Department of Meteorology

EARTH'S ENERGY AND WATER **CYCLES: ONGOING PROJECTS**

@rpallanuk

Summary of current research projects and results

NERC SCIENCE OF TH ENVIRONMEN

LIMITLESS **OPPORTUNITIES** LIMITLESS IMPACT LIMITLESS **POTENTIAL**

CURRENT AND RECENT PROJECTS

NERC CWC projects (PAGODA, HYDEF)

- DEEP-C Understanding changes in Earth's energy balance in the context of current climate change and variability (NERC)
- SINATRA Work task on atmospheric precursors to intense summer rainfall (NERC FFIR programme)
- DACCIWA Clouds, Radiation & Aerosol over West Africa (EU)
- 3D Shortwave Radiative Kernels of Marine Boundary-layer Clouds (DoE)
- NCEO Cloud, Radiation & Precip studies & prep for Earthcare
- TAMSAT changes in Africa rainfall including PhD project
- Simple model for precipitation (PhD project)

3

EARTH'S RADIATIVE ENERGY BUDGET AND CLIMATE

- Earth's radiative energy budget represents a nexus between radiative forcings, feedbacks & climate response
- Powerful constraint upon hydrological cycle
- Versatile diagnostic of the impact of clouds, aerosol, water vapour greenhouse effect and atmospheric circulation

A SIMPLE ENERGY BALANCE MODEL OF EARTH'S CLIMATE

- Oceans dominate the heat capacity of climate system
- Temperature change linked to radiative forcings (ΔF) and response which depends on feedbacks Y.
- Heat uptake by the deep ocean is important in the timescale and variability of climate change
- Simple models are useful for interpreting climate change

$$\frac{d\Delta T_{m}}{dt} = \frac{1}{C_{m}} (\Delta F - Y\Delta T_{m} - D)$$

$$D = c(\Delta T_{m} - \Delta T_{D})/d$$
(c) Surface Temperature
$$\int_{0.5}^{0.6} \int_{0.5}^{0.6} \int_{0.5$$

e.g. <u>Allan et al. (2014) Surv. Geophys</u>

5

DIAGNOSING EARTH'S ENERGY PATHWAYS IN THE CLIMATE SYSTEM: DEEP-C

- 4-year NERC consortium (Reading/Met Office/NOC) DEEP-C project structure tackling the questions:
- 1. What explains apparent slowing in global surface warming rate since around 2000
- 2. Where is excess energy due to rising greenhouse gas concentrations currently accumulating in the climate system?

~sgs02rpa/research/DEEP-C.html

UNFORCED VARIABILITY IN EARTH'S ENERGY BUDGET

- Diverse range of unforced variability in CMIP5 preindustrial control simulations
- Left: variations in total energy content of Earth's climate system across CMIP5 simulations
 Palmer & McNeall (2014) ERL

7

RECONSTRUCTING GLOBAL RADIATIVE FLUXES SINCE 1985

Combine CERES/ARGO accuracy, **ERBS WFOV stability and** reanalysis circulation patterns to reconstruct radiative fluxes

ERA Interim spatial anomalies

45N

0

45S

100

0

0.77

 ΔT_d

UNDERSTANDING CHANGES IN NET IMBALANCE

Analysis using simple energy balance model Allan et al. (2014) GRL <u>supplementary</u>

IMPLICATIONS FOR CLIMATE SENSITIVITY?

?Can comparisons tell us about how sensitive climate is to radiative forcing <u>Otto et al. (2013)</u> Nature Geosci

Infilling data gaps influences surface temperature trends (<u>Cowtan &</u> <u>Way, 2013 QJRMS</u>) and ocean heat content (<u>Lyman &</u> <u>Johnson 2014 J.</u> <u>Clim.</u>)

DISCREPANCY BETWEEN RADIATION BUDGET & OCEAN HEATING

- Large ocean heating anomaly in 2002
- Inconsistent with radiation budget observations and simulations
- Changing observing system influence?
- Slight drop in net flux 1999-2005?

Smith et al. (2015) GRL

WHERE IS THE HEAT GOING? NEW ESTIMATES OF SURFACE ENERGY FLUX

WHERE IS THE HEAT GOING? CHANGES IN SURFACE ENERGY FLUX

- Changes in energy fluxes 1986-2000 to 2001-2008
- Surface energy flux dominated by atmospheric transports
- Contrasting model pattern of change
- Are reanalysis transports reliable?

FEEDBACKS ON INTERNAL VARIABILITY?

← **Right:** less heat flux out of east Pacific during warm phases?

- Models may underestimate interdecadal variability
- Are there positive heat flux feedbacks which amplify internal climate variability?

EARTH'S ENERGY BUDGET AND PRECIPITATION RESPONSE

(2012) Surv. Geophys ; Pendergrass & Hartmann (2012) GRL

SIMPLE MODEL FOR GLOBAL PRECIPITATION PhD project (Zahra Mousavi, Keith Shine)

METRICS FOR GLOBAL PRECIPITATION

- Metrics linking emissions to precipitation response
- Precipitation and temperature response to constant emissions after 2008

Shine et al. (2015) in prep:

EARTH'S ENERGY BUDGET & REGIONAL CHANGES IN THE WATER CYCLE

- Regional precipitation changes sensitive to asymmetries in Earth's energy budget
- N. Hemisphere cooling: stronger heat transport into hemisphere
- Reduced Sahel rainfall from:
- Anthropogenic aerosol cooling 1950 1980s: <u>Hwang et al. (2013) GRL</u> →
- Asymmetric volcanic forcing e.g.
 <u>Haywood et al. (2013) Nature Climate</u>

- Sulphate aerosol effects on Asian monsoon e.g. <u>Bollasina et al.</u> <u>2011 Science</u> (left)
- Links to drought in Horn of Africa? <u>Park et al. (2011) Clim Dyn</u>
- GHGs & Sahel rainfall recovery?

Dong & Sutton (2015) Nature Clim.

OBSERVED ASYMMETRY IN EARTH'S ENERGY BUDGET

Loeb et al. (2015) in review

- Observed interhemispheric imbalance in Earth's energy budget
- Not explained by albedo: brighter NH surface but more clouds in SH (<u>Stephens et al. 2015</u>)
- Imbalance explains position of ITCZ (<u>Frierson et al. 2013</u>)

EQUATORIAL HEAT TRANSPORT AND MODEL PRECIPITATION BIAS

TAMSAT PROJECTS: RECENT TRENDS IN AFRICA RAINFALL

- Evaluating and understanding recent changes in Africa rainfall (Ross Maidment, Emily Black)
- PhD project extending this work: changes in impact-relevant metrics for Africa (Caroline Dunning, Emily Black)

DYNAMICS-AEROSOL-CHEMISTRY-CLOUD INTERACTIONS IN WEST AFRICA (DACCIWA)

- EU consortium lead by Peter Knipperts (see Knipperts et al. 2015 BAMS)
- Radiation Budget & Clouds: Christine Chiu, Thorwald Stein, Peter Hill

Figure 1.4: Geographical overview of the DACCIWA study area highlighted in blue. Supersites and planned radiosonde stations (black markers) and synoptic weather stations (red dots, proportional to available number of reports in the WMO Global Telecommunication System from 1998–2012).

SUSCEPTIBILITY OF CATCHMENTS TO INTENSE RAINFALL & FLOODING (<u>SINATRA</u>)

- 4-year NERC consortium
- Work task 1.3 looking at precursors to summer flooding (Adrian Champion)
- Initial work concentrating on moisture transport

Work-tasks in the SINATRA project consortium

ATMOSPHERIC RIVERS DON'T EXPLAIN HEAVY SUMMER RAINFALL EVENTS

- Initially investigated influence of intense moisture transport events (Atmospheric Rivers or ARs)
- Relatively few ARs associated with extreme rainfall
- Very few extreme daily rainfall events in summer linked to ARs

25

MOISTURE CHARACTERISTICS ASSOCIATED WITH HEAVY DAILY RAINFALL EVENTS

- Initial evaluation of moisture characteristics associated with heavy daily rainfall
- Dependence on region/season
- Now moving to hourly data and CAPE-based diagnostics

CONCLUSIONS

- Earth's energy imbalance
 - Heating of Earth continues at rate of ~0.6 Wm⁻²
 - Variability from radiative forcings & unforced ocean changes
 - Where is the excess energy going in the oceans?
 - Toward reconciled ocean heating and radiation budget changes
 - Do feedbacks amplify/extend hiatus/surge events?
- Energy budget constraint on precipitation responses
 - Simple models for global precipitation
 - Greenhouse gas & absorbing aerosol forcing supress global precipitation response to warming ("hydrological sensitivity")
- Inter-hemispheric heating, moisture budget & unforced variability affect regional responses and climate model biases
 - Radiative forcing & unforced variability influence African rainfall trends
- Local-scale precursors and characteristics crucial for impacts