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Supporting Online Material

1. Materials and Methods
a. SSM/I data

Precipitation estimates from SSM/I are available over the oceans twice-daily as ascending and
descending orbital overpasses from Remote Sensing Systems (RSS; http://www.ssmi.com) at a
horizontal resolution of 0.25×0.25 degrees (S1). For comparison with coarser climate model grids,
this resolution was degraded to 2.5×2.5 degrees. Daily data were constructed by averaging the
ascending and descending overpasses. We considered the satellites F08 (July 1987 to December
1991), F11 (January 1992 to April 1994) and F13 (May 1995 to December 2003) since inter-
calibration is judged to be superior to the remaining satellites in the series, based on time series of
tropical ocean mean precipitation.

Considering grid-points of non-zero precipitation over the tropical oceans (30◦S-30◦N), per-
centile bins of precipitation rate were calculated, ranging from the lightest 10% to the heavilest
10%. Ten decile bins (0-10%, 10-20%, ...90-100%) were considered; in addition, the heaviest
10% of daily rainfall events were further partitioned into the 90-95%, 95-99% and 99-100% bins,
making a total of 12 bins. The bin boundaries were calculated using the first year of daily SSM/I
data (July 1987-June 1988) at the 0.25◦ and 2.5◦ resolutions; using different years and satellites
to set the bin boundaries made only small differences (Table S1). Using instantaneous (ascending
and descending) data increases the precipitation rates used at the bin boundaries while averaging
over more than one days data reduces the precipitation rate at the boundaries as expected. For
the purposes of the model comparisons we use daily averages (ascending plus descending) unless
stated (highlighted as bold in Table S1).

b. Model data

Daily precipitation was taken from the Program for Climate Model Diagnosis and Intercom-
parison (PCMDI; http://www-pcmdi.llnl.gov) CMIP3 climate model archive (S2). The model sim-
ulations were atmosphere only experiments forced with observed sea surface temperature (SST)
and fixed present day greenhouse gas and aerosol concentrations, although the CNRM simulation
included prescribed greenhouse gas increases while the GISS model included volcanic aerosol
forcing. Precipitating grid-points were used to construct precipitation bin boundaries, as for the
SSM/I data, using daily values for 1985. Using different years made little impact on the bin bound-
aries, for example shown for the GISS E R model (Table S1). Where P < 1 × 10−6 mm/day,
precipitation was assumed to be zero. Replacing this with the minimum daily SSM/I precipitation
of 0.08 mm/day did not impact the results substantially (Section 2b).
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The calculated model precipitation percentile bin boundaries are documented in Table S1.
There is a large spread in values depending upon the model used. In particular the GISS model,
which is low resolution compared to many of the models, produces substantially larger precipita-
tion rates for the bin boundaries. Regridding the models to the 2.5×2.5 degree resolution tends to
reduce the range of precipitation intensities (Table S1) but does not impact noticeably the variabil-
ity in precipitation frequency in each bin. Nevertheless lower resolution models will be less able
to represent the processes involved in resolving accurately heavy rainfall events.

The SSM/I bin boundaries are also generally larger than the model data, reflecting the fact that
models struggle to simulate the present day probability distribution of precipitation intensity (S3).
As such, the variability will sample smaller precipitation rates in the models and this should be
considered in the comparisons between models and satellite data. For example, the 60th percentile
for the SSM/I 2.5×2.5 degree daily data for 1987/88, of around 6 mm/day, corresponds most
closely with the 80th percentiles for most models. These differences also reflect the different sam-
pling between the satellite data, which sample instantaneous fields, and the models which are true
daily averages. Nevertheless, since the changes in frequency of events in each percentile are com-
puted, the lightest and heaviest rainfall events are being sampled regardless of the differences in
actual precipitation rate. This is confirmed by the consistency in percentage changes in frequency
of precipitation in each bin using differing averaging periods (Section 2b).

c. Method

To calculate the frequency of precipitation occupying each bin, the following method was ap-
plied to the model and satellite data. For each month (m) of each year (y), daily tropical ocean pre-
cipitation fields were obtained and the the fraction of precipitating grid-points, f(P )[y,m,b], falling
within each percentile bin (b) was calculated. This strategy was adopted to account for the in-
consistencies between model and observed precipitation distributions (S3) such that the lightest or
heaviest 10% of precipitation events, for example, were given equal weight in the models and satel-
lite data. Variability of the fraction of oceanic precipitating grid points is small for the models and
satellite data (less than 2% standard deviation). The difference in frequency was taken relative to
the mean frequency for that month f(P )[m,b], thereby removing any seasonal signal, and this was
normalized by the overall mean frequency for each bin f(P )b such that a percentage frequency
anomaly was calculated as a function of time and bin:

P%[y,m,b] = 100(f(P )[y,m,b] − f(P )[m,b])/f(P )b. (1)

The normalization ensures that, for example, the mean frequency of the 0-10% bin is 0.1 and for
the 99-100% bin it is 0.01. Without this normalization the mean frequencies deviate slightly from
these values due to the discretization of the data. For example, using the GFDL model output, the
mean frequency deviates from its percentile bin width by less than 6%. Since percentage anomalies
of the normalized frequencies are taken, equal weight is given to the variability in each bin. While
the spatial distribution of precipitation contributes to the precipitation frequency in each bin, here
we are concentrating on the temporal variability in the frequency distribution and its relationship
with SST.

For the satellite data, frequency anomalies are taken with respect to the means for the particular
satellite used for each month. The F08, F11 and F13 satellites exhibit much closer correspondence
in mean precipitation than the remaining satellites in the series and the results are not sensitive
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to this choice (Section 2b). Nevertheless, calculating frequency anomalies separately for each
satellite ensures that small discontinuities between satellites are removed and the response to in-
terannual variability is captured.

The calculated variability in precipitation frequency is presented in Figure S1 for the SSM/I
data at 0.25◦ (F08 and F13 only) and 2.5◦ resolution for the ten decile bins of precipitation. A
consistent picture is evident in the heaviest rainfall decile bin with more frequent rainfall in this
bin during warm El Niño months (e.g., 1997/98) and a lower occurrence in cold La Niña months
(e.g., 1999-2000). There is greater coherence in the variability for the high resolution satellite data
although the lowest two bins appear saturated with respect to discretisation of the data. While it
would be interesting to compare the high resolution data with high resolution model output in the
future, for comparison with current climate models it is more informative to compare the degraded
satellite data resolution with the model data since they are more comparable in resolution.
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2. Supporting Online Material: Text
a. Precipitation frequency variability

Figure S2 shows the fluctuations in precipitation frequency for each model. This demonstrates
that all model simulations produce coherent responses to the warming and cooling over the El
Niño Southern Oscillation (ENSO) cycle. The MIROC models appear to produce a smaller per-
centage precipitation response than the other models and also contain the fewest number of non-
precipitating grid-points. Improved agreement between the model ensemble mean variations and
the satellite data is attained for the heaviest rainfall bins when only the 20% wettest model grid
boxes are sampled (Fig. S3). Essentially, in this case, model precipitation is set to zero in the 80%
of driest of all grid boxes, masking out the large quantity of light rainfall simulated by the models
(S3). Variability of precipitation frequency is quantified in Figure S4 by calculating the standard
deviation for each bin. The variability is consistent between the model ensemble mean and the
satellite data (within 3%) but is generally smaller than for individual models.

b. Sensitivity of Precipitation Frequency to SST

The sensitivity of precipitation frequency in each bin to changes in SST is presented in Figure
S5 for different processing strategies. Fig. S5a shows the SSM/I frequency anomalies with respect
to the entire satellite record (red line) in addition to the standard approach of treating each satellite
separately (black line). Also shown are sensitivities calculated using instantaneous SSM/I data
(light blue), using two-day averaging (dark blue) and calculating sensitivities for a shorter time
period (1988-2000, dotted line). The overall pattern of reduced occurrence of light and moderate
precipitation and increased occurrence of heavy precipitation is reproduced and sensitivities are
within 5 %/K for all but the 99-100% bin for the 2-day averaging which produces a sensitivity 8
%/K lower than the standard approach.

For the daily average SSM/I product, the minimum precipitation observed, determined by
the instrument sensitivity, is 0.08 mm/day. This is substantially larger than the instantaneous
0.25×0.25 degree product due to averaging but relevant to the coarse climate model grids. This
threshold may impact the comparisons with the model simulations since light rainfall below this
threshold is included in the analysis. However, when all rainfall below 0.08 mm/day is set to zero
in the models, the resulting sensitivity is within 5%/K of the standard calculations (Fig. S5b, red
line). A closer match to the observational sensitivity distribution with precipitation intensity bin is
attained where only the 20% wettest of all model grid boxes over the tropical ocean are sampled
(gray line). In this case, the lightest model rainfall is essentially masked from the analysis by en-
suring that 80% of the driest of all model grid boxes (precipitating and non-precipitation) are reset
to zero precipitation. This may relate to the overprediction of light rainfall by models compared to
the satellite data (S3).

The sensitivity of precipitation frequency to SST where one year (1985) of daily precipitation
fields from the GFDL model are scaled by 7% times the local SST anomaly (Clausius Clapeyron
experiment) is shown in Figure S6a. Also shown is the simple case where the same year of daily
precipitation fields are increased by 7% (diamonds), effectively assuming a uniform 1 K warming
and 7 %/K precipitation response. The reduction in frequency of light precipitation and increased
frequency of very heavy precipitation is expected in this case since the probability distribution of
precipitation is constrained to shift to higher percentile bins with increased SST. Divergence of the
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Clausius Clapeyron experiment from this response would require local SST changes ascociated
with the heaviest or lightest bins to be anti-correlated with the mean SST response. This does not
appear to be the case since the linear fit (red line) and El Niño minus La Niña case (light blue line)
reproduce the simple response apart from in the heaviest bin where the linear fit underestimates
the response and the El Niño minus La Niña response produces a negative response. The model
ensemble mean displays anti-correlation with the Clausius Clapeyron experiment in the lightest
rainfall bin, instead showing an increase in the frequency of light rainfall with increased SST.

The sensitivity of precipitation frequency to anthropogenically forced climate change is pre-
sented in Figure S6b. The changes in precipitation frequency in response to the tropical ocean
warming from 2001-2005 to 2101-2105 (2.2 K) show similarity to the response expected from
Clausius Clapeyron for the present climate (Fig. S6a) although the response of the heaviest pre-
cipitation is lower than the linear fit. The Clausius Clapeyron response is also calculated using
the 2101-2105 minus 2001-2005 SST difference pattern to drive increases in precipitation at 7%/K
(red line), expected from Clausius Clapeyron, and 3%/K (black line), closer to the mean precipita-
tion response found in climate change projections (S4). These responses are larger than the climate
change simulated response for for the heaviest rainfall bins. One reason for the discrepancy is that
greenhouse gas increases exert a heating effect on the atmosphere which, assuming small changes
in sensible heat transfer, require reduced latent heating of the atmosphere through precipitation to
balance (S5).

To examine the impact of this process, we estimate the forcing over the period 2000-2100 to
be around 4.5 Wm−2 (S6). Assuming that one third of this heats the surface directly and the
remainder heats the atmosphere (S5, S7) this translates to around a 3 Wm−2 heating of the at-
mosphere. Assuming this extra radiative heating is balanced by reduced latent heating through
precipitation, this would require a 0.1 mm/day reduction in precipitation, around 3% of the global
mean, consistent with previous estimates (S5). Therefore we conduct a final experiment in which
daily precipitation fields for the 2101-2105 period are scaled by -3% and the differences in the pre-
cipitation frequency distribution are replotted in Fig. S6b (triangles). This more closely matches,
although is marginally lower than, the 3%/K response for the heaviest precipitation bins.

c. Water vapor content by precipitation bin

In explaining the co-variability of precipitation and tropical ocean warming, the rises in column
integrated water vapor (CWV) are crucial (S1,S8). Unfortunately the model archive does not
include daily CWV. However, there is a clear rise in daily CWV with increasing daily precipitation
in the SSM/I data; CWV rises at approximately 1.7mm for each 10% bin of precipitation, from
39mm in the 0-10% bin up to 55mm for the 99-100% bin (Fig. S7). The observed El Niño minus
La Niña warming is 0.12 K is accompanied by increased CWV of around 1%, a rate of about 8%/K
for all bins as expected from the Clausius Clapeyron relationship (S1). While moisture rises with
SST in all bins, it is only in the heaviest rainfall bins, where rainfall occurs primarily by moisture
convergence (S8), that substantial rises in precipitation frequency are observed.
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3. Supporting Online Material: Figures

FIG. S 1. Histograms of percentage changes in precipitation frequency in decile bins for the
SSM/I data for (a) 0.25×0.25 degree and (b) 2.5×2.5 degree resolutions
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FIG. S 2. Histograms of percentage anomalies in frequency of precipitation in percentile bins of
precipitation for 11 climate models
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FIG. S 3. Histograms of percentage anomalies in frequency of precipitation in percentile bins
of precipitation for climate models ensemble mean when considering only the 20% wettest of all
grid-boxes (or ensuring that 80% of the driest of all model grid-boxes are non-precipitating).

FIG. S 4. Standard Deviation of percentage variability in the frequency of occurrence of precipita-
tion for bins of precipitation intensity for SSM/I, models, model ensemble mean and the Clausius
Clapeyron experiment
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FIG. S 5. Sensitivity of precipitation frequency to changes in SST for the (a) SSM/I data using
different methods of processing the data and (b) the model ensemble mean for different thresholds
below which precipitation is assumed to be zero. In b the 20% wettest grid boxes case essentially
sets 80% of the driest of all model grid boxes over the tropical oceans to zero precipitation.

FIG. S 6. Sensitivity of precipitation frequency to changes in SST for (a) Clausius Clapeyron
experiments and (b) the GFDL scenario A1B climate prediction experiment.
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FIG. S 7. Mean daily column integrated water vapor (CWV) in bins of precipitation intensity for
El Niño (NINO3 > 0) and La Niña (NINO 3 < 0) months

10



4. Supporting Online Material: Table

TABLE S 1. Precipitation bin boundaries (mm/day) calculated for various space and time resolu-

tions and years for the SSM/I data and for each individual model
Data Resolution Year Bin (%)

10 20 30 40 50 60 70 80 90 95 99

SSM/I 0.25◦ × 0.25◦ 1987/88 0.24 0.46 0.89 1.73 3.6 7.92 15.8 29.8 61.0

SSM/I 2.5◦ × 2.5◦ 1987/88 0.22 0.46 0.89 1.61 3.6 7.44 15.1 29.0 60.0 102.9 252.0

SSM/I 2.5◦ × 2.5◦ 1990 0.22 0.46 0.84 1.51 3.1 6.7 13.9 27.1 55.9

SSM/I 2.5◦ × 2.5◦ 1988 0.22 0.46 0.89 1.56 3.4 7.0 14.4 27.6 57.6

SSM/I daily 2.5◦
× 2.5◦ 1987/88 0.22 0.36 0.67 1.27 2.9 6.2 12.5 24.0 49.9 84.7 206.4

SSM/I daily 2.5◦ × 2.5◦ 1992 0.22 0.38 0.67 1.34 2.88 6.26 12.7 24.4 51.1 89.6 222.3

SSM/I daily 2.5◦ × 2.5◦ 1995/96 0.22 0.33 0.67 1.25 2.85 6.25 12.7 23.7 49.3 84.5 205.9

SSM/I 2 days 2.5◦ × 2.5◦ 1987/88 0.12 0.22 0.46 0.89 2.1 4.6 8.9 17.3 35.5 60.0 139.2

SSM/I 3 days 2.5◦ × 2.5◦ 1987/88 0.089 0.18 0.36 0.78 1.8 3.9 7.6 14.4 29.1 48.5 108.9

cnrm cm3 T63 1985 0.09 0.615 1.33 2.05 2.81 3.7 4.7 6.1 9.04 14.0 38.1

gfdl cm2 1 2.5◦ × 2◦ 1985 0.171 0.36 0.56 0.80 1.11 1.6 2.9 5.6 11.9 18.2 29.9

iap fgoals1 0 g T42 1985 0.239 0.50 0.79 1.15 1.68 2.5 3.7 5.5 8.6 11.6 19.7

inmcm3 0 5◦ × 4◦ 1985 0.180 0.48 0.86 1.36 2.09 3.3 5.7 8.9 13.1 16.5 23.0

ipsl cm4 2.5◦ × 3.75◦ 1985 0.056 0.25 0.50 0.81 1.20 1.8 3.3 5.6 8.8 11.8 23.6

miroc3 2 hires T106 1985 0.006 0.07 0.21 0.42 0.71 1.1 1.9 3.7 10.4 17.8 34.2

miroc3 2 medres T42 1985 0.007 0.04 0.12 0.26 0.51 0.9 1.7 3.7 10.6 18.0 33.8

mpi echam5 T63 1985 0.036 0.15 0.35 0.65 1.10 2.0 4.3 9.2 18.1 26.3 44.4

mri cgcm2 3 2a T42 1985 0.079 0.22 0.40 0.61 0.91 1.4 2.5 5.1 11.0 18.0 38.1

ukmo hadgem1 1.875◦ × 1.25◦ 1985 0.019 0.10 0.22 0.40 0.66 1.1 2.7 6.6 13.1 19.3 36.7

giss e r 5◦ × 4◦ 1985 3.23 5.41 8.0 11.3 15.6 22.1 33.5 52.0 82.5 111.7 180.5

giss e r 5◦ × 4◦ 1990 3.25 5.44 8.0 11.3 15.5 21.9 33.4 52.4 83.6 115.2 187.1

giss e r 5◦ × 4◦ 1995 3.22 5.37 7.9 11.1 15.4 21.9 33.3 53.2 85.0 115.4 188.6

giss e r regrid 2.5◦ × 2.5◦ 1985 4.39 6.91 9.8 13.4 18.2 25.6 37.2 53.3 78.4 102.3 156.8

giss e r regrid 2.5◦ × 2.5◦ 1990 4.40 6.89 9.7 13.3 17.9 25.3 37.2 53.8 79.9 105.4 163.3

giss e r regrid 2.5◦ × 2.5◦ 1995 4.39 6.87 9.7 13.2 18.0 25.5 37.4 54.5 80.8 105.6 164.0
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