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[1] Robust responses and links between the tropical energy
and water cycles are investigated using multiple datasets and
climate models over the period 1979–2006. Atmospheric
moisture and net radiative cooling provide powerful
constraints upon future changes in precipitation. While
moisture amount is robustly linked with surface
temperature, the response of atmospheric net radiative
cooling, derived from satellite data, is less coherent.
Precipitation trends and relationships with surface
temperature are highly sensitive to the data product and the
time-period considered. Data from the Special Sensor
Microwave Imager (SSM/I) produces the strongest trends
in precipitation and response to warming of all the datasets
considered. The tendency for moist regions to become
wetter while dry regions become drier in response to
warming is captured by both observations and models.
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1. Introduction

[2] An important consequence of global warming is a
changing water cycle, with potentially adverse impacts on
societies and the ecosystems upon which they depend.
Climate models project global average precipitation (P) to
rise with temperature, with an increased intensity of rainfall
yet a greater proportion of the sub-tropics affected by drought
conditions [Meehl et al., 2007].
[3] While regional predictions of precipitation are

uncertain [Meehl et al., 2007], the large-scale tendencies
of the hydrological cycle can be understood in terms of
theoretical considerations. Models and observations agree
that column integrated water vapor (W) rises with surface
temperature (Ts) in accordance with the Clausius Clapeyron
equation (C-C), approximately 7% K�1 [Held and Soden,
2006]. Since moisture convergence is required to feed large-
scale and convective precipitation, there is a physical basis
for expecting comparable increases in the intensity of rainfall
events [Trenberth et al., 2003], backed up by models and
limited observational evidence [Allan and Soden, 2008;
Lenderink and Van Meijgaard, 2008].

[4] Global precipitation, however, is not regulated by
the availability of moisture but by atmospheric energy
balance. Enhanced net radiative cooling of the atmosphere
in a warming climate requires an increase in latent heating
from precipitation [Allen and Ingram, 2002; Held and
Soden, 2006], assuming small changes in sensible heat flux
[Stephens and Ellis, 2008]. If the heaviest precipitation
increases at a greater rate than the mean, this implies a
reduced frequency and/or intensity away from such regimes;
this is consistent with emerging observational and modeling
evidence of moist tropical regions becoming wetter at the
expense of dry regions [Allan and Soden, 2007; Chou et al.,
2007].
[5] Observational studies have suggested rises in P and

Evaporation (E) at the rate expected from C-C [Wentz et al.,
2007], substantially larger than predicted by the models
[Held and Soden, 2006]. The muted response of P and E in
the models, relative to the C-C rate, is readily explained by
atmospheric net radiative cooling [Lambert and Webb,
2008] or by small yet systematic changes in surface wind,
humidity and temperature [Richter and Xie, 2008]. Aside
from radiative perturbations involving aerosol [e.g., Wild
et al., 2008], it is difficult to explain apparently larger
changes in P over recent decades, raising the question
of whether the observed responses are statistical artifacts
[Liepert and Previdi, 2009] or a consequence of poorly
constrained assumptions relating to calibration and construc-
tion of long-term records of P or E [Adler et al., 2008;
Stephens and Ellis, 2008].
[6] In this study we analyse multiple satellite derived

estimates of water and energy cycle variables, using data
from the Global Precipitation Climatology Project version 2
(GPCP) [Adler et al., 2008], the Special Sensor Microwave
Imager, version 6 (SSM/I) [Hilburn and Wentz, 2008], the
Scanning Multi-channel Microwave Radiometer (SMMR)
[Prabhakara et al., 1982], the Tropical Rainfall Measure-
ment Mission (TRMM) [Robertson et al., 2003], and
radiation budget data from the Surface Radiation Budget
project (SRB) [Zhang et al., 2006] and the Clouds and
the Earth’s Radiant Energy System version Terra-FM1-
MODIS_Edition2D (CERES) [Wielicki et al., 1996]. Also
employed were reanalysis data from the National Center for
Environmental Prediction (NCEP) [Kalnay et al., 1996] and
the European Centre for Medium range Weather Forecasts
Interim reanalysis (ERA Interim) based on Uppala et al.
[2005] and climate model experiments, using observed sea
surface temperature forced atmosphere-only (AMIP3) and
fully-coupled (CMIP3) configurations [Meehl et al., 2007].
Variability in W, Ts, P, atmospheric longwave radiative
cooling rate (QLW) and shortwave radiative heating rate
(QSW) are analysed over the period 1979–2006, using
reanalysis vertical velocity at 500 hPa (w500) to differentiate
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ascending and descending regions [Allan and Soden, 2007].
Specifically, we discuss whether discrepancies relate to
the constraining variables, W and net radiative cooling, or
are sensitive to the time-period and satellite instrument
employed. Finally, do robust responses of the hydrological
cycle emerge from recent decades that are pertinent to the
future projections of climate?

2. Variability in Energy and Water Cycles

[7] Components of the hydrological and energy cycles
from observations, reanalyses and current climate models are
displayed in Figure 1 for the tropical oceans (±30� latitude)
over the period 1979–2006. We select this domain to
maximize a) the coverage and accuracy of the observational
datasets and b) the substantial interannual variability of the

variables relating to El Niño. This is a limitation in linking
the energy and water cycles, since we are not accounting for
variations in energy export to the extra tropics. Nevertheless,
Soden [2000] found that results are not very sensitive to
selecting a more extensive domain. Multi-model ensemble
mean (black line) and ±1 standard deviation (shaded area)
are computed each month using the AMIP3 models listed in
Table 1 for the period 1979–2000. Coloured lines show
different observationally-based data sets.
[8] Precipitation anomalies from GPCP, SSM/I, and

TRMM passive microwave (3A11) and active radar
(3A26) retrievals, are compared with the models in Figure
1a. Increased rainfall is apparent during the warm El Niño of
1997/98. However, there are large discrepancies between
the different data sets and the model ensemble mean,

Figure 1. Deseasonalized, area weighted tropical ocean anomalies in (a) precipitation rate (P), (b) total column water vapor
(W), (c) longwave radiative cooling rate (QLW), and (d) shortwave radiative heating rate (QSW) for observations, reanalyses
and AMIP3 models. The shaded region denotes ± one standard deviation of AMIP3 inter-model variability.
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highlighting our limited confidence in recent changes in
mean precipitation.
[9] Can observed changes in the energy and water cycles

help improve our understanding of present day variability in
P? Figure 1b presents tropical-mean anomalies in W derived
from SMMR (1979–84) and SSM/I for July 1987–2006.
Excellent agreement between observations and AMIP sim-
ulations are consistent with previous studies [Soden, 2000],
both showing increased atmospheric water content during
warm El Niño events. This suggests that changes in the
moisture available for condensation and precipitation is well
understood and cannot offer an explanation for precipitation
discrepancies between the models and observations. We
also show W from reanalysis data: NCEP and ERA Interim
show realistic variability but fail to capture the observed
increasing trend where as ERA-40 (using the 24-hour fore-
cast products) shows anomalous variability. This, as well as
reductions in P for ERA Interim (see Table 1), suggest

current reanalysis products remain unable to represent
trends in the water cycle [e.g., Bengtsson et al., 2004].
[10] Do observed changes in the atmospheric radiation

balance provide an observational constraint upon changes
in precipitation? Figure 1c shows QLW anomalies from
SRB, CERES, and ERA-Interim. There is some agreement
between datasets, for example more cooling during El Niño
events. However, the observationally-based estimates them-
selves do not show a consistent picture and thus are not
sufficient to constrain the modeled values. Similarly, QSW

anomalies from the same data sources show substantial
discrepancies (Figure 1d). The discrepancy in 1991/92 shows
the effect of aerosols from the Pinatubo volcanic eruption
which were approximated in SRB but were not included
in ERA Interim and AMIP models (The GISS model did
include Pinatubo aerosols but this model was excluded
from the ensemble mean). While changes in cloud strongly
affect surface and top of atmosphere radiation, their
influence on atmospheric net radiative cooling is thought
to be a secondary effect [Stephens and Ellis, 2008;
Lambert and Webb, 2008] and variability in QLW and QSW

are dominated by clear-sky changes which are dependent

Table 1. Correlation (r) and Slope (a) of Different Components of Hydrologic and Energy Cycles to Changes in Sea Surface Temperaturea

Model Period

P W QLW QSW

r a r a r a r a

BCC_CM_1 1980–2000 0.50 0.16 - - - - - -
CNRM_CM3 1980–2000 0.22 0.09 0.88 3.47 0.58 3.66 0.49 0.79
GISS_MODEL_E_R 1980–2000 0.72 0.22 0.97 3.54 - - - -
IAP_FGOALS1_0_G 1980–2000 0.19 0.06 0.93 3.05 - - 0.86 0.83
INMCM3_0 1980–2000 0.57 0.19 0.91 2.56 0.61 3.65 0.75 0.83
MIROC3_2_HIRES 1980–2000 0.57 0.22 0.91 2.85 0.67 3.45 0.67 1.41
MIROC3_2_MEDRES 1980–2000 0.35 0.11 0.86 2.53 0.66 3.50 0.32 0.68
MPI_ECHAM5 1980–2000 0.22 0.09 0.91 3.88 0.75 4.54 0.77 1.27
MRI_CGCM2_3_2A 1980–2000 0.15 0.05 0.88 3.00 0.45 2.62 0.37 0.39
NCAR_CCSM3_0 1980–2000 0.52 0.16 0.94 3.68 0.72 5.18 0.80 1.18
NCAR_PCM1 1980–2000 0.55 0.16 0.89 3.66 - - - -
UKMO_HADGEM1 1980–2000 0.46 0.14 - - - - 0.76 1.89
Model Ensemble 1980–2000 0.72 0.14 0.98 3.20 0.75 3.80 0.80 1.01
SSM/I 1987–2006 0.67 0.54 0.95 3.39 - - - -
SRB 1983–2006 - - - - 0.46 4.21 0.10 0.18
ERA-INTERIM 1989–2006 �0.40 �0.28 0.57 1.77 0.84 5.49 0.56 0.95

aa is the slope of the linear regression and r is the correlation coefficient. a has units of mm/day/K for P, mm/K for W, W m2/K for QLW and QSW, and r
has no units. All available models except GISS are used to calculate model ensemble mean for each variable.

Figure 2. Sensitivities of observational and model simu-
lated precipitation to Ts. Symbols represent time periods.
Colours differentiate ascending or descending (or both)
regimes. Bold symbols show significant correlations. Vertical
bars represent one sigma uncertainty of sensitivity. Figure 3. Same as Figure 2 but for trends in P.
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upon reanalysis datasets, themselves prone to erroneous
variability (Figure 1b).

3. Sensitivity to Sea Surface Temperature

[11] Correlations and sensitivities (which is the slope of
linear regression) of P, W, QLW, and QSW to changes in TS

are given in Table 1 for the models and the data products.
All models show good correlation between changes in P and
Ts but the sensitivity is at least 2 times smaller than SSM/I.
ERA Interim data show a negative correlation and sensitivity,
at odds with other datasets considered.
[12] Inter-model variability for W varies less and the

values are in good agreement with observations. This con-
firms that the discrepancy in precipitation cannot be
explained by the models’ poor simulations of water vapor.
ERA Interim shows less sensitivity compared to other obser-
vations and models.
[13] All datasets and models show a positive relationship

between QLW and Ts, ranging from 2.6–5.5 Wm�2K�1. The
positive relationship is an expected consequence of atmo-
spheric warming with unchanging relative humidity, but is
lower than the clear-sky value [Allan, 2009]. An additional
expected consequence of atmospheric moistening is enhanced
QSWwhich rises by around 1.0Wm�2K�1 in most models and
ERA Interim although the slope is stronger for HadGEM1,
weaker for the MRI CGCM model and the SRB data (the
Pinatubo period 1991–92 was removed from the SRB QSW

time series in these calculations).
[14] While there is broad agreement in the responses of

QSW and QLW to warming, there is little relationship
between the net radiative cooling (QLW � QSW) sensitivity
to warming and dP/dTs in the models suggesting that
analysing the tropical ocean radiative energy balance does
not constraint changes in P. We may only state that rises in
P are consistent with rises in net radiative cooling with
warming in all datasets apart from ERA Interim, which is
not subject to balance in the energy and water budgets.

4. Data Set and Time Period Dependence

[15] In this section we investigate whether the precipita-
tion discrepancy can be explained by inadequacies of the
observations. Figure 2 shows response of P to changes in TS

for observations and model ensembles (CMIP3 values are
taken from Allan [2009]). Here the analysis is done for
different dynamic regimes (ascending or descending) based
on the NCEP reanalysis w500 and are shown in different
colours. Symbols plotted in bold show significant correlation
above the 95% confidence level.
[16] In general, sensitivity to Ts is not robust between data

sets. The dependence on satellite instrument and time
periods is substantial. For the ascent region, the SSM/I
sensitivity shows a range of 0.4 mm/day/K, while for the
1998–2006 time period, TRMM radar retrievals display a
sensitivity less than half that of SSM/I (Figure 2). Sensitivity
in the AMIP3 model ensemble is similar to the TRMM data,
although it samples a different time period. CMIP3 models
(non volcanic) show less sensitivity compared to AMIP3
models. This is likely to represent the effect of El Niño on
the calculated sensitivity; these are essentially removed from
the CMIP3 ensemble since they occur at different times in the

fully coupled models. Sensitivity in P is also affected by
volcanic eruptions as shown by the difference between
CMIP3 and the model ensemble with volcanic forcing
included (CMIP3-v). The robust response in all datasets is
an increase in ascent region P with warming and neutral or
declining P with warming in descent regions.
[17] Figure 3 shows trends for different observations and

model ensembles. We do not show TRMM products here
due to their shorter time periods. SSM/I shows the largest
trend. Both models and observations show increasing trends
in ascending areas and decreasing trend in descending areas.
This is physically consistent with the arguments presented
in Sec. 1. However, the negative trends of around �10% per
decade in descent regions are substantial and require further
scrutiny and may relate to errors in the NCEP w500 fields.
For example, should w500 fields become more realistic with
time, reduced misclassification of wet pixels in the descent
region will produce an artificial drying trend (W. Ingram,
personal communication, 2009). Indeed, applying more cur-
rent ERA Interim reanalysis w500 reduces the drying trends
magnitude by around 0.04 mm/day/decade (not shown).

5. Summary and Conclusions

[18] Multiple observations and model realisations were
used to investigate links between the hydrological and
energy cycles of the tropical oceans and the robust nature
of trends and responses to warming. Discrepancies between
variability in precipitation (P) are substantial, not only
between models and observations but between the observa-
tional estimates themselves. The SSM/I dataset exhibits the
strongest trends and sensitivity of P to surface warming,
1.35 mm/day/K for 1998–2006 for the ascent region, more
than double the AMIP3 model ensemble mean and the
TRMM radar retrievals.
[19] Observationally-based changes in water vapor are

well captured by models and this provides a robust con-
straint on changes in ascent region precipitation and in
particular the frequency/intensity of heavy rainfall events
[Trenberth et al., 2003; Allan and Soden, 2008]. However,
current reanalyses, including ERA Interim, remain unable to
realistically capture trends in water vapor and precipitation.
The atmospheric radiative energy balance provides a power-
ful constraint on future global precipitation changes [Allen
and Ingram, 2002; Lambert and Webb, 2008], but this does
not appear to apply to the tropical oceans. Further, observed
changes in atmospheric radiative fluxes are highly dependent
upon reanalysis products and so are therefore also unrealistic.
[20] All observations and models show increasing P with

time and with warming for the ascent region while P declines
or remains constant in the descent region, consistent with
theoretical considerations [Stephens and Ellis, 2008; Allen
and Ingram, 2002]. The observed magnitude of these
changes remains uncertain, requiring improvements in the
observing system.
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