New Generation of Climate Models Track Recent Unprecedented Changes in Earth's Radiation Budget Observed by CERES

- Norman G. Loeb^{1*}, Hailan Wang², Richard Allan³, Timothy Andrews⁴, Kyle Armour⁵, Jason N.S. Cole⁶, Jean-Louis Dufresne⁷, Piers Forster⁸, Andrew Gettelman⁹, Huan Guo¹⁰, Thorsten Mauritsen¹¹, Yi Ming¹⁰, David Paynter¹⁰, Cristian Proistosescu^{12,13}, Malte F. Stuecker¹⁴, Ulrika Willén¹⁵, Klaus Wyser¹⁵ 1
- 2
- 3
- 4
- 5 ¹NASA Langley Research Center, Hampton, VA, USA
- 6 ²Science Systems and Applications, Inc., Hampton, Virginia, USA
- ³Department of Meteorology and National Centre for Earth Observation, University of 7
- 8 Reading, Reading, UK
- 9 ⁴Met Office Hadley Centre, Exeter, UK
- ⁵Department of Atmospheric Sciences, University of Washington, Seattle, WA, USA 10
- ⁶Canadian Centre for Climate Modelling and Analysis, Environment and Climate Change 11
- 12 Canada, Victoria, BC, Canada
- ⁷Laboratoire de Météorologie Dynamique, Intitut Pierre et Simon Laplace, Paris, France 13
- ⁸School of Earth and Environment, University of Leeds, Leeds, UK 14
- ⁹National Center for Atmospheric Research, Boulder, CO, USA 15
- ¹⁰NOAA/Geophysical Fluid Dynamics Laboratory, Princeton University, Princeton, NJ, 16 17 USA
- ¹¹Department of Meteorology, Stockholm University, Stockholm, Sweden 18
- 19 ¹²Joint Institute for the Study of the Atmosphere and Ocean, University of Washington, 20 Seattle, WA, USA
- 21 ¹³Departments of Atmospheric Sciences and Geology, University of Illinois Urbana-
- 22 Champaign, IL, USA
- 23 ¹⁴Department of Oceanography and International Pacific Research Center, School of
- 24 Ocean and Earth Science and Technology, University of Hawai'i at Mānoa, Honolulu, 25 HI. USA
- 26 ¹⁵Rossby Centre, Swedish Meteorological and Hydrological Institute, Norrköping, 27 Sweden

28

29 **Key Points**

- 30 • There is good agreement between radiation budget variations observed by CERES and 31 simulated by seven state-of-the-art climate models
- 32 • The relationship between global mean net TOA radiation and surface temperature is 33 sensitive to changes in regions dominated by low clouds
- 34 • Most models underestimate shortwave flux changes in response to SST changes over 35 the east Pacific, suggesting too weak a "pattern effect"
- 36
- 37

^{*} Corresponding Author: Norman G. Loeb, norman.g.loeb@nasa.gov; NASA Langley Research Center, Hampton, VA 21 Langley Boulevard, Hampton, VA 23681

38

Abstract

39 We compare top-of-atmosphere (TOA) radiative fluxes observed by the Clouds and the 40 Earth's Radiant Energy System (CERES) and simulated by seven general circulation 41 models forced with observed sea-surface temperature (SST) and sea-ice boundary 42 conditions. In response to increased SSTs along the equator and over the eastern Pacific (EP) following the so-called global warming "hiatus" of the early 21st century, simulated 43 44 TOA flux changes are remarkably similar to CERES. Both show outgoing shortwave and longwave TOA flux changes that largely cancel over the west and central tropical Pacific, 45 46 and large reductions in shortwave flux for EP low-cloud regions. A model's ability to 47 represent changes in the relationship between global mean net TOA flux and surface 48 temperature depends upon how well it represents shortwave flux changes in low-cloud 49 regions, with most showing too little sensitivity to EP SST changes, suggesting a "pattern 50 effect" that may be too weak compared to observations.

51

Plain Language Summary

52 Earth's radiation budget describes the balance between radiation from the sun intercepted 53 by Earth and radiation returned back to space through reflection of solar radiation and 54 emission of terrestrial thermal infrared radiation. This balance is a fundamental property 55 of Earth's climate system as it describes how Earth gains and sheds heat. Here we use 56 observations from the Clouds and the Earth's Radiant Energy System (CERES) to 57 evaluate how seven state-of-the-art climate models represent changes in Earth's radiation 58 budget during and following the so-called global warming "hiatus" of the early 21st 59 century. The models were provided observed sea-surface temperature and sea-ice 60 boundary conditions as well as natural and anthropogenic forcings. We find remarkable 61 agreement between observed and simulated differences in reflected solar and emitted 62 thermal infrared radiation between the post-hiatus and hiatus periods. Furthermore, a 63 model's ability to correctly relate Earth's radiation budget and surface temperature is 64 found to depend upon how well it represents reflected solar radiation changes in regions 65 dominated by low clouds, particularly those over the eastern Pacific ocean.

66

68 **1. Introduction**

69 A key measure of radiative feedback in the climate system, and therefore climate 70 sensitivity, is the relationship between net top-of-the-atmosphere (TOA) radiation and 71 global mean surface air temperature change. From climate model simulations in which 72 CO_2 is quadrupled instantaneously, the climate feedback parameter can be determined 73 from the slope of a linear regression fit between net flux and surface temperature change, 74 with the intercept yielding the imposed forcing (Gregory et al., 2004). This linear 75 framework assumes that the climate feedback parameter is constant in time, so that 76 variations in net flux and surface temperature are related by a constant of proportionality. 77 However, numerous modeling studies have shown that for transient warming, global 78 radiative feedback is time-varying (Murphy 1995; Senior and Mitchell 2000; Winton et 79 al. 2010; Armour et al. 2013; Andrews et al. 2015; Paynter et al. 2015; Gregory & 80 Andrews, 2016; Zhou et al., 2016; Armour, 2017; Proistosescu & Huybers, 2017; Marvel 81 et al., 2018; Silvers et al., 2018). This is primarily due to temporal changes in surface 82 warming patterns, which induce changes in global radiation that differ from those 83 associated with global warming (Armour et al., 2013; Rose et al., 2014; Andrews et al., 84 2015; Zhou et al., 2016, 2017; Ceppi & Gregory, 2017; Haugstad et al., 2017; Andrews 85 & Webb, 2018; Silvers et al., 2018; Andrews et al. 2018; Dong et al. 2019). These 86 "pattern effects" (Stevens et al., 2016) can be a result of both internal variability and 87 climate forcing (Mauritsen, 2016).

88 The "pattern effect" is the reason why general circulation models (GCMs) driven 89 with historical patterns of sea-surface temperature (SST) and sea-ice concentrations (SIC) 90 yield climate feedback parameters that are more stabilizing—implying a lower climate

91 sensitivity—compared to simulations that are forced with projected long-term increases 92 in greenhouse gas concentrations (Zhou et al., 2016; Andrews et al., 2018; Marvel et al., 93 2018). While global mean surface temperatures have been continuing to increase in 94 recent decades, there has been relatively less warming (or even cooling) over the eastern 95 tropical Pacific (e.g., McGregor et al., 2014) and Southern Oceans (e.g., Armour et al., 96 2016). These regional patterns have been shown to produce greater low-level cloud cover 97 and reflection to space, explaining why there was a more stabilizing climate feedback 98 parameter observed during this time period compared to that of future warming (Zhou et 99 al., 2016, 2017; Andrews et al., 2018; Dong et al. 2019). Zhou et al. (2016) further argue 100 that SST pattern-induced low-cloud cover anomalies may have also contributed to 101 reduced warming between 1998 and 2013, a period that has come to be known as the 102 global warming "hiatus" (e.g., McGregor et al., 2014). More recently, Fueglistaler (2019) 103 demonstrated the influence of SST pattern changes on observed tropical mean SW cloud 104 radiative effect using data from the Clouds and the Earth's Radiant Energy System 105 (CERES).

In this study, we use CERES observations to evaluate how state-of-the-art climate models represent changes in Earth's radiation budget following a large change in SST patterns. The CERES data reveal a 0.83 Wm⁻² reduction in global mean reflected shortwave (SW) flux during the three years following the hiatus, resulting in an increase in net energy into the climate system (Loeb et al., 2018a). Furthermore, decreases in lowcloud cover are found to be the primary driver of the decrease in SW flux. The low-cloud cover decreases are associated with increases in SST reaching 2°C on average in some locations over the eastern Pacific Ocean following a change in the sign of the PacificDecadal Oscillation from negative to positive phase.

115 In light of these dramatic changes, we ask the question: can climate models 116 reproduce the changes observed by CERES if they are provided observed SSTs and SIC? 117 Such a comparison serves as a "reality check" on the models used to study the pattern 118 effect, low-cloud feedbacks and changes in total climate feedback during the historical 119 period. We caution that there is no attempt here to provide an "emergent constraint" on 120 future climate (Klein and Hall, 2015) that can be used to constrain long-term climate 121 feedback and climate sensitivity. Rather, the goal is to determine whether or not current 122 atmospheric models are capable of reproducing the TOA radiative response to a large-123 scale and well-observed event that arguably involves processes relevant to the 124 representation of both current and future climate.

125 **2. Data and Methods**

126 **2.1 Observations**

We use observational data from the CERES EBAF Ed4.1 product (Loeb et al., 2018b, 2019) for March 2000–December 2017. EBAF provides monthly mean TOA and surface SW and longwave (LW) radiative fluxes on a 1°×1° grid. Here, only the TOA fluxes are considered. TOA radiative fluxes in EBAF are derived from CERES SW and LW radiance measurements.

Also considered are atmospheric and surface data from the European Centre for Medium-Range Weather Forecasts ERA5 reanalysis product (Hersbach et al., 2018). We use near-surface air temperature (T_s), surface pressure, 700 hPa air temperature and SST.

135 The first three parameters are used to calculate the estimated inversion strength (EIS) 136 (Wood and Bretherton, 2006).

137

2.2 CMIP6 AMIP Simulations

138 TOA radiative fluxes, T_s and EIS from seven models participating in the Coupled 139 Model Intercomparison Project Phase 6 (CMIP6; Eyring et al., 2016) are considered 140 (Table 1). The simulations are forced with monthly time-varying observationally derived 141 fields of SST and SIC using the Atmospheric Model Intercomparison Project (AMIP) 142 boundary conditions (Gates et al., 1999; Hurrell et al., 2008; Taylor et al., 2000). 143 Between the start of the CERES record in 2000 and the official end-date of CMIP6 AMIP 144 in 2014, all simulations have time-varying natural and anthropogenic forcings. We have 145 run AMIP simulations three more years, through the end of 2017. In those simulations, 146 radiative forcings are held fixed at 2014 levels between 2015-2017 for all models except 147 EC-Earth3-Veg, which used the Shared Socioeconomic Pathways (SSP2-4.5) radiative 148 forcings (Riahi et al., 2016). Monthly time-varying observed fields of SST and SIC from 149 either merged Reynolds/HADISST (Hurrell et al., 2008) or HadISST1 (Rayner et al., 150 2003) are used (Table 1). All AMIP simulation output are spatially interpolated onto a 151 $1^{\circ} \times 1^{\circ}$ grid.

152 Since AMIP simulations use observed SSTs and SIC boundary conditions, the 153 model atmosphere responds to SSTs but there is no equivalent ocean surface response to 154 atmospheric changes. This is in contrast to observations, which include two-way 155 atmosphere-ocean interactions. A reasonable question to ask, therefore, is whether it is 156 reasonable to evaluate models by comparing AMIP simulations and observations. This 157 has been addressed in several studies with different models (Andrews et al., 2015; He and

Soden, 2016; Haugstad et al., 2017; Mauritsen and Stevens, 2015). The studies find that time-varying net feedback parameters simulated by atmosphere-ocean GCMs (AOGCMs) and AMIP-style simulations for the same models forced using the AOGCM SST and SIC boundary conditions are consistent, suggesting that AMIP-style simulations and observations should also show consistent results.

	CIVITPO models con		lis study.		
Model (Short Name)	Model (Long Name)	Country	Resolution (°) (lonxlat)	SST/SIC Dataset	Reference
CESM2	CESM2 AMIP	USA	1.25x0.94	Merged Reynolds/HADISST	Gettelman et al. (2019)
CanESM5	CanESM5 AMIP	Canada	2.8x2.8	Merged Reynolds/HADISST	Swart et al. (2019)
EC-Earth3-Veg	EC-Earth3-Veg AMIP	Europe/EC	0.7x0.7	Merged Reynolds/HADISST	Davini et al. (2017)
ECHAM6.3	echam6.3.05-LR AMIP	Germany	1.875x1.86	HadISST1	Mauritsen et al. (2019)
GFDL-AM4	GFDL-AM4 AMIP	USA	1.25x1.0	HadISST1	Zhao et al. (2018)
HadGEM3	HadGEM3-GC31-LL AMIP	UK	1.875x1.25	HadISST1	Williams et al. (2018)
IPSL-CM6A	IPSL-CM6A-LR AMIP	France	2.5x1.27	Merged Reynolds/HADISST	Hourdin et al. (2013)

163 Table 1 List of CMIP6 models considered in this study.

164 **2.3 Methods**

Deseasonalized monthly anomalies are determined by differencing the average in a given month from the average of all years of the same month. We consider TOA flux differences between means for the post-hiatus and hiatus periods, where the hiatus period is defined as July 2000–June 2014 and the post-hiatus period is July 2014–June 2017. The corresponding SST difference pattern (Figure 1) shows marked SST increases during the post-hiatus period along the entire coast of North America, central Pacific Ocean, and to a lesser extent, along the coast of South America. In addition to examining global results, we also investigate how the models capture flux changes in a domain dominated primarily by low clouds over the eastern Pacific (EP) (see box in Figure 1).

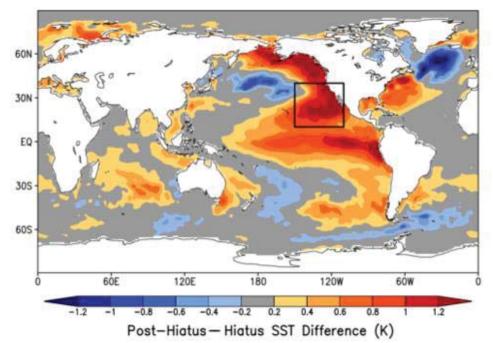


Figure 1. Post-hiatus—hiatus difference in sea-surface temperature. The black box shows
 the EP domain defined by 10°N-40°N and 150°W-110°W.

177 **3. Results**

174

178 **3.1 Global TOA Flux Anomalies**

A comparison between SW flux anomalies from CERES and the seven CMIP6 models is provided in Figures 2a-g, with positive numbers indicating anomalous upward radiation at the TOA. The corresponding comparisons for LW upward and net downward fluxes are shown in Figures S1 and S2. The CERES observations show appreciable positive SW and negative LW anomalies at the beginning of the CERES record, following a period of prolonged La Niña conditions that started in mid-1998 and ended in mid-2001. Anomalies remain fairly weak between 2002 and 2013. Starting in 2014, a marked trend toward negative SW anomalies occurs that reaches a minimum value in January 2017, one year after the peak of the 2015/2016 El Niño event (one of the largest on record). SW anomalies return to near-normal levels at the end of 2017.

189 The CanESM5 and HadGEM3 models track the observed SW anomalies 190 remarkably well during the entire period. All models except ECHAM6.3 capture the large 191 negative SW flux anomalies during the post-hiatus period, but many fail to reproduce the 192 large positive anomalies at the beginning of the CERES record. While the overall mean 193 correlation coefficient between model and observed monthly SW anomalies is only 194 0.33±0.098, the standard deviation in CMIP6 SW monthly anomalies is consistent with 195 CERES (Table S1). For LW and net, most of the models closely track the CERES 12-196 month running average, but they are less successful at capturing monthly variations. 197 When annual anomalies are considered, model-observed correlation coefficients increase 198 by a factor of 2 (Table S1). This is likely because more of the variability at annual time-199 scales is driven by interannual variability in the SST boundary conditions, whereas 200 significant sub-annual variability is due to atmospheric stochastic variability, which is 201 poorly correlated between models and observations (Proistosescu et al., 2018).

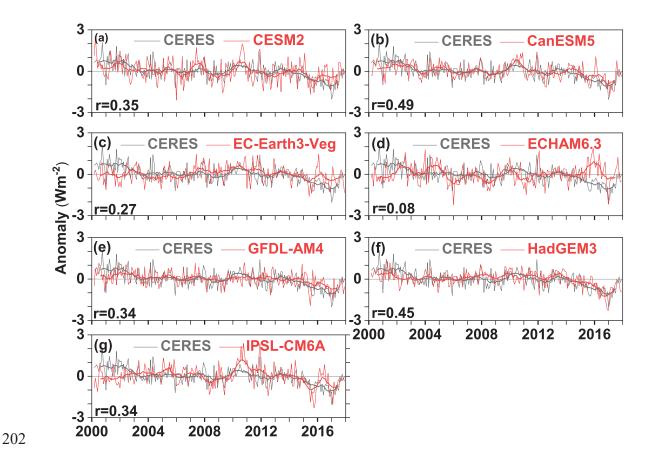


Figure 2. Deseasonalized anomalies in global mean TOA SW upward flux for CERES
 and each of the seven CMIP6 models considered in Table 1. Thin lines correspond to
 monthly anomalies; thick lines are 12-month running averages. Correlation
 coefficients (r) between model and observed monthly anomalies are also shown.

207 208

3.2 Post-Hiatus—Hiatus Differences

209 We find encouraging similarities between regional patterns of post-hiatus—hiatus 210 flux difference for CERES and the mean of the seven CMIP6 models (Figure 3a-f). The 211 CERES observations show a marked SW decrease during the post-hiatus period off the 212 west coast of North America (Figure 3a), a region characterized by persistent marine 213 stratocumulus. Surface warming in the East Pacific reduces the vertical stratification, 214 which reduces low-cloud cover (Klein and Hartmann 1993) and reflected solar radiation. 215 Large decreases in low-cloud cover in this region are thought to have played a significant 216 role in causing record-breaking warm SST anomalies after 2014 (Johnson and Birnbaum, 217 2016; Myers et al., 2018). In the tropics, CERES shows positive SW and negative LW 218 differences in the central Pacific, and differences of the opposite sign in the western 219 Pacific (Figures 3a and 3c). These patterns are consistent with an eastward shift in the 220 location of tropical convection during the 2015/2016 El Niño event. The marked SW and 221 LW tropical differences largely cancel, however, and are thus less prominent in the 222 regional distribution of net flux differences (Figure 3e). Large positive net flux 223 differences appear off the west coast of North America since cancellation between SW 224 and LW is weaker there.

225 The flux difference pattern for the mean of the seven CMIP6 models shows a 226 striking resemblance to CERES (Figures 3b, 3d and 3f). Like CERES, the CMIP6 mean 227 SW flux decreases in the region of large SST increase off the west coast of North 228 America (Figure 3b). However, the magnitude of the decrease is weaker than CERES. 229 Results for the individual models show that CanESM5 and HadGEM3 produce SW flux 230 decreases that are larger than the 7-model mean and occur in the same location as CERES 231 (Figure S3). Large decreases also occur for IPSL-CM6A and CESM2, but the locations 232 differ from CERES. These results are qualitatively consistent with other satellite studies 233 that found a negative correlation between low-cloud cover and SST from passive (Myers 234 and Norris, 2015; Qu et al., 2015; McCoy et al., 2017; Yuan et al., 2018) and active 235 sensors (Myers and Norris, 2015; Cesana et al., 2019).

In the tropics, the locations of negative SW and positive LW anomalies in the South Pacific Convergence Zone (SPCZ) and Maritime Continent, and positive SW and negative LW anomalies in the central Pacific coincide with CERES (Figures 3a-d). However, the magnitudes of the CMIP6 model anomalies are larger than CERES both for

the seven-model mean (Figures 3a-b) and most of the models individually (Figures S3S4). The CMIP6 model mean reproduces the large positive net downward flux anomalies
off the west coast of North America and along the equator seen in CERES (Figure 3e-f,
Figure S5).

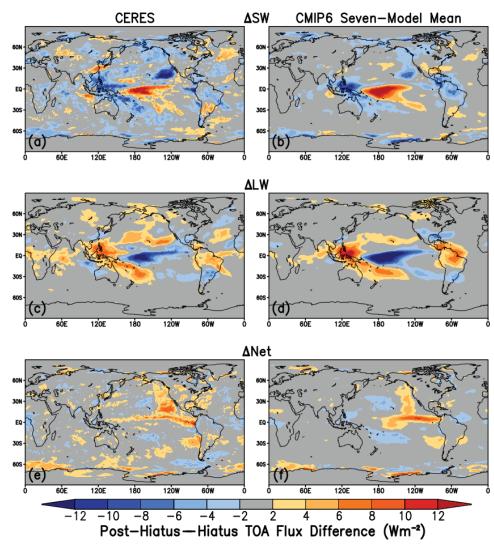


Figure 3. Post-hiatus—hiatus difference in (a, b) SW upward, (c, d) LW upward and (e,
f) net downward TOA flux for CERES (left column) and average of seven CMIP6
model simulations (right column).

When averaged globally, all CMIP6 models except ECHAM6.3 show negative SW and positive LW upward flux differences between the post-hiatus and hiatus periods, consistent with CERES (Figure S6). The ECHAM6.3 model underestimates the

251 magnitude of negative SW differences associated with decreases in low clouds off the 252 west coast of North America and convection over the western tropical Pacific yet shows 253 strong positive SW (and negative LW) differences in the central tropical Pacific and over 254 North America, resembling a slight geographical shift of tropical convection in the zonal direction (Figures S3e, S4e). Excluding ECHAM6.3, the root-mean-square difference of 255 the other six CMIP6 models relative to CERES is 0.3 Wm⁻² and 0.15 Wm⁻² for SW and 256 257 LW, respectively. The model most consistent with CERES is HadGEM3, which in 258 addition to producing very similar global mean post-hiatus-hiatus differences, 259 reproduces observed regional patterns rather well.

260 In the EP domain, the post-hiatus—hiatus difference in reflected SW flux is 261 almost entirely associated with changes in T_s, based upon a multivariate regression 262 analysis of SW against T_s and EIS (see Supporting Information). All of the models have a 263 T_s contribution to the SW flux difference that is too weak compared to the observations (Figure S7). We also find little correlation between how well a model represents the SW 264 265 flux post-hiatus-hiatus difference in the EP domain and the corresponding 266 climatological mean value (Figure S11). The CESM2 model shows the greatest climatological mean bias (-10 Wm⁻²) yet its bias in the post-hiatus—hiatus difference is 267 only 1 Wm⁻². In contrast, EC-Earth3-Veg shows a climatological mean bias of 2 Wm⁻² 268 and a post-hiatus-hiatus difference of 4 Wm⁻². Notably, all of the models but two 269 270 (ECHAM6.3 and IPSL-CM6A) have negative biases in the climatological mean SW flux. 271 This is consistent with earlier studies that have shown models having a tendency to 272 underestimate low-cloud cover in the subtropical stratocumulus regions off the west 273 coasts of North and South America and Africa (Zhao et al., 2018). These results imply that good agreement between observed and model climatology does not necessarily implygood agreement in climate variability.

3.3 Pattern Effect

277 To examine the influence of the SST pattern change during the CERES period (Figure 1) on the relationship between net flux and surface temperature, we use an 278 279 approach similar to Andrews et al (2018), who demonstrated the influence of the pattern 280 effect on the net climate feedback parameter (λ_N) for the historical record (1871-2010) 281 and long-term CO₂ forcing. We refer to a radiative restoring coefficient (Lutsko and 282 Takahashi, 2018) for the CERES period (β_N) instead of λ_N in order to emphasize that β_N is primarily a response to internal variability in the climate system whereas λ_N is 283 primarily a response to external radiative forcing. We define β_N as $\beta_N = (\delta N - \delta F)/\delta F$ 284 δT_s , where δN is net flux anomaly, δF is the effective radiative forcing anomaly and δT_s 285 286 is the surface temperature anomaly. Here, δ are annual anomalies over the CERES 287 period. F is obtained from the Intergovernmental Panel on Climate Change (IPCC) Fifth 288 Assessment Report (AR5) forcing time series updated and extended following Dessler and Forster (2018). We determine β_N for 2001-2017 and 2001-2014 from CERES and 289 each of the seven CMIP6 models by calculating the slope of $\delta N - \delta F$ against δT_s using a 290 291 standard ordinary least squares fit. To calculate δF , the same time-varying F is assumed 292 for CERES and each CMIP6 model through 2014. For 2015-2017, F is held fixed at the 293 2014 value for the CMIP6 models but is time-varying for CERES. The uncertainty in the 294 regression slope is represented by its 95% confidence interval.

For CERES, β_N becomes dramatically less stabilizing when the three post-hiatus years are included (Figure 4a), changing from -2.1 Wm⁻² K⁻¹ (-5.5 to 1.3 Wm⁻² K⁻¹) for

2001-2014 to -0.53 Wm⁻² K⁻¹ (-1.9 to 0.83 Wm⁻² K⁻¹) for 2001-2017. The change in β_N 297 298 is mainly due to a strong positive SW feedback (Figure S12) associated with the large 299 decrease in global mean reflected SW flux during the post-hiatus period. We note that the 300 95% confidence intervals in β_N for these short periods are large owing to the short record 301 of CERES. With the exception of ECHAM6.3, all of the model β_N values for 2001-2017 302 fall within the 95% confidence interval of the observations. Excluding ECHAM6.3, the mean of the other six models have a less stabilizing β_N compared to CERES for 2001-303 2014 by 0.3 Wm⁻² K⁻¹ and a more stabilizing β_N by approximately the same magnitude 304 305 for 2001-2017.

We quantify the pattern effect during the CERES period as the ratio of β_N for 306 307 2001-2017 to that for 2001-2014. This ratio is plotted against the post-hiatus-hiatus 308 difference in SW upward flux for the EP domain in Figure 4b. The IPSL-CM6A model shows remarkable agreement with CERES, whereas the other models have both a β_N 309 310 ratio that is too large, indicating too weak a pattern effect, corresponding to too weak a 311 SW response in the EP domain. The positive correlation in Figure 4b suggests that at 312 least for these periods, a model's ability to represent changes in the relationship between 313 global mean net flux and surface temperature (and therefore the pattern effect) depends 314 critically upon how well it represents SW flux changes in low-cloud regions.

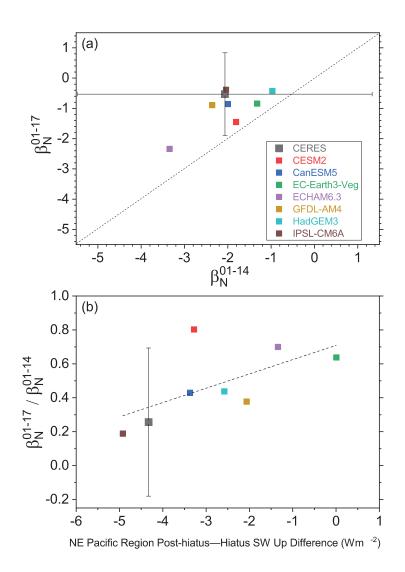


Figure 4. (a) Global net climate feedback parameter for 2001-2017 against that for 20012014. (b) Ratio of 2001-2017 and 2001-2014 global net climate feedback parameters
against NE Pacific region post-hiatus—hiatus SW up difference. Dashed lines
correspond to one-to-one line in (a) and linear regression fit to all points in (b).

- 320 4. Conclusions
- 321

The general agreement between TOA radiation changes simulated by the seven CMIP6 AGCMs considered in this study and CERES is encouraging as it suggests that the models' atmospheric response to large-scale SST pattern changes resulting from a combination of internal and forced variations is realistic. We find that a model's ability to

326	represent changes in the relationship between global mean flux and surface temperature
327	depends critically upon how well it represents SW flux changes in regions dominated by
328	low clouds, such as the EP domain considered here. Part of the reason is because there is
329	less cancellation between SW and LW flux changes in these regions compared to the
330	west and central Pacific, where marked SW and LW differences are quite similar in
331	magnitude but opposite in sign. Over longer timescales, coupled climate model
332	simulations also suggest an important role for low clouds in determining the future
333	climate state. However, model biases could play a critical role (McGregor et al. 2018) in
334	explaining why coupled models are not able to simulate the observed SST pattern during
335	the hiatus (McGregor et al. 2014, Coats and Karnauskas, 2017). We thus caution that
336	consistency between AGCM simulations and observations at interannual timescales is not
337	a guarantee of success in projecting future climate, as other processes operating at longer
338	timescales likely also matter.

339 Acknowledgements

340 N.G.L. and H.W. were supported by the NASA CERES project. R.P.A. was supported by 341 the UK National Environment Research Council (NERC) SMURPHS project 342 (NE/N006054/1). TA was supported by the Met Office Hadley Centre Climate 343 Programme funded by BEIS and Defra. A.G. was supported by The National Center for 344 Atmospheric Research, which is sponsored by the U.S. National Science Foundation. 345 T.M. acknowledges funding from the European Research Council grant #770765 and 346 European Union Horizon 2020 project #820829 EBAF Ed4.1 data was downloaded 347 online from: https://ceres.larc.nasa.gov/products-info.php?product=EBAF. ERA5 data from the European Centre for Medium-range Weather Forecast (ECMWF) was 348 349 downloaded online from: https://www.ecmwf.int/en/forecasts/datasets/reanalysis-350 datasets/era5. The EC-Earth3-Veg simulations were performed on resources provided by

351 the Swedish National Infrastructure for Computing (SNIC).

352 353	References
354 355 356 357 358	Andrews, T., Gregory, J. M., Paynter, D., Silvers, L. G., Zhou, C., Mauritsen, T., et al. (2018). Accounting for changing temperature patterns increases historical estimates of climate sensitivity. Geophysical Research Letters, 45, 8490–8499. https://doi.org/10.1029/2018GL078887.
359 360 361 362	Andrews, T., Gregory, J. M., & Webb, M. J. (2015). The dependence of radiative forcing and feedback on evolving patterns of surface temperature change in climate models. Journal of Climate, 28(4), 1630–1648. https://doi.org/10.1175/jcli-d-14-00545.1.
363 364 365 366	Andrews, T., & Webb, M. J. (2018). The dependence of global cloud and lapse rate feedbacks on the spatial structure of tropical Pacific warming. Journal of Climate, 31(2), 641–654. https://doi.org/10.1175/JCLI-D-17-0087.
367 368 369 370	Armour, K. C., Bitz, C. M., & Roe, G. H. (2013). Time-varying climate sensitivity from regional feedbacks. Journal of Climate, 26(13), 4518–4534. https://doi.org/10.1175/JCLI-D-12-00544.1.
371 372 373 374	Armour, K. C., J. Marshall, J. R. Scott, A. Donohoe, and E. R. Newsom (2016), Southern Ocean warming delayed by circumpolar upwelling and equatorward transport, Nature Geoscience, 9, 549—554, doi: <u>10.1038/ngeo2731</u>
375 376 377 378	Armour, K. C. (2017). Energy budget constraints on climate sensitivity in light of inconstant climate feedbacks. Nature Climate Change, 7(5), 331–335. https://doi.org/10.1038/nclimate3278.
379 380 381 382 383	Ceppi, P., & Gregory, J. M. (2017). Relationship of tropospheric stability to climate sensitivity and Earth's observed radiation budget. Proceedings of the National Academy of Sciences of the United States of America, 114(50), 13,126–13,131. https://doi.org/10.1073/pnas.1714308114
383 384 385 386 387	Cesana, G., and D. E. Waliser (2016), Characterizing and understanding systematic biases in the vertical structure of clouds in CMIP5/CFMIP2 models, Geophys. Res. Lett., 43, 10,538–10,546, doi:10.1002/2016GL070515.
388 389 390 391 392	Cesana, G., A. D. Del Genio, A. S. Ackerman, M. Kelley, G. Elsaesser, A. M. Fridlind, Y. Cheng, and MS. Yao (2019), Evaluating models' response of tropical low clouds to SST forcings using CALIPSO observations. Atmos. Chem. Phys., 19, 2813–2832. https://doi.org/10.5194/acp-19-2813-2019.
393 394 395 396 397	Coats, S., & Karnauskas, K. B. (2017). Are simulated and observed twentieth century tropical Pacific sea surface temperature trends significant relative to internal variability? Geophysical Research Letters, 44, 9928-9937. https://doi.org/100.1002/2017GL074622

398	
399	Dessler, A. E., and Forster, P. M. (2018). An estimate of equilibrium climate
400	sensitivity from interannual variability. J. Geophys. Res. Atmos.
401	doi:10.1029/2018JD028481.
402	
403	Davini, P., and Coauthors, 2017: Climate SPHINX: evaluating the impact of resolution
404	and stochastic physics parameterisations in the EC-Earth global climate model.
405	Geosci Model Dev. 10(3):1383.
406	debsel Model Dev. 10(5).1505.
407	Dong, Y., Proistosescu, C., Armour, K. C. & Battisti, D. S. (2019): Attributing historical
408	and future evolution of radiative feedbacks to regional warming patterns using a
408	green's function approach: The preeminence of the Western Pacific. Journal of
409	Climate, 32, 5471-5491. doi: 10.1175/JCLI-D-18-0843.1.
410	Chillate, 52, 5471-5491. doi: 10.1175/JCLI-D-10-0645.1.
	Euring V. Dony, C. Mochl, C. A. Conjon, C. A. Stovens, D. Stoveflow, D. L. and Taylon, V.
412 413	Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J., and Taylor, K. E. (2016). Overview of the Coupled Model Intercomparison Project Phase 6
413	
	(CMIP6) experimental design and organization, Geosci. Model Dev., 9, 1937-
415 416	1958, https://doi.org/10.5194/gmd-9-1937-2016
410	Fueglistaler, S. (2019). Observational evidence for two modes of coupling between sea
418	surface temperatures, tropospheric temperature profile, and shortwave cloud radiative
418	effect in the tropics. Geophysical Research Letters, 46.
419	https://doi.org/10.1029/2019GL083990
420	hups.//doi.org/10.1029/2019GL083990
421	Gates, W. L., Boyle, J. S., Covey, C., Dease, C. G., Doutriaux, C. M., Drach, R. S., et al.
422	(1999). An overview of the results of the Atmospheric Model Intercomparison Project
423	(AMIP I). Bulletin of the American Meteorological Society, 80(1), 29–55.
424	https://doi.org/10.1175/1520-0477(1999)080<0029:AOOTRO>2.0.CO;2
425	https://doi.org/10.11/5/1520-04//(1999)080<0029.AOO1KO/2.0.CO,2
427	Gettelman, A., Hannay, C., Bacmeister, J. T., Neale, R. B., Pendergrass, A. G.,
428	Danabasoglu, G., et al. (2019). High Climate Sensitivity in the Community Earth
429	System Model Version 2 (CESM2). Geophys. Res. Lett. 46, 8329–8337.
430	doi:10.1029/2019gl083978
431	doi.10.1027/2017g1003770
432	Gregory, J. M., & Andrews, T. (2016). Variation in climate sensitivity and feedback
433	parameters during the historical period. Geophysical Research Letters, 43, 3911–
434	3920. https://doi.org/10.1002/2016GL068406.
435	5520. https://doi.org/10.1002/201002000100.
436	Haugstad, A. D., Armour, K. C., Battisti, D. S., & Rose, B. E. J. (2017). Relative roles of
437	surface temperature and climate forcing patterns in the inconstancy of radiative
438	feedbacks. Geophysical Research Letters, 44, 7455–7463.
439	https://doi.org/10.1002/2017GL074372
440	
441	He, J., & Soden, B. J. (2016). Does the lack of coupling in SST-forced atmosphere-only
442	models limit their usefulness for climate change studies? Journal of Climate, 29,
443	4317-4325. http://dx.doi.org/10.1175/JCLI-D-14-00597.s1

444	
445	Hersbach, H., et al., 2018: Operational global reanalysis: progress, future directions and
446	synergies with NWP. ERA Report Series. European Centre for Medium Range
447	Weather Forecasts. Reading, UK. [Available from:
448	https://www.ecmwf.int/file/276463/download?token=q6uGbnPD]
449	
450	Hourdin H, et al. (2013): LMDZ5B: The atmospheric component of the IPSL climate
451	model with revisited parameterizations for clouds and convection. Climate Dynamics,
452	40, 2193-2222. https://doi.org/10.1007/s00382-012-1343-y.
453	
454	Hurrell, J., Hack, J., Shea, D., Caron, J., & Rosinski, J. (2008). A new sea surface
455	temperature and sea ice boundary dataset for the community atmosphere model.
456	Journal of Climate, 21(19), 5145–5153. <u>https://doi.org/10.1175/2008JCLI2292.1</u> .
457	
458	Johnson, G. C., and A. N. Birnbaum (2017), As El Niño builds, Pacific Warm Pool
459	expands, ocean gains more heat, Geophys. Res. Lett., 44, 438–445,
460	doi:10.1002/2016GL071767.
461	
462	Klein, S. A., Hall, A. (2015). Emergent constraints for cloud feedbacks. Curr. Clim.
463	Change Rep., 1:276–287. https://doi.org/10.1007/s40641-015-0027-1
464	
465	Klein, S. A., & Hartmann, D. L. (1993). The seasonal cycle of low stratiform clouds.
466	Journal of Climate, 6, 1587-1606.
467	
468	Loeb, N. G., Thorsen, T. J., Norris, J. R., Wang, H., & Su, W. (2018a). Changes in
469	earth's energy budget during and after the "Pause" in Global Warming: An
470	observational perspective. MDPI Climate, 6, 62; doi:10.3390/cli6030062.
471	
472	Loeb, N. G., D. R. Doelling, H. Wang, W. Su, C. Nguyen, J. G. Corbett, L. Liang, C.
473	Mitrescu, F. G. Rose, and S. Kato, 2018b: Clouds and the Earth's Radiant Energy
474	System (CERES) Energy Balanced and Filled (EBAF) Top-of-Atmosphere (TOA)
475	Edition 4.0 data product, J. Climate, 31, 895-918. doi:10.1175/JCLI-D-17-0208.1.
476	
477	Loeb, N.G., F.G. Rose, S. Kato, D.A. Rutan, W. Su, H. Wang, D.R. Doelling, W.L.
478	Smith, Jr., and A. Gettelman, 2019: Towards a consistent definition between satellite
479	and model clear-sky radiative fluxes. J. Climate, 33, 61-75. doi: 10.1175/JCLI-D-19-
480	0381.1.
481	0501.11.
482	Lutsko, N. J., & Takahashi, K. (2018). What can the internal variability of CMIP5
483	models tell us about their climate sensitivity? Journal of Climate, 31, 5051-5069.
484	doi:10.1175/JCLI-D-17-0736.1
485	
486	Marvel, K., Pincus, R., Schmidt, G. A., & Miller, R. L. (2018). Internal variability and
487	disequilibrium confound estimates of climate sensitivity from observations.
488	Geophysical Research Letters, 45, 1595–1601.
489	https://doi.org/10.1002/2017GL076468.
707	100001/001012/1001002/201/0000000000000

489 https://doi.org/10.1002/2017GL076468.

490	
491	Mauritsen, T., (2016). Clouds cooled the Earth. Nature Geoscience, 9, 865-867.
492	
493	Mauritsen, T., Bader, J., Becker, T., Behrens, J., Bittner, M., Brokopf, R., et al. (2019).
494	Developments in the MPI-M Earth System Model version 1.2 (MPI-ESM1.2) and its
495	response to increasing CO2. Journal of Advances in Modeling Earth Systems, 11,
496	998–1038. https://doi.org/10.1029/2018MS001400.
497	
498	Mauritsen, T., & Stevens, B. (2015). Missing iris effect as a possible cause of muted
499	hydrological change and high climate sensitivity in models. Nature Geoscience, 8,
500	346-351. doi:10.1038/NGEO2414
501	
502	McCoy, D. T., Eastman, R., Hartmann, D. L., and Wood, R.: The Change in Low Cloud
503	Cover in a Warmed Climate Inferred from AIRS, MODIS, and ERA-Interim, J.
504	Climate, 30, 3609–3620, https://doi.org/10.1175/JCLI-D-15-0734.1, 2017.
505	
506	McGregor, S., A. Timmermann, M. F. Stuecker, M. H. England, M. Merrifield, FF. Jin,
507	and Y. Chikamoto (2014), Recent Walker circulation strengthening and Pacific
508	cooling amplified by Atlantic warming, Nature Climate Change, 4, 888–892,
509	doi:10.1038/nclimate2330.
510	
511	McGregor, S., M. F. Stuecker, J. B. Kajtar, M. H. England, & M. Collins (2018): Model
512	Tropical Atlantic biases underpin diminished Pacific decadal variability, Nature
513	Climate Change, 8, 493–498, doi:10.1038/s41558-018-0163-4.
514	
515	Murphy, J. M. (1995): Transient response of the Hadley Centre Coupled Ocean-
516	Atmosphere Model to increasing carbon dioxide. Part 1: Control climate and flux
517	adjustment. Journal of Climate, 8, 36-56. doi:10.1175/1520-
518	0442(1995)008<0036:TROTHC>2.0.CO;2
519	
520	Myers, T. A., Mechoso, C. R., Cesana, G. V., DeFlorio, M. J., & Waliser, D. E. (2018).
521	Cloud feedback key to marine heatwave off Baja California. Geophysical Research
522	Letters, 45, 4345–4352. https://doi.org/10.1029/2018GL078242.
523	
524	Myers, T. A., and J. R. Norris (2016), Reducing the uncertainty in subtropical cloud
525	feedback, Geophys. Res. Lett., 43,2144–2148, doi:10.1002/2015GL067416.
526	
527	Myers, T. A., and J. R. Norris (2015), On the relationships between subtropical clouds
528	and meteorology in observations and CMIP3 and CMIP5 models, J. Clim., 28, 2945-
529	2967.
530	
531	Paynter, D., and T. L. Frölicher (2015), Sensitivity of radiative forcing, ocean heat
532	uptake, and climate feedback to changes in anthropogenic greenhouse gases and
533	aerosols, J. Geophys. Res. Atmos., 120, 9837–9854, doi:10.1002/2015JD023364.
534	

535 536 537	Proistosescu, C., & Huybers, P. J. (2017). Slow climate mode reconciles historical and model-based estimates of climate sensitivity. Science Advances, 3(7), e1602821. https://doi.org/10.1126/sciadv.1602821.
538	
539	Proistosescu, C., Donohoe, A., Armour, K. C., Roe, G. H., Stuecker, M. F., & Bitz, C. M.
540	(2018). Radiative feedbacks from stochastic variability in surface temperature and
541	radiative imbalance. Geophysical Research Letters, 45, 5082–5094.
542	https://doi.org/10.1029/2018GL077678
543	
544	Qu, X., A. Hall, S. A. Klein, and A. M. DeAngelis (2015), Positive tropical marine low-
545	cloud cover feedback inferred from cloud controlling factors, Geophys. Res. Lett., 42,
546	7767–7775, doi:10.1002/2015GL065627.
547	
548	Rayner, N. A., Parker, D. E., Horton, E. B., Folland, C. K., Alexander, L. V., Rowell, D.
549	P., Kent, E. C., and Kaplan, A. (2003) Global analyses of sea surface temperature, sea
550	ice, and night marine air temperature since the late nineteenth century, J. Geophys.
551	Res., 108(D14), 4407, doi: 10.1029/2002JD002670
552	
553	Riahi, K., et al. (2017): The Shared Socioeconomic Pathways and their energy, land use,
554	and greenhouse gas emissions implications: An overview. Global Environmental
555	Change, 42, 153-168.
556	
557	Rose, B. E. J., Armour, K. C., Battisti, D. S., Feldl, N., & Koll, D. D. B. (2014). The
558	dependence of transient climate sensitivity and radiative feedbacks on the spatial
559	pattern of ocean heat uptake. Geophysical Research Letters, 41, 1071–1078.
560	https://doi.org/10.1002/2013GL058955.
561	
562	Senior, C. A., & Mitchell, J. F. B. (2000): The time-dependency of climate sensitivity.
563	Geophys. Res. Lett., 27, 2685-2688. https://doi.org/10.1029/2000GL011373.
564	
565	Silvers, L. G., Paynter, D., & Zhao, M. (2018). The diversity of cloud responses to
566	twentieth century sea surface temperatures. Geophysical Research Letters, 45, 391–
567	400. https://doi.org/10.1002/2017GL075583.
568	
569	Stevens, B., Sherwood, S. C., Bony, S., & Webb, M. J. (2016). Prospects for narrowing
570	bounds on Earth's equilibrium climate sensitivity. Earth's Future, 4(11), 512–522.
571	https://doi.org/10.1002/2016EF000376.
572	
573	Swart, N. C. and co-authors. (2019). The Canadian Earth System Model version 5
574	(CanESM5.0.3). Geosci. Model. Dev., https://doi.org/10.5194/gmd-2019-177.
575	
576	Taylor, K. E., Williamson, D., & Zwiers, F. (2000). The sea surface temperature and sea-
577	ice concentration boundary conditions for AMIP II simulations, PCMDI Report No.
578	60, Program for Climate Model Diagnosis and Intercomparison, Lawrence Livermore
579	National Laboratory.
580	
-	

581	Williams, K. D., and Coauthors, 2018: The met office global coupled model 3.0 and 3.1
582	(GC3.0 & GC3.1) configurations. J. Adv. Model Earth Syst., 10(2):357–380.
583	(=
584	Winton, M., Takahashi, K. & Held, I. M. (2010): Importance of ocean heat uptake
585	efficacy to transient climate change. Journal of Climate, 23, 2333-23444.
586	doi.org/10.1175/2009JCLI3139.1
587	č
588	Wood, R., and C. S. Bretherton, 2006: On the relationship between stratiform low cloud
589	cover and lower-tropospheric stability. J. Climate, 19, 6425-6432.
590	
591	Yuan, T., Oreopoulos, L., Platnick, S. E., & Meyer, K. (2018). Observations of local
592	positive low cloud feedback patterns and their role in internal variability and climate
593	sensitivity. Geophysical Research Letters, 45, 4438-4445.
594	https://doi.org/10.1029/2018GL077904.
595	
596	Zhao, M., Golaz, JC., Held, I. M., Guo, H., Balaji, V., Benson, R., et al. (2018). The
597	GFDL global atmosphere and land model AM4.0/LM4.0: 1. Simulation
598	characteristics with prescribed SSTs. Journal of Advances in Modeling Earth
599	Systems, 10, 691–734. https://doi.org/10.1002/2017MS001208.
600	
601	Zhou, C., Zelinka, M. D., & Klein, S. A. (2016). Impact of decadal cloud variations on
602	the Earth's energy budget. Nature Geoscience, 9(12), 871–874.
603	https://doi.org/10.1038/ngeo2828.
604	
605	Zhou, C., Zelinka, M. D., & Klein, S. A. (2017). Analyzing the dependence of global
606	cloud feedback on the spatial pattern of sea surface temperature change with a
607	Green's function approach. Journal of Advances in Modeling Earth Systems, 9,
608	2174–2189. https://doi.org/10.1002/2017MS001096.