12.3					0	2.4												
WP3					D	8.1					1	33.2		1	8.80		0	13.4					0	3.5												
WP4					D	4.1					E	14.2		1	34.2		0	4.3		0	4.4		0	4.5												
WP5																	0	5.1					0	5.2								0	15.3			
WP6																	0	6.1					0	6.2					1	6.3		D	6.4			
WP7																	0	7.1					0	7.2					1	7.3					0	37.4

Figure 1. GANTT Diagram of Deliverables.

Table 1. Contributions (persons/month) to each Work Package by members of the consortium.

WP	URV-C3	UREAD	FMI	BRGM/D3E	IRPI(CNR-DTA)	UC/IHC	SMHI	MÉT EIREANN	AEMET	BSC	FFCUL	CZECHGLOBE	KNMI	RMI	METEORO	IPE/CSIC
1	36						1								1	
2	12				17		1	4	6	18			6		1	2
3	66				17		5	4	24	12	13	20	6		0	
4	60	3	25	1	17	32			3	37		24			2	105
5		40			17	75			3	39	16			10	2	
6		10	52	24		41		4		48		10			15	
7	78		25	1	10				54		11				2	8