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Abstract 

Southern West Africa (SWA) has a large population that relies on highly variable monsoon 

rainfall, yet climate models show little consensus over projected precipitation in this region. 

Understanding of the current and future climate of SWA is further complicated by rapidly 

increasing anthropogenic emissions and a lack of surface observations. Using multiple 

satellite observations, the ERA-Interim reanalysis, and four climate models, we document the 

climatology of cloud, precipitation and radiation over SWA in June-July, highlight 

discrepancies among satellite products, and identify shortcomings in climate models and 

ERA-Interim. Large differences exist between monthly mean cloud cover estimates from 

satellites, which range from 68 to 94 %. In contrast, differences among satellite observations 

in top of atmosphere outgoing radiation and surface precipitation are smaller, with monthly 

means of about 230 W m
–2

 of longwave radiation, 145 W m
–2

 of shortwave radiation and 5.87 

mm day
–1

 of precipitation. Both ERA-Interim and the climate models show less total cloud 

cover than observations, mainly due to underestimating low cloud cover. Errors in cloud 

cover, along with uncertainty in surface albedo, lead to a large spread of outgoing shortwave 

radiation. Both ERA-Interim and the climate models also show signs of convection 

developing too early in the diurnal cycle, with associated errors in the diurnal cycles of 

precipitation and outgoing longwave radiation. Clouds, radiation and precipitation are linked 

in an analysis of the regional energy budget, which shows that inter-annual variability of 

precipitation and dry static energy divergence are strongly linked. 

 

Introduction 

West Africa is currently experiencing a rapid growth in population and associated air 

pollution; it is also subject to the substantial variability of the West African Monsoon 

(WAM) rains, making this region particularly vulnerable to climatic impacts relating to 

health and food security [Knippertz et al., 2015b]. Monsoon precipitation and related 

large-scale processes show variability at both intra-seasonal [Sultan et al., 2003; Gu and 

Adler, 2004] and inter-annual [Sylla et al., 2009; Jianping and Qingcun, 2003] scales. 

This rainfall variability affects regional crop yields [Sultan et al., 2005a] and has been 

connected to meningitis outbreaks [Sultan et al., 2005b]. The WAM is intimately linked 

with the global atmospheric circulation and consequently its impacts spread beyond 

Africa. For example, modelling studies have shown that a strong monsoon contributes to 

the positive phase of the North Atlantic Oscillation [Gaetani et al., 2011].  
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The most populous part of West Africa is predominantly urban and concentrated along 

the southern coastal regions [Nelson, 2004] yet there is a general lack of surface 

observations in southern West Africa (SWA) and the region remains understudied 

[Knippertz et al., 2015a]. Consequently this highly populated region remains relatively 

poorly understood and the complex interplay between clouds, precipitation, radiation, 

aerosol pollution and the WAM further motivate detailed investigations into the climate 

and the physical drivers of variability across this region. 

 

The West African monsoon season runs between March and October. During this period 

the southern coastal regions experience two rainy seasons separated by a short dry season 

[Le Barbé et al., 2002]. The first wet season runs from March to June, with maximum 

precipitation along the coast in May. The intertropical convergence zone (ITCZ) and 

consequently much of the precipitation shifts further north in June/July, which leads to 

increased cloudiness and is the focus period for this study. With the ITCZ to the north, the 

coastal regions experience a short dry season during July and August, which is linked to 

stronger subsidence associated with outflows from deep convection to the north 

[Omotosho, 1988]. As the ITCZ retreats back towards the coast, bringing a second wet 

season from September to October. 

 

During the monsoon season, SWA experiences a complex pattern of cloud types with a 

pronounced diurnal cycle. Stein et al. [2011] identified numerous distinct cloud types in 

this region, from CloudSat and CALIPSO, with notable differences in cloud type, 

frequency of occurrence and amount when present between the day and night overpasses. 

Moreover, low-level stratus has been found to occur frequently, with maximum extent 

between 0900 and 1000 UTC and minimum around 1800 UTC [van der Linden et al., 

2015; Schrage et al., 2006].  

 

General circulation models struggle to correctly simulate the complex observed cloud and 

precipitation climatology in SWA. Hourdin et al. [2010] showed large accumulated 

precipitation differences between the models that participated in the African Monsoon 

Multi-disciplinary Analysis Model Intercomparison Project throughout West Africa. 

Knippertz et al. [2011] found that Coupled Model Intercomparison Project phase 3 

(CMIP3) models show little consensus on the mean July-September cloud cover in this 

region and on average allow too much solar radiation to reach the surface. Cloud and 
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precipitation errors persist in the CMIP5 models, which show large zonal mean 

precipitation and cloud radiative effect differences throughout West Africa and have 

problems with the timing and magnitude of the diurnal cycle of precipitation [Roehrig et 

al., 2013]. Even numerical weather prediction models at convection-permitting resolution 

can have large cloud errors in SWA; Stein et al. [2015] showed that the Met Office 

Unified Model (MetUM) overestimates low cloud cover and underestimates anvil cloud 

cover at all resolutions from 40 – 1.5 km. Cloud errors in SWA can have a large impact 

on radiation [Knippertz et al., 2011], which in turn may affect the broader circulation [Li 

et al., 2015; Marsham et al., 2013]. In light of these problems simulating present day 

climate, it is perhaps unsurprising that projections of future precipitation in West Africa 

show large diversity, for both regional [Paeth et al., 2011] and global coupled [Cook and 

Vizy, 2006] models. 

 

The uncertainty arising from existing model deficiencies is compounded by rapid 

increases in anthropogenic emissions in SWA; aerosol concentrations in SWA are poorly 

understood, as are their interactions with clouds [Knippertz et al., 2015b]. The Dynamics–

Aerosol–Chemistry–Cloud Interactions in West Africa (DACCIWA) project [Knippertz 

et al., 2015a] aims to improve our understanding of the physical and chemical processes 

in this region, through an extensive field campaign in SWA, including a multi-aircraft 

campaign in June-July 2016, and a broad range of modelling studies. 

 

The present study aims to document and understand the climatology of clouds, radiation, 

precipitation and their interconnections by combining observations and simulations in 

June-July over the region of West Africa centered upon 5–10
o
N and 8

o
W–8

o
E, which we 

shall hereafter refer to as the DACCIWA region. The primary motivation is to improve 

understanding of the physical processes determining the climate of this region, to 

highlight deficiencies in the reanalysis and climate model simulations and to provide 

context for and interpretation of upcoming planned observational campaigns such as the 

DACCIWA project. While precipitation is of great importance for health and agriculture, 

links between the water and energy cycles and the complex interaction between cloud, 

aerosol and radiation require a holistic approach in evaluating the climate of this region. 

For this purpose we rely upon satellite measurements which are able to capture the large-

scale structure of clouds and radiation and greatly add to the limited surface observations 

available. Advancing on previous studies [Knippertz et al., 2011; Stein et al., 2011; 
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Roehrig et al., 2013; van der Linden et al., 2015] we make detailed assessment of 

multiple satellite products and consider state of the art climate model simulations 

including their representation of the diurnal cycle within a focused region. Driving 

questions are: what are the primary characteristics of the climatology of this region, 

which satellite observations are most suitable for analysis, what are the primary model 

biases and what aspects of the climate system are poorly understood for this region? This 

analysis therefore also seeks to inform and prioritize future and ongoing observations and 

research undertaken as part of the DACCIWA project. The following sections outline the 

observations used and detail the climatology of clouds, radiation and precipitation and 

their diurnal cycle in observations, reanalyses and climate model simulations. 

 

1. Datasets 

This study considers the wider Southern West Africa region shown in Figure 1, but focuses in 

particular on the area 8°W – 8°E and 5 – 10°N, as highlighted by the dotted boxes, which we 

refer to as the DACCIWA region. These boundaries were chosen to avoid the Guinea 

highlands to the West, the Jos plateau to the East and the Gulf of Guinea to the South. This 

results in a domain that is large enough to reduce statistical sampling errors, but sufficiently 

homogeneous for domain mean values to be meaningful and matches that used for averaging 

in the modelling component of the DACCIWA project. The DACCIWA region consists of 

forests and cropland near the coast, with wooded savannas further inland and savannas to the 

north of the domain. We focus on the months of June and July coinciding with the 

progression of the summer monsoon and for consistency with the planned DACCIWA 

aircraft campaign [Knippertz et al., 2015a].  

As noted in the introduction, June-July is a transition period for the DACCIWA region. 

However, June-July differences (see supplementary material) are generally quite small. Cloud 

cover differences between June and July are much smaller than the differences between 

different satellite cloud cover products discussed in the following section. Moreover, 

observed differences in clouds, precipitation and top of atmosphere radiation between June 

and July are smaller than the errors in the climate models and ERA-Interim discussed in 

section 4. 
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We use seven observational datasets including retrievals from both active and passive 

sensors, and from both sun synchronous and geostationary orbiting satellites. Expanded 

acronyms and key properties for these datasets are summarized in Table 1. As few of the 

datasets exist prior to 2000, we focus on 2000-present. For ease of comparison, the 

observational datasets, ERA-Interim and the climate models are all re-gridded to a resolution 

of 1°.  

 

Longwave cloud radiative effects are strongly dependent on the temperature and 

consequently height of a cloud. To facilitate our understanding of cloud-radiation 

interactions, we consider cloud cover at different heights, with separate values of cloud cover 

for high clouds (tops above 440 hPa), mid-level clouds (tops between 440 and 800 hPa) and 

low clouds (tops below 800 hPa). These thresholds were chosen as they are already in use in 

many of the datasets considered and consequently can be applied consistently across climate 

models, ERA-Interim and observations. 

 

1.1. Satellite products 

The DARDAR [Delanoe and Hogan, 2010] product is based on combined CloudSat radar 

[Stephens et al., 2002] and CALIPSO lidar [Winker et al., 2009] observations at 1:30 and 

13:30 local time, providing vertically-resolved cloud properties. While the DARDAR product 

is based on active measurements that can detect multiple cloud layers, the other satellite 

cloud products use observations from passive instruments that are only able to detect the 

highest cloud layer and cannot detect lower clouds beneath higher clouds. Consequently only 

the high clouds from the passive satellite datasets can be usefully compared to DARDAR. To 

ensure a meaningful comparison between DARDAR and the passive observations, we 

remove potentially obscured clouds from DARDAR. This only affects the mid-level and low 

cloud cover from DARDAR. We shall refer to this as DARDAR-passive-like. 

 

The MODIS dataset is based on radiometer observations from two polar orbiting satellites; 

Terra was launched in 2000 and crosses the equator at approximately 10:30 and 22:30 local 

time, while Aqua was launched in 2002 and crosses the equator at approximately 1:30 and 

13:30 local time. We use the monthly global product, collection 6 [Platnick, 2015], which 

includes monthly statistics at a resolution of 1° x 1°. For total cloud cover, we use the mean 

cloud fraction, which is derived from the instantaneous cloud mask [Frey et al., 2008] and 
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includes both day and night data. For our analysis of cloud cover at different heights we 

calculate high, mid-level and low cloud cover from the cloud fraction-pressure histogram, 

which is based on the instantaneous cloud top pressure [Platnick et al., 2003] . The cloud top 

pressure is determined by a CO2 slicing technique using multiple spectral bands between 13.3 

and 15 µm. For low clouds, if the CO2 slicing technique fails to give a valid solution, then the 

infrared window approach is used, where the brightness temperature at 11 µm is used to 

determine a cloud top temperature, and temperature profiles from the National Centers for 

Environmental Prediction Global Data Assimilation System are used to convert this to a 

cloud top pressure. This ensures that the cloud top pressure is determined for all cloudy 

points. 

 

The CMSAF-CLAAS (Climate Monitoring Satellite Applications Facility - CLoud property 

dAtAset using SEVIRI (Spinning Enhanced Visible and InfraRed Imager)) product is based 

on instruments on the geostationary Meteosat Second Generation satellites [Stengel et al., 

2014]. The geostationary orbit provides excellent diurnal sampling; the CMSAF dataset has 

excellent potential for understanding cloud diurnal variability. However, as a relatively new 

dataset, there is likely to be potential for further refinements to the algorithm. We use the 

instantaneous cloud mask and cloud top pressure to calculate monthly mean total, high, mid-

level and low cloud cover for West Africa at a resolution of 1° x 1°. The cloud detection 

algorithm [Derrien and Le Gleau, 2005] is based on visible and infrared threshold tests in 

multiple bands combined with spatial variability tests. The threshold tests use eight bands, 

compared to the 22 used in the MODIS cloud mask algorithm. Like MODIS, cloud top 

pressure is determined using a combination of the infrared window approach and CO2 slicing. 

However SEVIRI lacks the multiple CO2 channels used in the MODIS algorithm and CO2 

slicing is used much less frequently than in MODIS.  The infrared window approach is used 

for low and mid-level thick clouds. For semi-transparent high clouds, the infrared window 

intercept method is applied. This is similar to CO2 slicing, but uses infrared and water vapor 

channels. CO2 slicing is only applied for optically thick high clouds or when the infrared 

window intercept method fails.   
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Note that the cloud top pressure in the CMSAF-CLAAS product is not estimated for all 

cloudy pixels. If a pixel contains fractional clouds (which are mainly low-level water clouds 

according to Stengel et al. [2014], then no cloud top pressure is determined. Consequently the 

mid-level, low and high cloud cover, which are estimated using the cloud top pressure do not 

sum to the total cloud cover, which is based on the cloud mask. 

 

We compare three precipitation datasets. The first dataset, the TRMM (Tropical Rainfall 

Measuring Mission) Multi-satellite Precipitation Analysis (TMPA) [Huffman et al., 2007] has 

been identified as one of the best satellite rainfall datasets over West Africa [Roca et al., 

2010; Pfeifroth et al., 2016]. We use the 3B42 data that provides precipitation estimates every 

three hours. TMPA combines microwave precipitation estimates from a variety of satellites 

(which are intercalibrated to precipitation estimates directly from the TRMM satellite) with 

geostationary infrared precipitation estimates created using the calibrated microwave 

precipitation. To ensure good performance at the monthly mean scale, the precipitation 

estimates are subsequently rescaled to match monthly mean gauge measurements. 

 

The second precipitation dataset considered is the Global Precipitation Measurement (GPM) 

mission [Hou et al., 2014], which is the follow up to TRMM. The Integrated Multi-satellitE 

Retrievals for GPM (IMERG) dataset [Huffman et al., 2013] used in this study uses a similar 

algorithm to the TMPA product. GPM was launched in February 2014 and data is available 

from March 2014. Consequently our comparison with TRMM is limited to June-July 2014. 

Nevertheless, we think this provides a useful initial examination of the diurnally-resolved 

differences between the datasets in this region. Initial global comparisons on a monthly scale 

show that TMPA-IMERG differences are small over land [Liu, 2016]. Quantifying 

uncertainty in merged precipitation products such as TMPA and GPM IMERG is difficult 

and remains an area of ongoing research [Sorooshian et al., 2011].  

 

The third precipitation dataset considered is the Global Precipitation Climatology Centre 

(GPCC) precipitation reanalysis product [Schneider et al., 2014]. This is based on quality-

controlled gauge records obtained from 75,000 surface stations between 1900 and 2013. The 

GPCC reanalysis product is used to calibrate the TRMM product over land at the monthly 

mean scale up to 2010. For later years, both TRMM and GPM use the GPCC monitoring 

product, which is based on fewer gauges. Although the number of gauges used in the GPCC 

analysis product in West Africa is relatively small, Nicholson et al. [2003] showed that it 
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compares well with a denser rain gauge network. However, the GPCC product only provides 

estimates at the monthly mean scale, with no diurnal cycle. Consequently we prefer the 

TRMM and GPM datasets, which by design match the monthly mean GPCC values, but 

provide sub-daily data for analyzing the diurnal cycle of precipitation. 

 

Note that satellite precipitation products generally capture convective precipitation, but 

struggle to detect warm rain (precipitation produced by liquid clouds) events [Ebert et al., 

2007]. The use of gauges in the TRMM product may improve total biases at the expense of 

increasing the precipitation amount when present to compensate for any undetected 

precipitation events [Tian et al., 2009]. The sparsity of surface observations may also affect 

the performance of both TMPA and GPM, which depend on local gauge calibration [Worqlul 

et al., 2014].  

 

For top of atmosphere (TOA) radiation, we use CERES [Wielicki et al., 1996] and GERB 

[Harries et al., 2005] datasets. The CERES instrument measures radiances in three channels: 

total (0.3-200 µm), SW (0.3-5 µm) and LW window (8-12 µm). These radiances are 

converted to instantaneous TOA flux estimates using a scene-dependent angular distribution 

model (ADM) as described by Loeb et al. [2003]. CERES instruments are limited to the same 

two polar orbiting satellites as MODIS, and consequently only sample the diurnal cycle at 

four times. We use the synoptic radiative fluxes and clouds (CERES-SYN) product [Doelling 

et al., 2013], which capitalizes on geostationary imagers to estimate the diurnal variability 

between CERES observations, using coincident geostationary and MODIS/CERES 

observations to ensure CERES calibration is maintained. The dominant source of uncertainty 

in CERES TOA radiation measurements relates to absolute calibration [Loeb et al., 2009], 

which is estimated to be 2% for the SW channel and 1% for the total channel [Priestley et al., 

2002]. Clear-sky fluxes are estimated as the mean for those CERES footprints for which the 

cloud fraction is less than 1%, where the cloud mask is estimated using MODIS [Minnis et 

al., 2011]. 

  

The GERB dataset [Dewitte et al., 2008] is based on a series of GERB instruments on the 

geostationary Meteosat Second Generation Satellites. GERB2 was launched in August 2002 

and began operations in February 2004 while GERB1 was launched in December 2005 and 

began operations in May 2007. The HR (high resolution) product used in this study has a 

temporal resolution of 15 minutes. The GERB instruments measure radiances in two 
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channels: total (0.3 – 100 µm) and SW (0.3 – 4 µm), and LW radiance is calculated by 

subtraction SW from the total. The theoretical uncertainty for instantaneous unfiltered 

radiances is about 2% in the SW and 1% in the LW [Clerbaux et al., 2009].  

 

To convert radiance to flux, the CERES ADMs in the SW and theoretical ADMs [Clerbaux, 

2003] in the LW were used, along with the scene identified from SEVIRI. Comparison of 

instantaneous fluxes for earlier editions of the GERB and CERES products [Clerbaux et al., 

2009] found reasonable agreement between GERB2 and CERES in the LW, but larger 

differences in the SW, which were attributed to differences in the absolute calibration 

accuracy; following the GERB2 data quality summary recommendations we apply an 

additional calibration factor which reduces this difference.  

 

Unlike CERES products, the GERB product does not report SW fluxes for solar zenith angles 

larger than 80°. To complete the diurnal cycle, we fill this missing data using mean twilight 

values from CERES [Kato, 2003] for zenith angles between 86.5° and 104.5°. Kato [2003] 

does not report fluxes at zenith angles less than 86.5°, so we use linear interpolation in time 

to fill zenith angles between 80° and 86.5°. 

 

Estimates of the radiative heating of the atmosphere are required to understand the 

atmospheric energy budget and links between radiative and latent heating. The atmospheric 

radiative heating is calculated by subtracting net downwards surface radiative fluxes from the 

net downwards top of atmosphere radiative fluxes. Surface fluxes are not measured by 

satellites, but are calculated using radiative transfer models in some CERES products. For 

consistency, atmospheric radiative heating is calculated using surface and top of atmosphere 

fluxes from the same product. In particular, we use the CERES-EBAF [Loeb et al., 2009] 

product and the CERES-COMPUTED [Rutan et al., 2015]product. We do not use the 

CERES-SYN product employed in the analysis of top of atmosphere fluxes as it does not 

have consistent surface flux estimates. 
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1.2. ERA-Interim  

Reanalyses provide spatially and temporally complete estimates of the state of the 

atmosphere, and estimates of atmospheric motion that are difficult to observe. For regions of 

sparse observations such as southern West Africa, reanalyses are particularly useful, although 

caution needs to be exercised since they are likely to be less reliable due to the lack of 

conventional observations to assimilate.  

 

The European Centre for Medium-range Weather Forecasts (ECMWF) ERA-Interim [Dee et 

al., 2011] re-analysis runs from 1979 and is continuously updated. If, as Knippertz et al. 

[2011] suggest, ERA-Interim performs reasonably in the DACCIWA region, then it 

potentially provides a useful tool for understanding errors in other models. The analysis is 

computed using a 2006 release of ECMWF’s Integrated Forecasting System (IFS), which has 

a horizontal resolution of approximately 80 km and 60 vertical levels. For comparison to the 

satellite clouds products, we calculated high, mid-level and low cloud cover (as seen from 

space) from the cloud cover on model-levels, assuming maximum-random overlap [Geleyn 

and Hollingsworth, 1979]. The contribution of horizontal energy transport to the regional 

energy budget, as discussed in section 3.2.2, is approximated by the column-integrated 

divergence of dry static energy flux and calculated from ERA-Interim with a mass correction 

following Liu et al. [2015].  

 

Note that ERA-Interim analysis fields are available at most every 6 hours and only every 12 

hours for some fields. To fill in the missing points in the diurnal cycle, we use data from the 

ERA-Interim forecast, which is available every three hours. We also use ERA-Interim 

forecast data for variables that are output as accumulated fluxes and therefore not available at 

the analysis time (e.g. radiative fluxes and surface precipitation). Differences between ERA-

Interim forecast and analysis fields as noted by Knippertz et al. [2011] are beyond the scope 

of this study. 
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1.3. Climate models 

 

To investigate errors in state of the art climate models, we use simulations from the coupled 

model intercomparison project (CMIP) phase 5 experiment [Taylor et al., 2012]. CMIP5 

provided the climate model simulations that form the basis of the Intergovernmental Panel on 

Climate Change Fifth Assessment report [Pachauri et al., 2014]. As this study focuses 

exclusively on atmospheric processes, we use atmospheric model intercomparison project 

(AMIP) simulations that employ predetermined realistic sea surface temperatures and sea ice. 

As SWA exhibits notable diurnal cycles of cloud, precipitation and radiation [Stein et al., 

2011; van der Linden et al., 2015; Pfeifroth et al., 2016], which will affect their interactions, 

we focus on those AMIP5 models for which three hourly output is available: CanAM4, 

CNRM-CM5, HadGEM2-A and MRI-CGCM3. Further details of these models are given in 

Table 2. 

 

2. Satellite observations of cloud, precipitation and radiation  

2.1. Spatial variability  

 

To understand the overall relation between cloud, precipitation and radiation, we first 

examine their mean regional distribution using MODIS, TRMM and CERES products, as 

shown in Fig. 1.  Regions with extensive cloud cover and heavy precipitation are associated 

with high outgoing shortwave radiation (OSR) due to substantial reflectance of sunlight by 

clouds, and low outgoing LW radiation (OLR) due to cold cloud top temperature.  Largest 

cloud cover and precipitation occur to the immediate East and West of the DACCIWA region 

and are linked to topography, in particular the Guinea highlands to the West and the Jos 

plateau to the East. Increased cloud cover in these regions is linked to increased OSR and 

decreased OLR. Between these cloud/precipitation maxima lies the DACCIWA region, 

highlighted by the black box. This excludes by design significant topography, but may be 

affected by convective systems initiated over the Jos plateau that travel westward into the 

region of interest [Fink et al., 2006]. While the DACCIWA region has less extreme values 

than observed over the topography to the East and West it shows larger precipitation, cloud 

cover and OSR, and smaller OLR than the Sahel to the immediate North and the Gulf of 

Guinea to the South.  
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The DACCIWA region is relatively homogeneous compared to the strong zonal variability to 

the immediate North and topographically induced variability to the East and West. Mean 

cloud, radiation and precipitation fields over the DACCIWA region and uncertainty across 

observational dataset is quantified in the following section in the context of inter-annual 

variability. 

 

2.2. Inter-annual variability 

The inter-annual variability can provide insight into the physical processes determining the 

climate of the region during June-July as well as contributing context and additional 

quantification of uncertainty in the planning for the forthcoming DACCIWA observational 

field campaign. Multi-annual mean and inter-annual variability are quantified in Table 3 for 

each variable and dataset.  

 

2.2.1. Cloud, precipitation and radiation 

Overall, Figure 2 highlights the large differences between the three satellite cloud products. 

There is little coherent variability or trends in cloud fraction across datasets, although the 

DARDAR-passive-like dataset displays an increase in high cloud cover from 71% to 83% 

over the period 2006–2010. Among the three cloud datasets used in the study, DARDAR-

passive-like produces the largest total cloud cover, primarily due to much larger high cloud 

cover (Fig. 2a); this is not surprising because the lidar observations used in DARDAR can 

detect optically thin clouds at high altitudes that are often missed by MODIS [Sun et al., 

2011; Lee et al., 2009]. Although these clouds are optically thin, their radiative effect, 

particularly in the LW is significant [Haladay and Stephens, 2009; Lee et al., 2009; Sun et al., 

2011].  

 

In contrast, low and mid-level cloud covers from DARDAR-passive-like are less than those 

from MODIS. This may be due to cases such as thin cirrus pixels over lower thicker clouds, 

which are classified as high cloud by DARDAR-passive-like, but as low clouds by MODIS. 

To account for differences in mid and low-level cloud due to obscuration by higher clouds, 

we calculate new weighted mid- and low-level cloud cover (Figs. 2e and 2f). To calculate the 

weighted mid-level cloud cover, we divide the mid-level cloud cover by the maximum 

possible mid-level cloud cover, which is less than one due to the presence of high cloud (i.e. 

we divide the mid-level cloud cover by one minus the high cloud cover). Similarly, the 
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weighted low-level cloud cover is calculated by dividing the low-level cloud cover by the 

maximum possible low-level cloud cover, which is less than one due to the presence of high 

and mid-level cloud. As detailed in the Appendix, if clouds at different levels are randomly 

overlapped, then these weighted values represent the true mid- and low-level cloud covers. 

Thus if clouds at different levels are randomly overlapped then the weighted cloud cover for 

passive satellite observations can be compared directly to the original DARDAR dataset 

(where we have not removed mid and low-level cloud beneath higher clouds as in 2c and 2d). 

 

To validate the weighted cloud cover, we focus initially on the difference between the 

weighted DARDAR-passive-like cloud cover and the original DARDAR mean cloud cover. 

Agreement between the two indicates that the weighting can be applied sensibly to the 

passive cloud cover datasets (i.e. MODIS and CMSAF) for comparison to the original 

DARDAR observations. For mid-level cloud the original DARDAR mean cloud cover and 

weighted DARDAR-passive-like mean cloud cover are very similar (Figure 2e). However, 

for low-level clouds, the weighted DARDAR-passive-like cloud cover is larger than the 

original cloud cover (Figure 2f). This indicates that low clouds and mid-level or high clouds 

are not randomly overlapped in the DARDAR dataset. This may be because they are not 

randomly overlapped in reality, but could also be due to missing low-level cloud beneath 

higher cloud in the DARDAR dataset. Indeed, Schrage and Fink [2012] highlighted problems 

detecting low level stratus beneath higher cloud in SWA, due to attenuation of CALIPSO 

lidar signal by the higher cloud and contamination in CloudSat radar reflectivity by ground 

clutter.  

 

Calculating weighted cloud cover for MODIS gives lower mid-level cloud cover than the 

DARDAR original product (Figure 2e); this confirms that the MODIS mid-level cloud cover 

is only larger than the DARDAR-passive-like mid-level cloud cover due to larger high cloud 

cover that obscures mid-level cloud in the DARDAR-passive-like dataset. The difference 

between DARDAR original and weighted MODIS mid-level cloud cover shows that MODIS 

is missing some optically thin mid-level clouds. For low clouds, the weighted MODIS cloud 

cover is larger than the original DARDAR cloud cover. Interpretation of this result is 

complicated by the lack of agreement between the DARDAR original and weighted 

DARDAR-passive-like cloud cover and requires a more detailed comparison of DARDAR 

and MODIS in this region. 
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Compared to DARDAR-passive-like and MODIS, CMSAF tends to detect less cloud cover at 

all heights, consistent with results over tropical lands reported in Reuter et al. [2009]. It 

matches DARDAR-passive-like mid and low level cloud covers better, but comparison of the 

CMSAF weighted cloud cover with the DARDAR original cloud cover shows this good 

match is due to increased high cloud in DARDAR-passive-like obscuring more mid-level and 

low cloud. The MODIS-CMSAF difference is largest for low cloud. This difference is 

primarily due to a lack of nocturnal low cloud in CMSAF, as discussed in Sect. 3.3.  

 

Figure 3 (a) shows surface precipitation from TRMM, GPM, GPCC and ERA-Interim. For 

2014, mean precipitation from GPM and TRMM show agreement to within 0.5 mm day
–1

 due 

to both being constrained at the monthly mean scale by the same surface rain gauge analysis. 

Given the lack of extended GPM data at this point in time, TRMM is clearly the better dataset 

for evaluating the climate models and ERA-Interim. TRMM mean precipitation varies 

substantially from year to year, ranging from ~4.5 mm day
–1

 in 2013 up to ~7.5 mm day
–1

 in 

2002. The longer-term GPCC gauge-analysis product shows that this mean and inter-annual 

variability is consistent with the record going back to 1900 (not shown). However, figure 3(b) 

shows that the last few years have been consistently drier than both the TRMM mean (5.8 

mm day
–1

) and the longer-term GPCC mean (6.1 mm day
–1

). Indeed, averaging over five year 

periods, the five most recent years of TRMM observations (i.e. 2011-2015) are drier than any 

other five-year period in either the TRMM or GPCC record, with the caveat that the GPCC 

full reanalysis currently extends to 2013, so more recent TRMM observations are calibrated 

using the GPCC monitoring product. 

 

Figure 4 shows inter-annual variability of clear-sky and all-sky TOA outgoing fluxes from 

CERES-SYN and GERB. For the OSR, there is a notable contrast between the GERB-

CERES differences for the GERB2 instrument (2004–2006) and the GERB1 instrument 

(2007–2011). GERB2-CERES differences are small, while CERES predicts larger monthly 

mean values than GERB1, the magnitude increasing with time up to about 5 W m
–2

 in 2011, 

but remains within the sum of the respective observational uncertainties (~6 W m
–2

). 

Consequently the mean value for the GERB OSR (Table 3) is slightly smaller than the 

CERES value. The difference between GERB1 and GERB2 is also evident in the OLR; again 

GERB2-CERES differences are smaller, while GERB1 appears to overestimate OLR slightly 

by around 2 W m
–2

, which is within the observational uncertainty for both CERES and 

GERB.  
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It is worth noting that the limited sampling of the diurnal cycle in CERES-SYN has a non-

negligible effect on the mean SW fluxes. Sampling the GERB fluxes at similar points in time 

leads to an increase in the GERB mean outgoing SW flux of approximately 6 W m
–2

 and 

gives GERB2 values that are larger than CERES and GERB1 values that are a closer match 

to CERES.  Limited sampling of the diurnal cycle can cause similar problems in climate 

models [Zhou et al., 2015] and will be discussed further in section 3.3. 

 

Generally there are little obvious inter-annual changes in the cloud or radiation observations. 

Exceptions include the GERB SW flux, where the change from GERB2 to GERB1 leads to 

differences of approximately 3.5 W m
–2

. The GERB team has more confidence in the 

calibration of GERB1 (Clerbaux, pers comm.) so we focus on CERES and GERB1 when 

considering radiation observations in the rest of this paper. Another notable change is the fall 

of approximately 10 W m
-2

 in OLR between 2007 and 2008, which happens to be the year 

used for the evaluation of the diurnal cycles in the climate models and ERA-Interim. This 

decrease in OLR coincides with a precipitation maximum and high cloud maxima in MODIS 

and CMSAF.  For precipitation, the natural inter-annual variability in the DACCIWA region 

appears to be large and we must bear in mind that individual years (as used for example in 

section 4) may not be representative of the longer term. 

 

2.2.2. Budget analysis 

To compare inter-annual variability of radiation and precipitation, understand how they are 

linked, and identify what the sources of variability are, we consider the atmospheric energy 

and moisture budgets for June-July. Under the hydrostatic approximation and assuming that 

kinetic energy transport and changes in energy and water storage are negligible as in Muller 

and O’Gorman [2011], the time-mean regional atmospheric energy budget may be expressed 

as 

         

where Lc is the latent heat of condensation of water vapor, P is the surface precipitation rate, 

Hd is the atmospheric horizontal divergence of dry static energy and Q is the atmospheric net 

heating from radiation and sensible heat. Similarly, assuming changes in water storage are 

negligible, the time-mean moisture budget may be expressed as 

       

where E is the surface evaporation rate and Mh is the horizontal divergence of moisture.  
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Satellite datasets provide estimates of precipitation rates, SW column radiative heating and 

LW column radiative cooling, while ERA-Interim can provide sensible heating, surface 

evaporation, divergence of moisture and divergence of dry static energy. Figure 5 illustrates 

the key terms in the atmospheric energy budget of the DACCIWA region and includes June-

July multi-annual mean estimates for each term. The DACCIWA region is fueled by ~110 W 

m
–2

 of SW radiative heating, ~170 W m
–2

 of latent energy release through precipitation, and 

~25 W m
–2

 of sensible heating from the surface. This is balanced by LW net radiative cooling 

between –188 and –211 W m
–2

 (depending on dataset) and horizontal divergence of dry static 

energy of about –105 W m
–2

. While SW and LW radiation are amongst the largest terms in 

the energy budget, they and the sensible heat flux show little inter-annual variability (values 

in parenthesis in Figure 5), and are relatively homogeneous throughout SWA (not shown).  

Latent heating and Hd are much more variable, both temporally and spatially. Year to year 

changes in latent heating and Hd are well correlated (Figure 6a), with a correlation coefficient 

of 0.96 when both are estimated from ERA-Interim, and 0.41 when latent heating is based on 

TRMM precipitation. For both latent heating and Hd these year-to-year changes are generally 

larger in the eastern part of the DACCIWA region and appear to be linked to changes in the 

magnitude and location of the precipitation maximum near the coast of Nigeria/Cameroon 

(see supplementary material).  

 

Within ERA-Interim, the energy budget balances reasonably well, with cooling exceeding 

heating by 5.7 W m
–2

. When we combine satellite estimates of latent heating and radiation 

with ERA-Interim estimates of sensible heating and divergence of dry static energy, which 

are not available from satellites, heating exceeds cooling by 4.3 W m
–2

 when we use CERES-

EBAF for radiation and 13.9 W m
–2

 for CERES-COMPUTED radiation. These differences 

are primarily due to lower estimates of LW cooling from the satellites. ERA-Interim appears 

to overestimate LW cooling in the DACCIWA region, which is consistent with an 

overestimate of OLR and an underestimate of mid-level cloud cover (Table 3). Assuming that 

the imbalance in the combined satellite and ERA-Interim energy budget is due to errors in 

ERA-Interim, closing the budget requires either an increase in the divergence of dry static 

energy or a decrease in sensible heating in ERA-Interim. 
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The ERA interim moisture budget also balances reasonably well; loss of water through 

precipitation (5.8 mm day
–1

) is balanced by evaporation (3.4 mm day
–1

) and horizontal 

moisture convergence (2.4 mm day
–1

). The mean difference between ERA-Interim and 

TRMM precipitation is small (Figure 3a), so the balance is reasonably well maintained when 

TRMM precipitation (5.9 mm day
–1

) is used. Similarly to the energy budget, inter-annual 

variability is dominated by precipitation and horizontal divergence (Figure 6b). Increased 

precipitation is linked to increased horizontal convergence of moisture (i.e. negative 

divergence), with a Pearson correlation coefficient of –0.98 when both are estimated from 

ERA-Interim and –0.33 for TRMM precipitation.  

 

2.3. Diurnal cycle  

Previous studies have indicated notable diurnal cycles of cloud [van der Linden et al., 2015; 

Stein et al., 2011] and precipitation [Pfeifroth et al., 2016] in SWA. Interactions between 

clouds, precipitation and radiation are affected by their respective diurnal cycles. For 

instance, due to the large amplitude of the diurnal cycle of shortwave radiation, cloud-

radiation interactions are strongly dependent on when in the diurnal cycle cloud occurs; 

shortwave cloud heating of the atmosphere tends to be larger than longwave cooling during 

the day, while at night when there is no shortwave radiation, longwave radiation leads to a 

cooling of the atmosphere. This section investigates links between the diurnal cycles of 

clouds, precipitation and radiation. 

 

Figure 7 shows a number of key features of the diurnal cycle of cloud cover, precipitation and 

outgoing radiation at TOA. To ensure a fair comparison we focus on those years that are 

included in all datasets, 2007–2010. Note that DARDAR is the only dataset that uses the 

same method to retrieve daytime and night time cloud cover; therefore, any notable diurnal 

signature in cloud cover from DARDAR should not be caused by the retrieval method itself.  

In contrast, MODIS and CMSAF both have separate methods for daytime and night time 

retrievals.  
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Figure 7a shows that DARDAR and MODIS do not display a noticeable diurnal cycle in total 

cloud cover, but there is a clear diurnal difference in high cloud cover (Fig. 7b). High clouds 

are more prevalent at night (roughly at 0–5 and 20–24 UTC), consistent with reduced OLR 

(Fig. 7h) and following the diurnal maximum in precipitation (Fig. 7f), suggesting that the 

diurnal cycle of high cloud cover strongly links to convective systems that develop during the 

afternoon and evening and lead to increased anvil and cirrus cloud at night (e.g. Stein et al., 

2011). In contrast, low clouds are more prevalent during the day; this cycle does not match 

surface synoptic observations presented by van der Linden et al. [2015], showing that low 

cloud cover increases overnight to a maximum at 6 UTC and decreases through the day to a 

minimum at 18 UTC. This discrepancy may be related to the dependence of low cloud cover 

from passive satellites on high cloud cover, as discussed in section 3.2 and the supplementary 

material; diurnal changes in MODIS and DARDAR-passive-like high cloud cover result in 

diurnal changes to the amount of low cloud that is obscured by high cloud, which may lead to 

unrealistic increases in low cloud cover when high cloud cover decreases. 

 

The diurnal cycle of cloud cover from CMSAF behaves differently to the other datasets. For 

high- and mid-level clouds, the diurnal cycle from CMSAF is generally consistent with that 

found in DARDAR and MODIS; however, for the total cloud cover, CMSAF shows a larger 

cloud cover at daytime than night (Fig. 7a), which is primarily due to low-level cloud cover 

(as seen in Fig. 7d). This raises a question why CMSAF has similar low-level cloud cover to 

DARDAR and MODIS during the day, but at night has virtually no low cloud cover, which is 

much lower than the other two products and warrants more detailed discussions.  

 

Focusing on night time land retrieval algorithm, MODIS relies on the 11 – 3.9 µm brightness 

temperature difference (BTD) to detect low clouds, with empirically derived thresholds that 

depend on total precipitable water predicted by the Global Data Analysis System. Similarly, 

CMSAF uses the 10.8 –3.9 BTD, but with thresholds determined from a look-up table that 

depend on satellite zenith angle, surface type and NWP forecast integrated water vapor 

content [Derrien and Le Gleau, 2005]. This suggests that the lack of nocturnal low cloud in 

the CMSAF product is due to problems with the threshold applied to the 10.8 – 3.9 BTD. 

Further evidence for this is provided by Van der Linden et al. [2015] who obtained better 

low-cloud cover over SWA from SEVIRI by simply fixing the 10.8–3.9 BTD threshold at 

2K. Since a fixed threshold is unlikely to be applicable to other scenes and cloud types, this 

suggests further areas for CMSAF developers for improvement. 
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Each of the cloud datasets has strengths and weaknesses. The CMSAF product has excellent 

diurnal sampling, but has large cloud cover biases, particularly for low cloud cover, due to 

issues detecting nocturnal low cloud. On the other hand, DARDAR has the greatest 

sensitivity and detects the most cloud, but has fewest samples of the diurnal cycle. In terms of 

both cloud cover biases and diurnal sampling, MODIS lies between DARDAR and CMSAF. 

As a compromise between accuracy and diurnal sampling, we use the MODIS dataset for 

comparison to climate models and ERA-Interim in this study. Satellite simulators that 

emulate remotely resolved observations [Bodas-Salcedo et al., 2011] are also a useful tool for 

evaluating clouds in climate models, but the number of instruments and temporal resolution 

available from AMIP5 models is limited. 

 

As expected, agreement between the diurnal cycle of precipitation in TRMM and GPM is 

good (Fig 7f, for 2014 only), with a root mean square difference of 0.03 mm hr
–1

; both show 

peak precipitation in the early evening and a minimum in the morning, which is characteristic 

of the diurnal cycle of convective precipitation over land [Nesbitt and Zipser, 2003]. 

Although precipitation shows large inter-annual variability (Fig. 3), there are no obvious 

differences between the mean diurnal cycles for 2014 (Fig. 7f) and 2007–2010 (Fig.7e). This 

suggests that the large inter-annual variability is due to variability in the number and strength 

of convective events rather than significant variability in the rainfall type. However, this lack 

of variability in the diurnal cycle over a broad region does not necessarily apply at local 

scales; Pfeifroth et al. [2016] showed that the diurnal cycle of precipitation at Oueme in 

Benin showed inter-annual variability that they linked to changes in the proportion of 

precipitation due to local convection and westward propagating convective systems. Similar 

to previous studies of the diurnal cycle of convection [Tian, 2004; Chung et al., 2007; Soden, 

2000], the diurnal precipitation maximum coincides with an increase in high cloud and 

precedes the diurnal maximum of high cloud. This may be a consequence of the use of 

infrared observations in TRMM, which use cloud top temperature as an indicator of surface 

precipitation. Pfeifroth et al. [2016] found that the TRMM product lagged the surface 

synoptic diurnal maximum by 1-2 hours for the Ouémé meso-site (centered on 9.5°N, 2°E) 

and attributed this to the use of infrared observations in TRMM. 
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Figure 7g shows the diurnal cycle of SW radiation from CERES-SYN and GERB1. For the 

CERES sample time, differences with GERB values at adjacent times are small. In fact, the 

mean flux for the GERB1 points closest in time to CERES is 147.1 W m
–2

, which is slightly 

larger than the GERB1 diurnal mean (143.3 W m
–2

) and closer to the 2007–2011 CERES 

mean (147.1 W m
–2

). A similar result is obtained when we sample GERB2 at similar times to 

the CERES-SYN sampling. Differences between CERES-SYN and GERB in the DACCIWA 

region at the CERES-SYN sample time are consistent with a previous comparison which 

showed that GERB2 fluxes were generally larger than CERES [Clerbaux et al., 2009]. 

Diurnal mean differences between the datasets are larger due to different temporal sampling 

in GERB and CERES-SYN. 

 

The amplitude of the diurnal cycle of OLR (Fig. 7h) is much smaller than the OSR. 

Consequently, the reduced temporal sampling in CERES has less impact. GERB gives larger 

values between 20 and 13.5 UTC, so the GERB diurnal cycle has smaller amplitude, but the 

phases show good agreement. The clear-sky OLR has virtually no diurnal cycle indicating 

that the all-sky OLR diurnal cycle is due to cloud. The OLR minimum at night (around 1.5 

UTC for CERES) and maximum around 13.5 UTC are consistent with the high cloud diurnal 

cycle shown in Fig. 7b.  

 

Since the flux differences between CERES and GERB are small, in principle, either is 

suitable for further analysis. GERB has advantage of better temporal resolution, but it lacks 

clear-sky flux estimates that are necessary to extract the radiative effects of clouds. 

Therefore, CERES data will be used for the following evaluation of climate models and 

ERA-Interim. However, bear in mind that the CERES has a potential diurnal average 

difference of ~5 W m
–2

 due to limitations in temporal sampling. 

 

3. Evaluation of climate model simulations and ERA-Interim 

 

We now undertake a preliminary assessment of CMIP5 simulations and ERA-Interim for the 

SWA region, focusing on atmosphere-only model AMIP simulations that provide the set of 

diagnostics necessary to investigate climatological and diurnal variability in radiation, 

precipitation and cloud cover. The motivation for this, rather than providing a comprehensive 

evaluation of the set of CMIP5 models, is to update previous analyses of older generation 

models (e.g. Knippertz et al., 2011) and to highlight major biases that warrant further 
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investigation. Based upon the analysis in Section 3, the most suitable observational datasets 

are now exploited for evaluating ERA-Interim and four climate model simulations and 

identifying deficiencies in their representation of cloud, radiation and precipitation.  

 

With respect to the observed fields shown in Figure 1, Figure 8 shows maps of model mean 

errors for total cloud cover, precipitation, OSR and OLR respectively. Generally, the climate 

model errors are fairly homogeneous across the DACCIWA region and consistent with the 

error over SWA. Most of the spatial variability in errors in the DACCIWA region occurs 

because the climate models are too homogeneous and fail to capture the limited spatial 

variability that does exist in the observations; for example, many of the models fail to capture 

the observed decrease in OLR from West to East, which results in errors that increase from 

West to East. This is not surprising given the coarse horizontal resolution of the models 

(Table 2). Of note is the gross underestimation of cloud and precipitation and overestimation 

of OLR by the ERA Interim reanalysis and the HadGEM2-A climate model simulation at 

around 10–15
o
N, immediately to the north of the DACCIWA region. It is somewhat 

surprising that the ERA Interim has the underestimation of cloud by up to ~50% in coverage 

and of OLR of up to ~ 50 W m
–2

 given the assimilation of observations, although this bias 

may be partly a consequence of the paucity of observations in this region. It is also worth 

noting that cloud is not directly assimilated in ERA-Interim and errors in the model 

microphysics scheme can cause problems in cloud altitude and radiative properties 

[Chevallier et al., 2001]. Although generally smaller in magnitude, these cloud and radiation 

biases also broadly apply across all climate models considered indicating an endemic 

deficiency in the representation of the WAM. Zonal (10°W – 10°E) mean values 

(supplementary material) show that in the case of ERA-Interim (and to a lesser extent 

HadGEM2-A and MRI-CGCM3) these errors are linked to a failure to capture the mean 

northwards progression of the intertropical convergence zone from June to July and are 

consistent with the annual mean ERA-Interim precipitation bias identified by Paeth et al. 

[2011] and the ERA-Interim rainfall onset timing bias identified by Dunning et al. 

(submitted). This failure to capture the northward shift of the WAM precipitation may be a 

common feature of reanalyses as it occurs in both ERA-Interim and the MERRA reanalyses 

[Thorncroft et al., 2011]. 
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Model and ERA-Interim inter-annual variability is generally of a similar magnitude to the 

observed inter-annual variability (Table 3 and supplementary material), the exception being 

for clear-sky outgoing SW flux, where the inter-annual variability in both ERA-Interim and 

the climate models is smaller than CERES-SYN. We suspect this is because the variability is 

overestimated in the CERES-SYN observations due to sampling errors in this cloudy region. 

 

Figure 9 shows diurnal cycles for ERA-Interim and climate model total cloud cover, 

precipitation, and top of atmosphere radiative fluxes. For most climate models the diurnal 

cycle is only available for 2008, so we limit the comparison to this year. Differences in the 

phase of the diurnal cycles of radiative flux cannot be disentangled from the temporal 

sampling that the climate models use to reduce the cost of the computationally expensive 

radiative transfer schemes. The different climate models and ERA-Interim use different 

methods to account for this reduced temporal sampling, and as a result fluxes output at the 

same point in time may represent quite different time periods. For example, HadGEM2-A 

calculates radiative fluxes every three hours using atmospheric properties from the start of the 

radiation time step and a solar zenith angle that is the mean over the radiation time-step 

[Manners et al., 2009], outputting fluxes at the start of the radiative time-step. CanAM4 on 

the other hand applies a 1-hr radiation time-step, uses atmospheric properties and solar zenith 

angle from the start of the time-step and output fluxes at the end of the time-step. Such 

differences make comparison of the phase of the diurnal cycles of radiation problematic, so 

we shall restrict our discussion to the amplitude of the diurnal cycles. 

 

There is a large spread of clear-sky OSR values amongst the models and ERA-Interim (Fig. 

9e and Table 3). This is primarily due to surface albedo differences (supplementary material); 

MRI-CGCM3 has a particularly large albedo and is a clear outlier, but the range of albedos in 

the other models and ERA-Interim is greater than 0.02, which is large enough to affect 

regional climate [Taylor et al., 2002]. The AMIP5 models all overestimate clear-sky OSR 

compared to CERES-SYN and ERA-Interim, which generally offsets the underestimated SW 

cloud radiative effect (Table 3) caused by underestimating cloud cover.  However, the 

CERES-SYN clear-sky fluxes may be subject to a sampling bias in this very cloudy region. 

The spread in surface albedo values is likely to have an impact on the simulated cloud and 

precipitation; many previous studies have shown the sensitivity of West African climate to 

small changes in albedo [Charney et al., 1977; Taylor et al., 2002]. 
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Only CanAM4 and ERA-Interim simulate levels of low cloud cover within 0.05 of the 

MODIS values (Table 3). CanAM4 actually has a larger value of low cloud cover than 

MODIS, but this may simply be a consequence of less higher cloud in CanAM4 to obscure 

low cloud. The lack of low cloud cover to insulate the surface at night in ERA-Interim and 

the climate models leads to a larger surface temperature diurnal cycle (not shown). This 

ultimately leads to an overestimate of the amplitude of the diurnal cycle of clear-sky OLR 

(Fig. 9b), but this signal is dwarfed by the diurnal cycle of cloud in the all-sky OLR. Note 

that the amplitude of the diurnal cycle of clear-sky OLR in CanAM4 is a consequence of the 

unique treatment of solar radiation in the infrared range; solar radiation between 4 and 1000 

µm (approximately 12 W m
–2

) is treated as LW radiation [Li et al., 2010]. This diurnally 

varying radiation is included in the upwelling LW radiation to ensure that the net LW 

radiation at the TOA is unaffected. 

 

In the DACCIWA region, the climate models generally underestimate high cloud cover 

(Table 3). In most cases this does not result in significant OLR biases (Table 3) due to 

compensating biases in mid-level cloud. However HadGEM2-A overestimates OLR due to a 

lack of both high and mid-level cloud. The amplitude of the OLR diurnal cycle in HadGEM2-

A is much larger than both the observed OLR diurnal cycle and the HadGEM2-A clear-sky 

OLR diurnal cycle, which suggests that cold cloud cover is overestimated in the evening and 

underestimated during the rest of the day, particularly between 7.5 and 15.5 UTC. 

 

While the ERA-Interim mean high cloud cover compares well with MODIS, ERA-Interim 

overestimates OLR due to a lack of mid-level cloud. The previous version of the ECMWF 

reanalysis overestimated OLR over tropical land due to cloud errors [Allan et al., 2004] and it 

seems likely that this remains true of ERA-Interim. OLR diurnal cycle errors (Fig. 9d) 

suggest that ERA-Interim underestimates mid-level cloud throughout the day and particularly 

at night.  

 

Precipitation diurnal cycle errors in ERA-Interim and the models (Fig 9b) are typical of 

general circulation models (GCMs) in convective regions [Dai, 2006]; the amplitude of the 

diurnal cycle is too large and peak precipitation occurs too early. However, at least some of 

the climate models do a better job of capturing the amplitude of the diurnal cycle of OLR 

(Fig. 9d), which is also linked to convective cloud [Hartmann and Recker, 1986]. While 

CanAM4 and HadGEM2-A overestimate the amplitude, CNRM-CM5 and MRI-CGCM3 
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perform better in reproducing the observed amplitude of the diurnal cycle of OLR of 18.8 W 

m
–2

, with amplitudes of 25.7 W m
–2

 and 16.3 W m
–2

 respectively. ERA-Interim also 

underestimates the amplitude of the diurnal cycle of OLR (relating to the overall 

underestimation in precipitation shown in Fig. 8). 

 

Each of the AMIP models has large biases between 8°W – 8°E and 5 – 10°N in some (if not 

all) of the cloud cover, precipitation and radiation fields considered here. ERA-Interim 

generally does a better job of reproducing the mean observed values in the DACCIWA 

region, but Figure 8 shows this is at least partly due to a fortuitous cancellation of smaller 

scale errors. Moreover OLR and diurnal cycles related to convection in ERA-Interim are 

problematic and over the wider West African region, ERA-Interim biases are as large as the 

AMIP models, with particularly notable OLR and cloud cover biases over the Sahel. 

 

4. Conclusions 

  

We have constructed a multi-satellite climatology of clouds, top of atmosphere (TOA) 

radiation, and precipitation for southern West Africa during June-July to support ongoing 

investigations of the complex interactions within the West Africa Monsoon (WAM) and the 

evaluation of ERA-Interim and climate model simulations. The primary characteristics of this 

climatology are as follows. Mean cloud cover in the DACCIWA region ranges from 68 to 94 

%, larger than the global average, which is around 68 % [Stubenrauch et al., 2013]. 

Consequently, the regional mean OSR of ~145 W m
–2

 is also larger than the global average 

of 100 W m
–2

, while the regional mean OLR of ~230 W m
–2

 is smaller than the tropical 

average of, which is estimated to be ~250 W m
–2

 [L'Ecuyer and Stephens, 2003]. 

Additionally, surface precipitation in the DACCIWA region is ~5.87 mm day
–1

 which is 

around double the global mean. Diurnal cycles of high cloud cover, precipitation and OLR 

are typical of convective regions; high cloud cover and precipitation peak in the evening and 

coincide with the minimum in the OLR diurnal cycle. 
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Total cloud cover and TOA shortwave and longwave fluxes show little inter-annual 

variability; for all three the standard deviation is less than 2 % of the mean. However, the 

inter-annual standard deviation of the regional mean surface precipitation is much larger, 

around 15 % of the mean, with mean values ranging from ~4.5 mm day
–1

 in 2013 to ~7.5 mm 

day
–1 

in 2002. This inter-annual variability in precipitation in the DACCIWA region is linked 

to the regional inter-annual variability of dry static energy. From an atmospheric energy 

budget perspective, inter-annual changes in latent heat release from precipitation are balanced 

by dry static energy changes of a similar magnitude.  

 

Comparisons between different satellite products have been used to identify inconsistencies 

and determine which products are most suitable for further analysis. Differences between the 

TRMM and GPM precipitation datasets are small, which is unsurprising given the similarity 

of their algorithms and their use of the same gauge data. The two radiation datasets, GERB 

and CERES-SYN, also show generally excellent agreement. However, CERES-SYN 

overestimates the diurnal mean outgoing SW flux due to insufficient temporal sampling. 

Differences between the satellite cloud observations are much larger. MODIS detects less 

high (45 % compared to 74 %) and total (89 % compared to 94 %) cloud cover than 

DARDAR, but more cloud at all heights than CMSAF. All three satellite cloud products have 

faults. Temporal sampling in MODIS is poor and even more so in DARDAR, while CMSAF 

and MODIS underestimate cloud cover. We use MODIS for comparison to ERA-Interim and 

the climate models as a compromise between temporal sampling and accuracy. Clearly a 

deeper understanding of the interaction between clouds and radiation in this region requires 

more frequent diurnal sampling than provided by MODIS yet improvements in the 

geostationary satellite-based CMSAF cloud products are necessary.  

 

Based on our analysis of satellite products, we chose the products that are best suited for 

comparison to climate models and used these to identify a number of significant biases in the 

climate models. With one exception (CanAM4), the AMIP5 models considered in this study 

significantly underestimate the MODIS observed low cloud cover (18 %), with a multi-model 

mean value of 10 %. This is consistent with large low cloud errors in the previous generation 

of climate models over southern West Africa identified by Knippertz, et al. [2011] and indeed 

with a more general climate model bias, where low cloud occurrence in the tropics is 

systematically underestimated [Nam et al., 2012]. This is likely to have significant impacts on 

the surface radiation budget [Knippertz et al., 2011] and consequently the broader circulation 
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[Li et al., 2015]; it is planned to examine this in detail using radiation calculations in a future 

study. High and mid-level cloud cover errors are smaller, but there are deficiencies in the 

representation of their diurnal cycle and also that of precipitation, which are linked to 

convection parametrization in the models [Pearson et al., 2013]. The models have a 

surprisingly broad range of surface albedos, which leads to a substantial range of clear-sky 

outgoing SW flux values (62.7 W m
–2

 – 84.4 W m
–2

) and can mask the effect of cloud errors 

on the all-sky outgoing SW flux.   

 

Despite assimilating observations, ERA-Interim shares many biases with the free-running 

climate models. This is thought to be due to a combination of a lack of non-satellite 

observations to constrain ERA-Interim and the fact that cloud cover, surface precipitation and 

top of atmosphere radiative fluxes, which are analyzed in this article are not directly 

assimilated. ERA-Interim generally has smaller domain-mean biases in the DACCIWA 

region than the AMIP models. However, this is at least partly due to a cancellation of 

smaller-scale errors (Fig. 8). Moreover, ERA-Interim precipitation diurnal cycle errors are as 

large as any of the AMIP models, as is the overestimate of OLR, both of which are likely to 

be due to deficiencies in the convection parametrization used. Over the broader SWA region, 

ERA-Interim performs no better than the AMIP models, with particularly notable cloud and 

OLR errors over the Sahel, linked to a failure to capture the northwards progression of the 

zonal precipitation maximum from June to July. 

 

Current satellite observations provide a wealth of useful data for understanding the climate of 

southern West Africa. However, many aspects of the climate system in the DACCIWA 

region remain poorly understood and there are a number of obvious areas that require either 

improved satellite products or observations from other sources. In particular, there are large 

differences between cloud cover datasets and those that are thought to perform better lack 

adequate temporal sampling in a region with marked diurnal variability. It is hoped that 

future releases of the CMSAF dataset will address some of the errors identified by this study 

as it provides the highest temporal resolution. Surface radiative flux estimates are required to 

understand the local atmospheric radiation budget and, consequently, the energy budget. 

There is a lack of surface-based radiation measurements in the DACCIWA region, but 

satellite-based surface radiative flux products such as the CERES-EBAF surface fluxes  

[Kato et al., 2013]and CMSAF-CLARA [Karlsson et al., 2013] provide an opportunity to fill 

this data gap. As these products rely on radiative transfer calculations and ancillary data with 



 

 

© 2016 American Geophysical Union. All rights reserved. 

associated uncertainties, further validation in the DACCIWA region is required. Similarly, 

satellites struggle to provide robust statistics for aerosol properties in the DACCIWA region 

due to the rarity of clear-sky. The forthcoming DACCIWA field campaign [Knippertz et al., 

2015a], will contribute additional observations that will be used directly for improving 

understanding of the regional climate system and to further evaluate and suggest 

improvements to satellite products in this region.  

 

Future work will focus on quantifying cloud radiative effects in SWA for individual cloud 

types, assessing how different cloud types contribute to the regional energy budget and 

consequently how they affect the WAM circulation. 

 

Appendix A 

One limitation of passive satellite observations is their inability to detect multiple cloud 

layers, missing low clouds that may exist beneath higher clouds. In contrast, active radar/lidar 

observations are less prone to this problem. Consequently, it is difficult to compare estimates 

of low cloud cover from different satellite observations. To minimize the impact of these 

obscured clouds on our intercomparison, we define a weighted cloud cover that is normalized 

by non-obscured areas only. For mid-level clouds, the weighted cloud cover,               is 

calculated by:  

 

              
            

       
, (A1) 

 

where              is mid-level cloud fraction from passive observations, and       is high-

cloud cover. As the nearest clouds to the satellite, high-cloud cover is not affected by clouds 

in other layers. Similarly, the weighted low cloud cover, Clow,weighted, is calculated as 

 

              
            

                      
,  (A2) 

 

where              is low-level cloud fraction from passive observations. A schematic 

illustration of equation (A1) and (A2) can be found in Figure A1.  
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The difference between the true mid-level cloud cover, Cmid,true, and the passive mid-level 

cloud cover is the fraction of mid-level cloud that is obscured, i.e., the amount of overlap 

between mid- and high-level clouds. Since the amount of overlap would be the product of 

mid- and high-level cloud covers if they were randomly overlapped, we then obtain: 

 

                                     . (A3) 

 

By rearranging equation (A3), the true mid-level cloud cover is given by 

 

          
            

       
,  (A4) 

 

which is the same as               as shown in equation (A1), demonstrating that the 

weighted mid-level cloud cover represents the true mid-cloud cover. Similarly, if low clouds 

are randomly overlapped with high and mid-level clouds, then the weighted low cloud cover 

is equal to the true low cloud cover. 

 

 

High-level        

        

Mid-level        

        

Low-level        

 

 High-level Mid-level Low-level 

Truth 1/4 3/4 4/4 

Passive-like 1/4 2/4 1/4 

Weighted from 

passive observations 

1/4 2/(4–1) = 2/3, same 

as 0.5/(1–0.25) 

shown in (A1) 

1/(4–3) = 1/1, same 

as 0.25/(1–0.25–0.5) 

shown in (A2) 

 

Fig. 1A. A schematic illustration explaining the definition and difference between the truth, 

passive-like and weighted cloud covers. 
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Table 1: Key features of observational datasets used in this study. 

 

Source Version Period Orbit Resolution References 

MODIS 

MODerate 

resolution 

Imaging 

Spectroradiom

eter 

Atmosph

ere L3 

Monthly 

Global 

Product; 

collectio

n 6 

Dec 

2001-

present 

(Terra) 

June 

2002 – 

present 

(Aqua) 

Polar x2 
Gridded to 

1.0° 
Platnick [2015] 

DARDAR 

raDAR-liDAR 

DARDA

R mask 

2006 – 

2010 
Polar 

1.1 km 

horizontal 

60m 

vertical 

Delanoe & Hogan [2010] 

CM-SAF 

The Satellite 

Application 

Facility on 

Climate 

Monitoring 

CLoud 

property 

dAtAset 

using 

SEVIRI 

(CLAAS

) version 

1 

Jan 

2004 – 

Dec 

2011 

Geostatio

nary 

Approx. 4 

km 

Stengel et al. [2014] 

http://dx.doi.org/10.5676/EUM_SAF_CM

/CLAAS/V001 

GPCC 

 

Full Data 

Reanalys

is 

Version 

7.0 at 

1.0° 

Jan 

1901 – 

Dec 

2013 

N/A 

(gauge 

based) 

Gridded to 

1.0° 

Schneider et al. [2014] 

http://dx.doi.org/10.5676/DWD_GPCC/F

D_M_V7_100 

TRMM 

Tropical 

Rainfall 

Measuring 

Mission 

3B42 V7 

Jan 

1998 - 

present 

N/A 

(merged 

product) 

Gridded to 

0.25° 
Huffman et al. [2007] 

GPM 

Global 

Precipitation 

Measurement 

IMERG 

3B-HHR 

March 

2014 – 

present 

N/A 

(merged 

product) 

0.1° 
Hou et al. [2014] 

Huffman et al. [2013] 

CERES 

Clouds and the 

Earth’s 

Radiant 

Energy System 

SYN1de

g-3Hour 

Ed3A 

Dec 

2001-

present 

(Terra) 

June 

2002 – 

present 

(Aqua) 

Polar x2 1.0° 

Wielicki et al. [1996] 

Doelling et al. [2013] 

 

GERB 

Geostationary 

Earth 

Radiation 

Budget 

High 

Resolutio

n Image 

Version 6 

April 

2004 - 

present 

Geostatio

nary 

9x9 km at 

nadir 

Harries et al. [2005] 

Dewitte et al. [2008] 

 

 

  

http://dx.doi.org/10.5676/EUM_SAF_CM/CLAAS/V001
http://dx.doi.org/10.5676/EUM_SAF_CM/CLAAS/V001
http://dx.doi.org/10.5676/DWD_GPCC/FD_M_V7_100
http://dx.doi.org/10.5676/DWD_GPCC/FD_M_V7_100
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Table 2: Details of climate models used in this study. 

 

MODEL NAME COUNTRY 
HORIZONTAL 

RESOLUTION 

VERTICAL 

RESOLUTION 

CANAM4 Canada 2.8
o 
x 2.8

o 
L35 

CNRM-CM5 France 1.4
o
 x 1.4

o
 L31 

HadGEM2-A UK 1.25
o
 x 1.875

o
 L38 

MRI-CGCM3 Japan 1.125
o
x1.125

o 
L48 
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Table 3: DACCIWA region (8W-8E, 5-10N) mean and inter-annual variability (standard 

deviation of annual means, given in parenthesis) for June-July. For each dataset we use all 

available years between 2000 and 2015 inclusive. 

 

Variable Observations Models 
Rean

alysis 

Cloud DARDAR MODIS CMSAF 
CanAM

4 

CNRM-

CM5 

HadGE

M2-A 

MRI-

CGCM3 

ERA-

Interim 

Total cover 
0.94 

(0.02) 

0.89 

(0.01) 

0.68 

(0.02) 

0.82 

(0.03) 

0.71 

(0.04) 

0.54 

(0.04) 

0.72 

(0.02) 

0.74 

(0.03) 

High cover 
0.74 

(0.05) 

0.45 

(0.04) 

0.36 

(0.03) 

0.31 

(0.06) 

0.44 

(0.03) 

0.29 

(0.05) 

0.36 

(0.04) 

0.45 

(0.04) 

Mid-level 

cover 

0.14 

(0.03) 

0.21 

(0.03) 

0.13 

(0.01) 

0.28 

(0.02) 

0.18 

(0.03) 

0.16 

(0.02) 

0.28 

(0.03) 

0.10 

(0.01) 

Low cover 
0.06 

(0.01) 

0.18 

(0.02) 

0.05 

(0.01) 

0.21 

(0.02) 

0.04 

(0.01) 

0.09 

(0.02) 

0.07 

(0.01) 

0.16 

(0.03) 

Precip. 

(mm day
-1

) 

 

TRMM GPM 
CanAM

4 

CNRM-

CM5 

HadGE

M2-A 

MRI-

CGCM3 

ERA-

Interim 

5.87 

(0.89) 
5.00 

6.45 

(0.97) 

5.72 

(0.74) 

4.65 

(0.69) 

5.16 

(0.59) 

5.80 

(0.89) 

Radiation 

(W m
-2

) 
CERES GERB 

CanAM

4 

CNRM-

CM5 

HadGE

M2-A 

MRI-

CGCM3 

ERA-

Interim 

Outgoing 

SW 

147.6 

(3.2) 

144.7 

(4.0) 

154.6 

(4.4) 

137.4 

(7.0) 

127.7 

(6.4) 

163.8 

(4.5) 

149.4 

(5.3) 

Clear-sky 

outgoing 

SW 

58.47 

(1.2) 
- 

66.7 

(0.5) 

69.2 

(0.1) 

70.5 

(0.6) 

84.4 

(0.1) 

62.7 

(0.1) 

TOA SW 

CRE 
88.6 - 87.9 68.2 57.1 79.4 86.7 

OLR 
229.8 

(3.5) 

230.4 

(2.8) 

231.1 

(6.5) 

234.1 

(3.2) 

246.6 

(5.2) 

234.7 

(3.4) 

244.4 

(3.0) 

Clear-sky 

OLR 

273.0 

(0.8) 
- 

272.4 

(1.0) 

272.6 

(0.9) 

276.6 

(2.1) 

272.9 

(0.7) 

271.4(1.

0) 

TOA LW 

CRE 
-43.2 - -41.2 -38.5 -30.0 -38.2 -27.0 
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Figure 1. June-July mean properties of cloud, precipitation and radiation over year 2002–

2008 in southern West Africa, including (a) total cloud cover from MODIS, (b) precipitation 

from TRMM, (c) outgoing shortwave radiation from CERES-SYN, and (d) longwave 

radiation from CERES-SYN. The dotted indicates the DACCIWA region that is used in Fig 2 

onwards. 
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Figure 2. June-July mean cloud cover from various satellite products. (a)–(d) shows total, 

high-, mid-, and low-level cloud cover. Shaded regions represent spatial variability, indicated 

by the interquartile range of cloud cover over the DACCIWA region. Weighted cloud covers 

in (e) and (f) are calculated by dividing by the fraction that is not already obscured by higher 

cloud. The DARDAR original cloud cover is calculated directly from the DARDAR cloud 

mask and includes mid- and low-level cloud that is detected by DARDAR beneath higher 

cloud. 
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Figure 3. June-July mean precipitation (mm day
-1

). (a) shows June-July means for individual 

years as observed by TRMM, GPM and GPCC and modelled in ERA-Interim. (b) shows five 

year running means for June-July for TRMM and GPCC. The shaded regions (error bar for 

GPM) shows spatial variability, indicated by the interquartile range over the DACCIWA 

region, based on 1° resolution.  

 

 

Figure 4. Mean top of atmosphere outgoing shortwave (a) and longwave (b) radiative fluxes 

for June-July from CERES-SYN and GERB. Shaded region shows spatial variability, in 

indicated by the interquartile range, over the DACCIWA region based on 1° resolution. The 

break in the GERB lines shows where GERB1 replaces GERB2 in 2007. 
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Figure 5: Key terms in the atmospheric energy budget for the DACCIWA region. Numbers 

shown are June-July means (standard deviations of inter-annual means in parenthesis) for 

2000-2015 from the data source indicated by that colour. 
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Figure 6: Mean contributions to the energy budget (a) and moisture budget (b) for the 

DACCIWA region for June-July. Shaded regions show spatial variability, indicated by the 

interquartile range, based on 1° resolution. To improve readability of the figure (a) only 

includes the terms that show largest inter-annual variability, namely latent heating and 

divergence of dry static energy. 
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Figure 7. Diurnal cycle of cloud cover, precipitation and radiative fluxes for June-July. All 

panels show means for 2007-2010, except for (f) which shows 2014. Shaded regions and 

error bars show spatial variability, indicated by the interquartile range, based on 1° resolution. 
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Figure 8. Maps of ERA-Interim and climate model errors for June-July 2002–2009. Panels 

from left to right show errors in cloud cover, precipitation and outgoing shortwave and 

longwave radiation, calculated with respect to MODIS, TRMM and CERES-SYN 

respectively. Information on various climate models can be found in Table 2. 
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Figure 9:  Comparison of diurnal cycles for June-July 2008. In each case, the black line 

shows the observed diurnal cycle (from the dataset indicated in the legend) and the coloured 

lined show the four AMIP models and ERA-Interim. For shortwave radiation (c and e), the 

AMIP models are shown at a time that is most consistent with the solar zenith angle used, 

rather than the output time 


