JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 110, D05105, doi:10.1029/2004JD005232, 2005

Figures

Figure 1. The July 2003 monthly mean for (a) OLR_{Met7} , (b) OLR_{model} , and (c) OLR_{model} – OLR_{Met7} . The monthly mean consists of the average of the monthly mean of the OLR diagnosed at 0000 UTC, 6000 UTC, 1200 UTC, and 1800 UTC. Units are Wm^{-2} .

Figure 2. The July 2003 monthly mean of the 1200 UTC clear sky for (a) $OLRc_{Met7}$, (b) $OLRc_{model}$, and (c) $OLRc_{model} - OLRc_{Met7}$. Units are Wm^{-2} . Areas shown in white indicate missing/cloudy data. The approximate positions of the radiosonde stations, measurement campaigns, and AERONET sites referred to in the text are also shown.

Figure 4. (a) Surface skin temperature, T_s , from the NWP model. (b) The reduction in the model temperature required to explain the difference between $OLRc_{model}$ and $OLRc_{Met7}$. (c) The model T_s required so that $OLRc_{model}$ fits $OLRc_{Met7}$. Units K.

Figure 8. The $_{aer0.55}$ derived for July 2003 for (a) TOMS and (b) MISR. In deriving the $_{aer0.55}$ from TOMS, the TOMS AI is related to $_{aer0.44}$ via <u>equation (3)</u>, and the wavelength dependence of k_e shown in Figure 4a is used to derive $_{aer0.55}$ via <u>equation (4)</u>. The $_{aer0.55}$ may be related to $_{aer10}$ by <u>equations (5)</u> and (6).

Figure 11. DRE_{LW} due to the radiative effect of mineral dust (Wm⁻²) for refractive indices from (a) Fouquart et al. [1987] and (b) Volz [1973].

Figure 13. The change in model T_s (K) due to the reduction in SW_{surf} .

Figure 14. $DRE_{LW} + DRE_{LW_feedback} (Wm^{-2})$, which represents our best estimate of the radiative effect of mineral dust in the terrestrial spectrum, (a) using the refractive indices of Fouquart et al. [1987] and (b) using the refractive indices of Volz [1973]. The refractive indices of WCP [1986] are used in the solar spectral range as described in the text.

Citation: Haywood, J. M., R. P. Allan, I. Culverwell, T. Slingo, S. Milton, J. Edwards, and N. Clerbaux (2005), Can desert dust explain the outgoing longwave radiation anomaly over the Sahara during July 2003?, J. Geophys. Res., 110, D05105, doi:10.1029/2004JD005232.

Copyright 2005 by the American Geophysical Union.