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ABSTRACT: The dependence of much of Africa on rainfed agriculture leads to a high vulnerability to fluctuations in
rainfall amount. Hence, accurate monitoring of near-real time rainfall is particularly useful, for example in forewarning
of possible crop shortfalls in drought-prone areas. Unfortunately, ground based observations are often inadequate. Rainfall
estimates from satellite-based algorithms and numerical model outputs can fill this data gap, however rigorous assessment
of such estimates is required. In this case, three satellite based products (NOAA-RFE 2.0, GPCP-1DD and TAMSAT) and
two numerical model outputs (ERA-40 and ERA-Interim) have been evaluated for Uganda in East Africa using a network
of 27 rain gauges. The study focuses on the years 2001–2005 and considers the main rainy season (February to June). All
data sets were converted to the same temporal and spatial scales. Kriging was used for the spatial interpolation of the gauge
data. All three satellite products showed similar characteristics and had a high level of skill that exceeded both model
outputs. ERA-Interim had a tendency to overestimate whilst ERA-40 consistently underestimated the Ugandan rainfall.
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1. Introduction

The economy of most African countries is dependent on rainfed
agriculture and hence the African continent is highly sensitive
to variations in rainfall amount. It follows that accurate mea-
surement of rainfall should be a high priority in Africa. In spite
of this, Africa has the lowest density of raingauges for any con-
tinent apart from Antarctica and operational radar installations
are almost non-existent (Washington et al., 2006). Given the
lack of ground based observations, indirectly calculated rain-
fall estimates from satellite imagery and Numerical Weather
Prediction (NWP) model outputs assume greater importance.
There are many satellite-based rainfall algorithms and many
model products. Rigorous evaluation of these methods is nec-
essary with a view both to operational uses of rainfall data and
also to improving knowledge of the African rainfall climate.
Perversely, the sparseness of ground based observations makes
evaluation more difficult than elsewhere and comparisons must
be carried out using methods which take due account of this
problem.

Unfortunately, only a few such evaluations have been per-
formed for Africa. Studies of satellite algorithms include
Thorne et al. (2001) for southern Africa, Ali et al. (2005) and
Jobard et al. (2007) for the west African Sahel, and Dinku et al.
(2007, 2008) for Ethiopia. Results from such studies show large
differences in algorithm performance depending on season and
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local climate. For example the NOAA-RFE 2.0 algorithm per-
forms well in west Africa (Jobard et al., 2007) but poorly in
Ethiopia (Dinku et al., 2007). Conversely, the CMORPH algo-
rithm shows good agreement with gauge data in Ethiopia but
strongly underestimates rainfall amount in the Sahel. The vari-
able performance may be explained by the strong spatial and
temporal variations in climate related to the passage of the
Inter-Tropical Convergence Zone (ITCZ), the influence of other
large-scale climate features and the effects of oceans and topog-
raphy. Algorithms which show consistent performance over a
number of regions tend to be those which rely on local calibra-
tion, such as the TAMSAT algorithm (described in Section 3).

Evaluation of NWP model rainfall over Africa includes Poc-
card et al. (2000), Funk and Verdin (2003) and Diro et al.
(2009). In general, these studies show that model products tend
to be better when averaged over large areas (>106 km2) and
time steps (monthly and longer), and perform worse at finer
scales. The model rainfall estimates also tend to be less reli-
able in the tropics than in mid-latitudes. Where model products
have been compared to satellite estimates, the satellite usually
gives a more accurate representation of the rainfall relative to
raingauge measurements.

The study described in this paper has been carried out
as part of the FOODSEC action (http://mars.jrc.ec.europa.
eu/mars/About-us/FOODSEC) of the European Commission
Joint Research Centre (JRC) which produces agrometeoro-
logical bulletins in various countries of Sub-Saharan Africa
with a focus on the Horn of Africa. The aim of this paper
is to compare satellite and model-based methods for pro-
viding quasi-real-time rainfall estimates for Uganda during
the main crop-growing season which runs from February to
June. Three satellite algorithms (TAMSAT, NOAA-RFE 2.0

 2012 Royal Meteorological Society



Evaluation of rainfall estimates for Uganda 309

Figure 1. Topographic map of Uganda and location within Africa (inset). This figure is available in colour online at wileyonlinelibrary.com/journal/met

and GPCP-1DD) and two re-analysis model products (ERA-
40 and ERA-Interim) from the European Centre for Medium
Range Weather Forecasts (ECMWF) have been evaluated by
comparison against raingauge observations provided by the
Ugandan Meteorological Service. The time and space scales
of the comparison are dekad and 0.5° respectively. (There are
three dekads in each calendar month. The first two dekads
have 10 days each and the third dekad has between 8 and
11 days depending on the length of the month.) These scales
are appropriate to agricultural applications such as agricul-
tural monitoring and crop-yield prediction (Challinor et al.,
2003).

2. Rainfall climate of Uganda

Uganda is a landlocked country in Eastern Africa located on
the Equator (Figure 1). The central part of the country is
about 1000 m above sea level with lower-lying land to the
northwest and mountainous areas in the east and southwest.
Africa’s largest lake, Lake Victoria, occupies the south-eastern
corner of the country. Other significant bodies of water include
Lake Albert in the west and Lake Kyogu in the centre. The
rainfall in Uganda is largely determined by the passage of
the ITCZ modulated by the complex topography and the
presence of the lakes. Recent research has shown that the Indian
Ocean, the Red Sea and the coastal waters off South Africa
are also moisture sources for Uganda (Gimeno et al., 2010).
Southern Uganda experiences two distinct rainfall seasons
(February to June and August to November) coinciding with
the northward and southward passage of the ITCZ. In the north
of the country, these two seasons merge into one lasting from
April to October. Highest totals are generally observed in the
mountainous regions in the south, west and east and in the
vicinity of Lake Victoria (see Figure 1) which is sufficiently
large to create significant local variations in climate. The lowest
rainfall totals are found in the north east of the country on
the border with Kenya and Sudan where drought is a common
occurrence (NARO, 2001). There is high uncertainty in future
predictions of rainfall in this region of Africa, although current

model projections tend to indicate an increase in annual mean
precipitation in East Africa in general (IPCC, 2007).

3. Data and data preparation

3.1. Satellite data

Three satellite algorithms commonly used in African studies
were included in this comparison. These were NOAA-RFE 2.0,
GPCP-1DD and TAMSAT.

3.1.1. NOAA-RFE 2.0 (National Oceanic and Atmospheric
Administration – African Rainfall Estimates Version 2.0)

The NOAA-RFE 2.0 algorithm (hereinafter referred to as RFE
2.0, for full description see http://www.cpc.ncep.noaa.gov/pro
ducts/fews/RFE2.0 tech.pdf) combines satellite thermal infra-
red (TIR) data from Meteosat with passive microwave (PMW)
data from the AMSU and SSM/I satellite instruments and
Global Telecommunication System (GTS) raingauge data. Ini-
tial rainfall estimates are calculated from the TIR data using the
GOES Precipitation Index or GPI (Arkin and Meissner, 1987).
The GPI algorithm uses the TIR imagery to identify clouds with
tops colder than a threshold temperature of 235 K. Such clouds
are designated as raining and a rain rate of 3 mm per hour
is assumed. Estimates are also generated from the PMW data
using the method of Ferraro and Marks (1994). The GPI and
PMW estimates are then merged using weighting coefficients
inversely related to the mean square difference between the
satellite estimates and gauge data. In a final step, the estimates
are adjusted to agree with the GTS raingauge data.

3.1.2. GPCP-1DD (Global Precipitation Climatology
Centre – One Degree Daily)

The Global Precipitation Climatology Project (GPCP) produces
a monthly product (GPCP-V2.1) and a 1° daily product (GPCP-
1DD) (Huffman et al., 2001). The GPCP-V2.1 monthly esti-
mates are an amalgam of geostationary TIR, PMW imagery
from polar orbiting satellites and raingauge data available from
the GTS (Adler et al., 2003) and are widely used in evaluating
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climate model simulations (e.g. Allan et al., 2010). The GPCP-
1DD product, as the name suggests, is generated at a daily time
step with a spatial resolution of 1°. GPCP-1DD is similar in con-
cept to the GPI but the temperature threshold is determined for
each 1° square by comparison with rainfall images generated
by the GPROF algorithm (Kummerow et al., 2001) from PMW
data. A rain rate is then assigned to each raining TIR pixel so
that the total monthly rainfall matches the GPCP-V2.1 monthly
total.

3.1.3. TAMSAT (Tropical Applications of Meteorology using
SATellite data and ground based observations)

The TAMSAT methodology (Grimes et al., 1999) is also
similar to the GPI in that it attempts to define a linear
relationship between the number of hours for which pixel
temperature is colder than a specified threshold (the cold
cloud duration or CCD) and rainfall amount. It differs from
GPI in that both the temperature threshold and the lin-
ear parameters are determined by comparison with raingauge
data. Calibrations are carried out separately for each calen-
dar month within empirically determined climate zones. The
TAMSAT algorithm differs from the other satellite methods
described above in that there is no merging with contempo-
raneous raingauge data. Calibrations are based on historical
data and are assumed to be invariant over long time peri-
ods.

3.2. Re-analysis data

ERA-40 is a re-analysis data set produced by the European Cen-
tre for Medium-Range Weather Forecasts (ECMWF) (Uppala
et al., 2005). This uses a fixed NWP model system combined
with data-assimilation of observational data to generate a con-
sistent set of model outputs covering the period from 1957
to 2002. However, since 2002, ERA-40 has been continually
updated. The model uses 60 levels in the vertical and T159
representation of horizontal fields approximating to a horizontal
resolution of 1.125° in the tropics.

ERA-Interim (Dee et al., 2011) is the updated version of
ERA-40 with improved model formulation and data assimila-
tion. It has finer horizontal resolution than ERA-40 (approx-
imately 0.8° in the tropics) but the same vertical resolution.
Dekadal rainfall totals were computed from the re-analysis data
by summing the appropriate number of 6 hour forecasts.

3.3. Raingauge data

Dekadal raingauge totals were provided by the Ugandan
Met Service for 27 locations covering the months Febru-
ary to June between 2001 and 2005 (Figure 2). The data
were subject to three levels of quality control. In the first
step, manual checks for suspicious records were carried out;
in the second step, CLICOM software (http://www.wmo.
int/pages/prog/wcp/wcdmp/clicom/index en.html) was used to
automatically flag and cross check abnormal records. In
the final step, further checks were performed including
verification of station location, identification of repeated
data, identification of outliers from expected values, com-
parative tests using neighbouring stations and investigation
of suspicious zero values (i.e. missing data or zero rain-
fall).

Figure 2. Dots denote gauge locations and shaded blocks denote the
0.5° × 0.5° grid-squares used in this study. If a gauge is located on a

boundary between blocks, both blocks are included.

3.4. Data processing

All data sets were converted to a regular 0.5° by 0.5° grid. For
TAMSAT and RFE 2.0, this is simply a matter of averaging
over the appropriate number of pixels. GPCP-1DD data were
bi-linearly interpolated to this spatial resolution. For the ERA
model outputs, simple inverse distance interpolation was used
to re-grid the rainfall totals to the correct spacing. The rain-
gauge data were converted to the same spatial support using
block kriging.

Many studies (e.g. Creutin and Obled, 1982; Tabios and
Salas, 1985; Goovaerts, 2000) have shown that, when applied
appropriately, kriging is a more accurate interpolator of rainfall
than other methods. A crucial element of the kriging process
is the calculation of a variogram which contains information
on the variation with distance of the correlation between two
points. Ideally a variogram should be calculated for each dekad
based on the data included in that dekad. Given the shortage
of data in this case, climatological variograms (Lebel et al.,
1987; Grimes and Pardo-Iguzquiza, 2010) were computed by
pooling all data for all years for each calendar month. The
inherent assumption that rainfall events in a given month have
similar spatial properties is not unreasonable given that almost
all Ugandan rainfall results from local convection modulated
by the annual cycle of the ITCZ.

One problem with kriging rainfall is that rainfall occurrence
and rainfall amount have different spatial correlation prop-
erties and therefore should be treated separately (Barancourt
et al., 1992; Grimes and Pardo-Iguzquiza, 2010). Fortunately,
for dekadal totals in Uganda from March to June, zero rain-
fall was sufficiently rare that there was no need for separate
treatment. However, for February the rainfall was more inter-
mittent (Figure 3) and in this case the double kriging approach
of Barancourt et al. (1992) was applied in which indicator krig-
ing is used to define a rainy area and ordinary kriging is used to
calculate rainfall amount within the rainy area. Unfortunately,
there were insufficient rainfall occurrences in February to gen-
erate a reliable amount variogram, hence the March variogram
was used instead. This seems reasonable as the spatial structure
of the rainfall fields is unlikely to differ significantly over the
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Figure 3. Kriged rainfall (mm) given by blocks and gauge totals (mm) denoted by dots, February Dekad 1 2003. This figure is available in
colour online at wileyonlinelibrary.com/journal/met

Figure 4. Climatological rainfall amount variograms computed from the gauge data for (a) March (also used for February), (b) April, (c) May
and (d) June.

2 months. Rainfall amount variograms used in the analysis are
shown in Figure 4.

The importance of kriging the gauge data to the same
spatial scale as the model and satellite rainfall estimates is
demonstrated by Figure 5 which shows kriged grid square
averages plotted against the individual gauge observations for
all dekads. It can be seen that the effect of kriging is to reduce
high values and increase low values. While it is impossible

to verify that this is accurate without a dense array of gauges
in each grid square, it is physically reasonable as high gauge
observations will most likely correspond to a direct hit on the
gauge by the most intense part of a storm, implying that the
average over the grid square should be lower. Conversely, low
gauges values are expected to be less than the grid square
average. Results are consistent with those described by Flitcroft
et al. (1989) and Grimes et al. (2003).
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Figure 5. Scatterplot of collocated kriged block estimates against
observed dekadal gauge precipitation. Dashed line indicates one-to-one

correspondence and solid line gives the linear regression best fit.

4. Results

4.1. Grid square average rainfall estimates

To avoid problems connected with inaccuracy of kriged esti-
mates far from gauges, only grid squares containing at least

one gauge were used in the analysis. Those grid squares are
shown shaded in Figure 2. Quantitative comparison of the five
estimation approaches was based on calculation of bias, root
mean square difference (RMSD) and coefficient of determina-
tion (r2) relative to the kriged gauge data and according to the
formulae given below:
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where Rij , Gij represent respectively rainfall estimate and
kriged gauge value for grid-square i, dekad j ; N is the total
number of dekads and M is the number of grid squares.

Scatterplots for each product and month for all grid
squares are shown in Figure 6. Spatially averaged values for
each dekad are shown in Figure 7. A summary of statistics
according to Equations (1)–(3) are given in Tables 1 and 2

Table 1. Comparison of gridded precipitation datasets with collocated, dekadal kriged gauge observations: shown are the number of dekads in
each comparison (N), the mean bias, root mean squared difference (RMSD), coefficient of determination (R2) and the fractions of dekads in the

comparison that are within one or two standard errors (s.e.) of the observations.

Month Product N Bias (mm) RMSD (mm) R2 <1 s.e. <2 s.e.

February ERA-40 177 −2.16 13.88 0.18 0.55 0.87
ERA-Interim 177 24.94 34.52 0.14 0.30 0.39
TAMSAT 177 −2.52 11.82 0.17 0.60 0.92
RFE 2.0 177 3.33 17.26 0.20 0.62 0.85
GPCP 177 2.27 15.14 0.18 0.51 0.75

March ERA-40 180 −7.70 16.06 0.43 0.44 0.77
ERA-Interim 180 34.75 47.35 0.35 0.16 0.30
TAMSAT 180 3.04 13.66 0.53 0.54 0.81
RFE 2.0 180 8.83 22.71 0.54 0.33 0.67
GPCP 180 3.44 14.76 0.62 0.48 0.80

April ERA-40 120 −14.97 29.34 0.29 0.53 0.81
ERA-Interim 120 36.66 52.74 0.35 0.29 0.48
TAMSAT 120 3.64 21.88 0.41 0.53 0.82
RFE 2.0 120 5.68 22.29 0.60 0.56 0.87
GPCP 120 5.33 28.45 0.34 0.48 0.78

May ERA-40 300 −19.62 28.22 0.21 0.33 0.68
ERA-Interim 300 2.49 24.76 0.21 0.49 0.79
TAMSAT 300 −2.52 18.43 0.38 0.62 0.86
RFE 2.0 300 −7.63 20.24 0.46 0.54 0.87
GPCP 300 −0.72 17.84 0.56 0.62 0.86

June ERA-40 297 −4.42 22.99 0.11 0.43 0.74
ERA-Interim 297 −2.72 22.88 0.08 0.27 0.67
TAMSAT 297 −2.78 13.84 0.27 0.55 0.85
RFE 2.0 297 −8.18 16.88 0.34 0.32 0.75
GPCP 297 −2.86 13.73 0.39 0.53 0.85

All months ERA-40 1074 −10.02 23.25 0.27 0.43 0.75
ERA-Interim 1074 13.97 34.63 0.27 0.32 0.57
TAMSAT 1074 −0.97 15.99 0.55 0.57 0.85
RFE 2.0 1074 −1.73 19.60 0.52 0.46 0.80
GPCP 1074 0.56 17.49 0.58 0.54 0.82

Values in bold denote the most favourable comparison.
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Figure 6. Comparison of kriged gauge rainfall measurements with model and satellite-based rainfall estimates using all grid squares for each
estimation method and month considered in this study. Each cross denotes the rainfall for an individual 0.5° by 0.5° block.

Table 2. As Figure 1 but for an average over all collocated grid-boxes
over the domain considered for each dekad.

Product N Bias
(mm)

RMSD
(mm)

R2 <1 s.e. <2 s.e.

ERA-40 54 −9.86 18.09 0.41 0.52 0.80
ERA-Interim 54 14.06 26.55 0.39 0.44 0.63
TAMSAT 54 −1.01 10.41 0.72 0.76 0.94
RFE 2.0 54 −1.73 11.00 0.74 0.67 0.96
GPCP 54 0.57 11.81 0.72 0.69 0.94

for Figures 6 and 7, respectively. In general, the satel-
lite methods (TAMSAT, RFE 2.0 and GPCP-1DD) outper-
form the model outputs according to all statistical param-
eters. RFE 2.0 and GPCP-1DD show slightly higher cor-
relation with the gauge data but TAMSAT scores slightly
better on bias and RMSD. As for the re-analysis data,
ERA-Interim has a strong tendency to overestimate in all

months except June, whereas ERA-40 underestimates in all
months.

The kriging process allows calculation of a standard kriging
error for each interpolated value, reflecting the spread of pos-
sible rainfall amounts consistent with the gauge observations.
Assuming a Gaussian distribution, for a perfect estimator one
would expect to find 68% of estimates within 1 standard error
(s.e.) of the kriged value and 95% within 2 s.e. The respective
proportions of estimates within these limits are shown for each
method in Tables 1 and 2. Again, the satellite methods are con-
sistently better than the model outputs with TAMSAT generally
closer to the predicted values than RFE 2.0 or GPCP-1DD.

4.2. Spatial pattern

Rainfall maps for all products, including the kriged esti-
mates are plotted (Figure 8) to assess spatial patterns of the
five estimation methods. The mean rainfall for each month,
expressed in mm per dekad, was calculated using data from
2003 and 2004 for each dekad. These years were chosen as
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Figure 7. Comparison of spatially averaged kriged gauge and rainfall estimates for (a) ERA-40, (b) ERA-Interim, (c) TAMSAT, (d) RFE 2.0
and (e) GPCP-1DD. Each cross denotes the average rainfall over all blocks for an individual dekad. The solid line is the least squares best fit;

the dotted line represents one-to-one correspondence.

they were the only years in this study that had data from all
months. There is more similarity between the satellite prod-
ucts than between the model products. The satellite estimation
methods also show greater resemblance to the kriged out-
put than the model products. They tend to exhibit greatest
spatial variability which is more consistent with high spa-
tial variability of convective rainfall. ERA-40 typically has
smooth fields due to the coarse resolution of the original
model.

The tendency for ERA-Interim to overestimate is clearly vis-
ible (Figure 8(a) and (b)), particularly during the first 3 months
of the rainy season. ERA-40, despite underestimating through-
out most of the season (Figure 8(b)), performs better than ERA-
Interim in giving quantities closer to the kriged block estimates.

4.3. Seasonal cycle

In order to assess the success of the estimation methods in
replicating the mean temporal pattern of the rainfall season,
the mean rainfall over all grid squares was averaged for the
years 2003 and 2004 for each dekad. The average time series
is plotted in Figure 9. It can be seen that all products manage
to capture the shape of the seasonal cycle. Standard errors on
the kriged values were calculated allowing for the correlation
between grid squares (Diro et al., 2009). The shading shows
±1 and 2 s.e. on the kriged values. TAMSAT, RFE 2.0
and GPCP-1DD have approximately two-thirds of the data
values within ±1 s.e., consistent with expected statistics for
accurate estimates. ERA-40 underestimates the seasonal pattern,
especially during the peak dekads while ERA-Interim clearly
has a large positive bias, particularly for the first half of the
season, although it is better than ERA-40 at capturing the shape
of the seasonal cycle.

5. Conclusion

Rainfall plays a crucial role in the livelihoods of most people in
Africa, particularly in respect of the heavy reliance on rainfed
agriculture and its influence in driving the economies of most
nations. Hence, there is a pressing need for a timely and
reliable supply of rainfall data with complete spatial coverage.
Unfortunately, the lack of raingauges across the continent
means alternative methods need to be considered. In this study,
rainfall estimates derived from re-analysis model outputs and
satellite observations have been assessed by comparing them
to spatially interpolated gauge data from Uganda. The use
of kriging ensured that the gauge data were interpolated to
the correct spatial scale and provided an assessment of the
uncertainty associated with the area-average values.

In general the satellite-based methods outperformed the re-
analysis products in estimating the dekadal rainfall amounts.
TAMSAT, RFE 2.0 and GPCP-1DD gave very similar results
with biases less than 2 mm per dekad, RMSD less than 20 mm
per dekad and r2 greater than 0.5 for comparisons covering all
months and grid squares. RFE 2.0 and GPCP-1DD showed
a slightly higher correlation with the gauge data, whereas
TAMSAT scored slightly better on bias and RMSD for most
months. Similar statistics were found when the spatial average
over all grid boxes for each dekad was considered, with biases
less than 2 mm per dekad, RMSD less than 12 mm per dekad
and r2 greater than 0.7 for the satellite estimates. ERA-Interim
showed a persistent tendency to overestimate (14 mm per
dekad on average with higher bias at the start of the season).
ERA-40 tended to underestimate throughout (10 mm per dekad
on average).

The satellite products produced very similar spatial patterns
and with fine detail consistent with the high spatial variability
expected from convective rainfall. They also showed more
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(a)

(b)

Figure 8. (a) Maps for each rainfall product and kriged estimates of grid squares included in the analysis calculated from the mean rainfall for
2003 and 2004 (mm per dekad). (b) Rainfall anomaly for each rainfall product with respect to the kriged estimates. Grid squares with dashed
outline indicates positive anomalies, whilst solid outline gives anomalies equal to or less than zero. This figure is available in colour online at

wileyonlinelibrary.com/journal/met

resemblance to the kriged block estimates than the model
outputs. The overestimation by ERA-Interim was particularly
evident.

The comparison of the satellite algorithms is complicated by
the fact that the GPCP-1DD and RFE2.0 algorithms both make
use of contemporaneous GTS raingauge data which may also be
included in the validating data set. The fact that the TAMSAT
method performs well over a number of years on a single

calibration demonstrates that for convective rainfall a locally
calibrated algorithm using only TIR imagery can perform at
least as well as more sophisticated algorithms making use of
multiple data sources. This is an encouraging result for African
national meteorological services that have relatively easy access
to Meteosat TIR data and may have many secondary raingauges
which are not available internationally but can be used to
improve the local calibration of the TAMSAT algorithm.
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Figure 9. Time series comparison of mean dekadal rainfall estimates and kriged gauge for 2003 and 2004; ERA-40 (thick dashed line),
ERA-Interim (thin dashed line), TAMSAT (thick dotted line), RFE 2.0 (thin dotted line), GPCP-1DD (thin solid line) and kriged gauge (thick
solid line). The dark grey shading represents the 68% confidence interval and light grey shading the 95% confidence interval on the kriged gauge

values.
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