NCAS Climate Department of Meteorology

WP5 - INDICES TIME EVOLUTION AND RELATIONS WITH THE ATMOSPHERE

European Research Area for Climate Services

Initial plans and status

Richard Allan r.p.allan@reading.ac.uk Len Shaffrey, Emily Black, Ed Hawkins

@rpallanuk

www.met.rdg.ac.uk/~sgs02rpa

.

- Richard Allan (<u>r.p.allan@reading.ac.uk</u>; @rpallanuk)
- Len Shaffrey (<u>I.c.shaffrey@reading.ac.uk</u>; @Len_Shaffrey)
- Emily Black (<u>e.c.l.black@reading.ac.uk</u>; @emily_black3)
- Ed Hawkins (<u>e.hawkins@reading.ac.uk</u>; @ed_hawkins)
- PDRA to recruit, M10-M33 (starting June 2018)

Deliverables:

- **D5.1** Inventory and Catalogue of Indicators of circulation variability for comparison with the INDECIS-ISD (M18)
- D5.2 Report on temporal evolution of the INDECIS-QCHDS and INDECIS-ISD, including the time-emergence of climate-change signals and relation with atmospheric patterns (M24)
- D5.3 Report on the relation between INDECIS-QCHDS and INDECIS-ISD and atmospheric patterns (M33)

STAFF INVOLVEMENT/DURATION

University of

n.d.e.c

ISD - Indices and Sectorial DatasetQCHDS - Quality Controlled & Homogenized Data Set

PLANS

• Tasks:

- Compilation of teleconnection indices, weather types, blocking patterns, Atmospheric Rivers/other indicators of atmospheric variability (M10-M13)
- Analysis of temporal evolution of the INDECIS-QCHDS & preliminary/ additional datasets, including derived extremes (M14-M21)
- Analysis of temporal evolution of the INDECIS-ISD (M22-M28)
- Investigation of the physical links between atmospheric variability, extremes and sectorial indices, with special emphasis on drought, heatwaves and agriculture (M24-M33)
- Investigation of time-emergence of observed climate change signal relative to variability (M24-M33)

CONTRIBUTIONS

WP/MONTH	-	2	3	4	5	6	- 2	6	9	30	11	12	1	14	25	16	17	20	20	20	21	22	21	24	25	20	23	- 20	25	30	30	32	33	36	22	38
WP1						1.1						31.2					D	5																	D	1.4
WP2						2.1						2.20					D	2.3						32.4												
WP3						0.1						33.2			0.0			0.4						33.5												
WP4					, IC	4.1						94.2			4.2			4.3			94.4			94.5												
WPS																	D	5.1						5.2									05.3			
WP6																	D	6.1						2.30						6.30			06.4			
WP7																	D	7.1						97.2						07.8					D	7.4
																																				_

Figure 1. GANTT Diagram of Deliverables.

Table 1. Contributions (persons/month) to each Work Package by members of the consortium.

dМ	URV-C3	UREAD	IWI	BRGMD3E	IRPI(CNR-DTA)	DHI/DN	IHWS	MÉT EIREANN	AEMET	BSG	FFCUL	CZECHGLOBE	IWNN	IMA	METEORO	IPE/CSIC
1	36						1								1	
2	12	*			17		1	4	6	18			6		1	2
3	66				17		5	4	24	12	13	20	6		0	
4	60	3	25	1	17	32			3	37		24			2	105
5		40			17	75			3	39	16			10	2	
6		10	52	24		41		4		48		10			15	
7	78		25	1	10				54		11				2	8

MOISTURE TRANSPORT & EXTREME RAINFALL

- Example impact relevant metric e.g. Atmospheric Rivers
- Moisture transport linked with flooding
- Promising applications in forecasting and climate prediction
- Energy transport metrics can also be explored (e.g. role in drought/heatwave).
- Links to atmospheric circulation patterns e.g. <u>Brown (2017) IJOC</u>

CLIMATE METRIC LINKS TO CIRCULATION INDEX

- Standard evaluation of INDECIS-QCHDS/ISDs:
- Temporal variability/trends and links to circulation pattern indices (e.g. NAO, EA, EAWR, SCAND) e.g. <u>Ummenhofer et al. (2017) GRL</u>
- What is physical basis?

UK WINTER RAINFALL AND CIRCULATION

7

 Regional correlations of DJF precipitation with the two pressure indices (NAO and EAP) and a multiple linear regression model:

 $P_{lin} = a_i MSLP_{NAO} + b_i MSLP_{EAP} + c_i$

Based on observation data from 1931-1991 (training period)

Baker et al. (2017) IJOC - to appear

Atmospheric precursors to heavy 3hr summer rainfall events (<u>Blenkinsop et al. 2016</u>) - extends daily analysis (<u>Allan et al. 2015</u>; <u>Champion et al. 2015</u>)

MORE ADVANCED METRICS (RICARDO TRIGO)

MORE ADVANCED METRICS (RICARDO TRIGO)

Indecis

Spatial signature of **Blocking** vs **Ridge**

Sousa et al. 2017 Clim. Dyn.

MORE ADVANCED METRICS (RICARDO TRIGO)

Indecis Sectorial Climate Services

TIME EMERGENCE OF CLIMATE SIGNALS

Signal-to-noise ratio at end of 21st century (RCP4.5, multi-model quantiles)

16th percentile CMIP5 ensemble

50th percentile CMIP5 ensemble

84th percentile CMIP5 ensemble

Standard (top) & "cartograms" (maps distorted by local population density, bottom) Slide from Ed Hawkins

LIMITLESS POTENTIAL | LIMITLESS OPPORTUNITIES | LIMITLESS IMPACT

n.d.e.c.i

SUMMARY UNIVERSITY OF READING WP5

- Indices Time Evolution and Relations with the Atmosphere (inc. lag/lead)
- Includes investigating trends and time emergence of climate signals
- Project Linkages:
 - Provide feedback on Indices developed in WP2-4 including through initial analysis of preliminary products
 - exploit/provide input to reanalysis/model-based products through WP6
 - Develop further inter-project linkages (this meeting and early 2018)
- Resources primarily available June 2018 May 2020
- Particular emphasis on rainfall extremes including links to atmospheric moisture but also drought and opportunities to link with energy sector through Emily Black/David Brayshaw (also e.g. Jerez et al. 2013)
- Also emphasis on influence of blocking patterns via Ricardo Trigo et al.

WP5 ACTION LIST

- Project tasks/deliverables as proposal
- Meet with UK partners to discuss plans; begin recruiting process (15/2/2018, UREAD)
- Send email early 2018 to WP5 list (once finalised) to coordinate activities (15/2/2018, UREAD/IRPI/UC-IHC/AEMET/BSC/FFCUL/RMI/METEORO)
- Begin developing initial list of atmospheric circulation metrics (15/6/2018, as above)
- Ed Hawkins to liaise with WP2 on datarescue/Scotland data (15/4/2018, UREAD/KNMI)
- Specifically link with (to note, not formal actions):
 - David Brayshaw (Reading) on energy sector
 - Ricardo Trigo (FFCUL) on atmospheric blocking/ridge patterns
 - Liliana Vela (Meteo-RO) on reanalysis/WP6 + time emergence
 - Jose Gutierrez (UC-IFCA) on ability of seasonal forecast models to capture patterns of relevance to indices/impacts
 - Sergio Vincente-Serrano (IPE/CSIC) moisture/energy flux diagnostics
 - Gerard der Schrier (KNMI) further datasets to suggest for WP5 (e.g. hourly rainfall, TOA radiation, UK newspaper clippings re 1921 drought)
 - Enric Aguilar (URV) Consider Tourism as case study