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The initial condition effect on climate prediction skill over a 2-year hindcast time-
scale has been assessed from ensemble HadCM3 climate model runs using anomaly
initialization over the period 1990–2001, and making comparisons with runs with-
out initialization (equivalent to climatological conditions), and to anomaly persis-
tence. It is shown that the assimilation improves the prediction skill in the first year
globally, and in a number of limited areas out into the second year. Skill in hind-
casting surface air temperature anomalies is most marked over ocean areas, and is
coincident with areas of high sea surface temperature and ocean heat content skill.
Skill improvement over land areas is much more limited but is still detectable in
some cases. We found little difference in the skill of hindcasts using three different
sets of ocean initial conditions, and we obtained the best results by combining these
to form a grand ensemble hindcast set.

Results are also compared with the idealized predictability studies of Collins
(Clim. Dynam. 2002; 19: 671–692), which used the same model. The maximum lead
time for which initialization gives enhanced skill over runs without initialization
varies in different regions but is very similar to lead times found in the idealized
studies, therefore strongly supporting the process representation in the model as
well as its use for operational predictions. The limited 12-year period of the study,
however, means that the regional details of model skill should probably be further
assessed under a wider range of observational conditions. Copyright c© 2011 Royal
Meteorological Society and British Crown Copyright, the Met Office
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1. Introduction

Initial condition problems dealing with the internal
variability of the climate system are one of two distinct classes
of climate prediction problems (Collins, 2002; hereafter
C02). Due to the chaotic nature of climate modelling, any

infinitesimal error in the initial conditions can grow and
reduce the prediction skill in a coupled model. Since the
atmosphere only has short time-scale memory – from days to
weeks – climate prediction on longer time-scales can only be
constrained by the ocean initial conditions, where the ocean
has longer time-scale memory – from months to decades,
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even perhaps up to a century (Collins and Allen, 2002) – or
also perhaps by soil moisture or snow cover on large scales
over land (e.g. Douville, 2010). Initialization of these slower
processes is routinely exploited in seasonal predictions.
However, long-range climate prediction is also controlled
by external forcing dominated by greenhouse gas and aerosol
variations, which are the drivers of global warming (IPCC
AR4). When assessing climate prediction on the annual to
interannual time-scale (e.g. Boer, 2004; Pohlmann et al.,
2004), it is not easy to separate predictability of internal
variability from that arising from external forcing, for the
same reason that one cannot attribute any particular flood
or heatwave to ‘global warming’, because there is only one
observational reality.

C02 used the Hadley Centre coupled model HadCM3
(Gordon et al., 2000) in a series of initialization experiments
in order to assess the predictability of model climate on time-
scales from seasonal to decadal. This idealized work does
allow the predictability associated with external forcing to
be separated from internal mode predictability (because the
experiments are perfect twins in which the model predicts its
own behaviour) and these results should therefore represent
the absolute upper limit on the ability of the HadCM3
system to consistently predict the real world. C02 found
some evidence for long time-scale predictability over the
oceans, particularly the North Atlantic (see Table I for areas
discussed in this paper), but little sign of any predictability
over land areas for longer than around 1 year. Hermanson
and Sutton (2010) used a different, but again idealized,
approach to demonstrate that in individual cases HadCM3
predictability could last for several years and also extend
over some land areas. They looked at the convergence rate of
ensembles initiated with large differences in some aspect of
the circulation, including regional temperature anomalies.

Some other idealized studies have also shown that aspects
of internal variability may be predictable several years in
advance, but few examples have actually been assessed
against real observations (Palmer et al., 2004; Simmons
and Hollingsworth, 2002), and more work is needed in this
area. It is important to know whether real observational
climate anomalies show similar predictability to that seen
in ideal twin experiments, and this requires assimilation of
observational data into a coupled climate model.

In the EU Ensembles project (Doblas-Reyes et al., 2011),
a number of groups looked for seasonal to decadal skill in
hindcasts based on assimilation of ocean and atmospheric
data into a range of coupled seasonal forecasting models,
which were enhanced by the addition of variable greenhouse
gas and aerosol forcing. Three-member hindcast ensembles
were initialized every 5 years from 1960 to 2000 and run
out to 10 years ahead. Results from these experiments
can be found in Doblas-Reyes et al. (2011) and Keenleyside
et al. (2008). Some of these runs assimilated the full observed
atmospheric and ocean states, thus requiring the correction
of the hindcasts for climate drift (Stockdale, 1997). However,
identical ensembles but without assimilation were usually
not carried out, making it impossible to separate the skill
present from external forcing (which should also appear
in the hindcasts without assimilation) from the initial
condition skill, in the results. However the UK Met Office
Decadal Prediction System (hereafter DePreSys) avoids both
of these drawbacks.

DePreSys is based on the HadCM3 coupled model. Smith
et al. (2007) developed an anomaly assimilation method

(Pierce et al., 2004) for DePreSys, in which observed ocean
and atmospheric anomalies from a mean seasonal cycle
over some time period are superposed on the HadCM3
climatological seasonal cycle and assimilated over the same
time period. This certainly reduces the need to correct
the hindcasts for model drift. Smith et al. produced a set
of assimilated hindcasts (referred to here as ‘ASSIM’) and
also performed a full set of hindcasts without assimilated
initial conditions (referred to here as ‘NOASSIM’) in
order to separate skill due to initial conditions from
that associated with external forcing. Ensembles of 10-
year ASSIM and NOASSIM hindcasts were started every
3 months from 1982 to 2001. It was found that ASSIM
had improved skill over NOASSIM in predicting changes in
global mean surface air temperature, which was traced
to initialization and persistence of upper ocean heat
content anomalies, demonstrating that the correct initial
ocean states are vital. Some areas over land also appeared
to show increased skill for the assimilated hindcasts
(Figure 3 in Smith et al.), which did seem at odds with
the idealized experiments of C02. However, Robson (2010)
suggested that some aspects of these differences may have
been an artefact of a drifting model climatology being
used.

In this paper we have used the DePreSys system to
perform a series of hindcast experiments that are arranged as
closely as possible to the idealized predictability experiments
of C02. The datasets, including the transient all-forcings
simulations from 1860 to present, are all performed
independently of the original Hadley Centre simulations
(Stott et al., 2000; Johns et al., 2003). The aim is to try to
separate the initial-condition related skill from external-
forcing derived skill, and to ask whether the skill for
real assimilated observational anomalies can match that
found for the ideal twin experiments. Importantly, we
focus on regional skill beyond the seasonal time-scale, for
which there is only limited evidence in previous studies.
In addition, we have examined the sensitivity of the
forecasting system to assimilating different observational
ocean anomalies derived from ocean reanalyses, which have
much greater uncertainties than atmospheric reanalyses. The
ocean initial conditions assimilated by Smith et al. (2007)
were generated by a 4-D, multivariate optimal interpolation
of salinity and temperature data (Smith and Murphy, 2007),
using covariances from the HadCM3 model itself, and are
therefore tuned to variability within that model. However,
these complex analyses are simply nudged into the HadCM3
model to initialize the predictions. Such initial conditions
are not easy to reproduce and therefore it is of considerable
interest to test whether successful predictions can be made
from other ocean states.

Haines et al. (2009) describes the porting of the DePreSys
climate prediction system to run on a set of computer
clusters, which make climate predictions accessible to a wider
group of scientists collaborating with the Hadley Centre. We
used the ported DePreSys system to perform experiments
similar to Smith et al. (2007), but with shorter prediction
lead time-scales of 2 years. We give a brief description of the
DePreSys system and the experiments performed in section
2. Section 3 presents the main results comparing hindcast
skill over different areas with that obtained under idealized
conditions by C02. In section 4 the results are summarized
and discussed.
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Table I. Areas used for regional study of initial-condition skill, including those regions defined in Collins (2002, Figure 3),
and additional areas identified here as having enhanced skill.

Short description Region Land/ocean

Global ocean and land Global Both
Global land Global Land
Global ocean Global Ocean
Niño3 150–90◦W, 5◦S–5◦N Ocean
Niño4 160◦E–150◦W, 5◦S–5◦N Ocean
Tropical Atlantic 70–20◦W, 0–20◦N Ocean
North Atlantic 50–10◦W, 40–60◦N Ocean
North Pacific 160–120◦W, 30–50◦N Ocean
Subtropical Pacific 120◦E–110◦W, 10–30◦N Ocean
Atlantic subpolar gyre 60–10◦W, 50–66◦N Ocean
Labrador Sea 70–50◦W, 55–70◦N Ocean
Irminger Sea 45–35◦W, 60–66◦N Ocean
Nordic Sea 20◦W–30◦E, 65–80◦N Ocean
Indian Ocean 50–110◦E, 40◦S–30◦N Ocean
South Pacific 180–110◦W, 75–50◦S Ocean
Northwest Europe 10◦W–50◦E, 30–70◦N Land
Eurasian land 0◦W–180◦E, 30–70◦N Land
Asia 60–120◦E, 10–40◦N Land
North America and Canada 160–50◦W, 20–70◦N Land
Australia 100–160◦E, 40–10◦S Land
Tropical South America 90–30◦W, 15◦S–15◦N Land
Southern South America 90–30◦W, 60–15◦S Land
Africa 20◦W–60◦E, 40◦S–30◦N Land
Northern North America 140–50◦W, 50–75◦N Land
Eastern China 90–140◦E, 40–60◦N Land
South Africa 10–30◦E, 30–15◦S Land
Northern Australia 120–160◦E, 22.5◦S–10◦S Land
Eastern Europe 40◦E–70◦E, 40–60◦N Land
South Asia 70–100◦E, 20–40◦N Land

2. The DePreSys system and experiments

Details of DePreSys can be found in Smith et al. (2007),
so only a brief introduction is given here. DePreSys
is a newly developed decadal prediction system, based
on the Hadley Centre global coupled climate model
HadCM3 (Gordon et al., 2000), which has reasonable
representations of El Niño–Southern Oscillation (ENSO)
variability and longer-term variability in important climate
modes such as the North Atlantic Oscillation (NAO) and
the Atlantic Meridional Overturning Circulation (MOC).
The DePreSys system is based on assimilating atmospheric
and oceanic anomalies only. The observational anomalies
of 2-D atmospheric surface pressure, 3-D atmospheric
temperature and horizontal wind components, as well
as 3-D ocean temperature and salinity, are obtained
by removing seasonally varying atmospheric and oceanic
climatologies from observations, and then adding back
the model climatologies for those quantities over for the
same period. These ‘analysed’ total fields are then nudged
strongly with a 6 h time-scale for ocean and 3 h time-
scale for atmosphere into the model in order to perform
DePreSys assimilation/initialization (Smith et al., 2007).
Different time-scales have been tested but the results are not
strongly sensitive out to a few days’ relaxation in the ocean.

The two sets of hindcast ensembles – NOASSIM and
ASSIM – both use varying anthropogenic sources of
greenhouse gases and aerosol concentrations (Johns et al.,
2003). These greenhouse gases, aerosols and solar variability
are projected forward in time without future knowledge in
performing the hindcasts, e.g. no knowledge of Pinatubo
is assumed for hindcasts starting before June 1991. Solar
irradiance is projected by repeating the previous 11-year
solar cycle, while volcanic aerosol is projected as an
exponential decay to background levels with an e-folding
time-scale of 1 year.

We used three different ocean datasets for assimilation
and validation. First was the ocean data assimilated by
Smith et al. (2007) using HadCM3 covariances (Smith
and Murphy, 2007), hereafter denoted ‘DePreSys ocean’.
For a second set of ocean conditions we used gridded
in situ ocean temperature and salinity analyses from the
UK Met Office developed within the EU ENSEMBLES
(EN3) project. These data are quality controlled using a
comprehensive set of objective checks developed at the Met
Office Hadley Centre (http://hadobs.metoffice.gov.uk/en3/)
(Ingleby and Huddleston, 2007) and are developed into a
gridded dataset by successive objective analysis from 1960
to present, starting from WOA01 climatology background
fields. This analysis is therefore model independent and
is denoted ‘EN3 ocean’. We also used an ocean model
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reanalysis based on the global ORCA1 version of the NEMO
model (Madec et al., 1998), forced by ERA40 (Smith and
Haines, 2009), which assimilates the same hydrographic
data as goes into EN3 ocean. This dataset is termed ‘ORCA1
ocean’. Atmospheric observational data are always taken
from the ERA40 reanalysis (Uppala et al., 2005), similarly
adjusted to produce anomalies for the required time periods.

We performed hindcasts over the period 1990–2001
(12 years) and this same period was chosen to define the
observational and model climatologies used for the anomaly
assimilation. This ensures that the mean anomalies from
all the hindcasts remains small, which is not the case if a
much longer period climatology is chosen because of the
global impact of externally driven changes in greenhouse
gases. Four member ensemble hindcasts were carried out
with lead times out to 2 years, starting twice per year (1
May and 1 November) from 1990 to 1999, giving a total of
20 start dates. Four members are usually sufficient to give
confidence in initial condition hindcasts (Collins and Allen,
2002). We had available in total 11 members without data
assimilation (called NOASSIM), consisting of six separate
all-forcings transient runs of HadCM3 from 1860 to 2008
(as in Stott et al., 2000) and five more based on small sea
surface temperature (SST) perturbations made from one
of these runs in 1945. The initial states of these transient
runs in 1860 are from a 1500-year pre-industrial control
HadCM3 run (900-year run in UK Met Office and 600-year
run on the Reading PC cluster). The plan of the runs is
given schematically in Figure 1. After careful checking, both
salinity and temperature drift in the deep ocean are very
small in this control run and can be neglected. Note there
are significant differences in this respect from the transient
runs used by Smith et al. (2007), as noted by Robson (2010).

The seasonally varying climatology for the anomaly
assimilation is defined from the NOASSIM transient all-
forcings runs over the same period as the hindcasts, i.e.
1990–2001, in order to avoid the possibility of large
anomalies associated with the external forcing changes on
decadal timescales. The assimilation of atmosphere and

ocean data is carried out using one of these transient all-
forcings HadCM3 runs. Four ensemble member initial states
for the ASSIM experiment are obtained by adding SST
noise (pointwise amplitude 0.05◦C) to the initial states (see
Figure 1). To simplify notation, ensemble hindcast runs
using initial states generated with assimilation of DePreSys,
EN3 and ORCA1 ocean data will be called ASSIM-DePreSys,
ASSIM-EN3 and ASSIM-ORCA1, respectively.

3. Hindcast skill evaluation

If we wish to identify the effectiveness of initializing the
hindcasts, it is critical to compare the skill of the assimilated
with the non-assimilated hindcasts. Also, since the skill
evaluations must be performed against observed anomalies,
it is impossible to separate the impact of external forcing on
these observations, and thus the clean separation achieved
by C02 is not possible. We have chosen to use the standard
deviation (STD) of the anomaly errors (anomaly differences
with observations, Eq. (1)) as a measure of skill, and to
look for smaller errors in the assimilated runs than the
non-assimilated runs:

STD =
√√√√ 1

N − 1

N∑
i=1

(Ei − E) (1)

where N is the total number of samples in the time series, Ei

is the anomaly error and E is the mean of the anomaly error.
The standard deviation has the advantage of being insensitive
to the choice of climatology in the anomaly assimilation
scheme (Haines et al., 2009) – an issue which does not arise
in the ideal studies of C02. The exactly equivalent measure
in C02 is the root mean square error (RMSE), but where
Collins looks for the RMSE to be smaller than the standard
deviation of anomalies from a long control run we compare
with the anomaly errors from the NOASSIM run in order
to identify significantly enhanced skill.

Figure 2 shows the time evolution of the ASSIM-DePreSys
hindcast mean, for the surface air temperature (SAT)
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superimposed on the observed SAT anomalies from ERA40
(black line). The largest discrepancies between observations
and hindcasts starting from May and November 1990 are
due to not including aerosol changes from the Pinatubo
volcanic eruption. The hindcast starting from November
1991 successfully follows the initial SAT decrease and later
increase during the volcanic-aerosol affected period. Other
particular cases of successful anomaly hindcasts include: the
continuous increase of global SAT from 1993 to 1994, the
decrease from 1995 to 1996 (in the hindcast initialized May
1995), and then the large increase due to the 1997–1998
ENSO, which is well captured by the model. This ENSO is
forecast successfully from as early as November 1996 (thick
red line). The recovery of SAT from the decrease after the
ENSO event is also well captured by the forecast starting
from May 1999.

Figure 3 shows the standard deviation errors for SAT
anomalies as a function of hindcast lead time for the
whole globe, for the global land, the global ocean and
other selected ocean regions where long lead time skill is
clearly present. The NOASSIM errors in each case are also
shown and these effectively define the climatology forecast
for the system; the anomaly persistence errors are also shown
(dashed). In this case we show the NOASSIM errors based
on all 11 independent runs, allowing better comparisons
with the ASSIM Grand ensemble results which use all 12
hindcasts based on different ocean conditions. If a smaller
number of NOASSIM runs is used the ASSIM errors can be
lower because of greater smoothing from averaging a larger
ensemble, rather than from the initialization. It is clear
that the errors in the ASSIM hindcasts are converging to
the NOASSIM climatological values at longer lead times.
The persistence errors rapidly become higher than the
climatology because these do not have smoothing from the
ensemble mean. The anomaly standard deviations are given
as seasonal, i.e. 3 months; means and the lead times for which
the ASSIM errors are significantly lower than the NOASSIM
errors according to a one-sided F-test are marked with dots,
as in C02. A 5% confidence limit is used; the degrees of

freedom are 20 × 4 − 1 = 79 for each individual ensemble
and for the ocean variables, and 3 × 20 × 4 − 1 = 239 for
the Grand ensemble applied to the SAT values, where 20 is
the number of start dates and 4 is the number of members in
each ensemble. We use the ensemble mean of each hindcast
to assess skill because this is the best estimate of the true
anomalies. We show three individual ASSIM hindcasts on
each plot using the three different ocean anomalies, as well as
a Grand mean where all 12 hindcast ensemble members are
combined, irrespective of the assimilated ocean anomalies.
In addition, each plot shows the persistence errors for the
DePreSys ocean anomalies (dashed). Our conclusion from
the individual ocean hindcast results for both SAT and
ocean quantities – SST and top 113 m ocean heat content
(OHC) – is that using ocean anomalies from different
datasets makes little difference to the period of enhanced
skill (possibly due to the reasonably good ocean sampling in
the 1990s study period). We also investigated the difference
between the May and November start dates (not shown)
and did not find any robust difference in forecast skill.
The Grand mean clearly gives the smoothest results for the
error growth and therefore in all further results the Grand
ensemble skill results only are shown.

The global mean SAT hindcast skill is dominated by
ocean areas with skill over and above the NOASSIM runs
typically out to about four seasons, i.e. 1 year ahead. The
skill period in the Niño3 area, ∼15 months, where we expect
most enhanced skill, also reflects the period of enhanced
skill over the ocean in the global mean. Comparing with
C02 these results are similar in many respects. Differences
in the amplitude of the standard deviation errors (they
are smaller here than in Collins) is entirely attributable to
our using ensemble means as the predictor. This is not a
foregone conclusion because the amplitude of observational
anomalies can be different from the ideal anomalies studied
by C02. The key time periods for enhanced skill are very
similar to C02, which is encouraging considering that we
are now forecasting real observational anomalies rather than
model anomalies as in C02. We do not, however, see the

Figure 2. The black line is the observed SAT anomaly relative to climatology over the period 1990–2001. Coloured lines are ASSIM–DePreSys ensemble
hindcast anomalies from the four-member ensemble mean.
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Figure 3. Surface air temperature (SAT) anomaly error standard deviations over the whole globe, the global ocean, the global land, the Niño3,4 areas,
the North and tropical Atlantic, as labelled, for the 20 2-year hindcasts during the period 1990–2001. The solid black line is the 11-member ensemble
mean error of the NOASSIM runs. The coloured solid lines are the four-member ensemble mean error using the different ocean initial conditions, as
labelled, and the dashed black line is the Grand ensemble mean using all ocean initial conditions. Persistence errors are also shown in the mauve dashed
lines. Seasonal mean (3-month) errors are assessed, with significant differences between the NOASSIM and ASSIM results marked with a solid dot using
a one sided F-test.

slightly enhanced skill for the global ocean lasting beyond
the 2-year hindcast period, which in C02 is attributable to
decadal variability in the North Atlantic. We will return to
this later when we look at individual regions.

Figures 4(a,b) shows maps of the difference in SAT
standard deviations, NOASSIM–ASSIM for the first and
second years of the hindcasts, (similar to Figure 3 of Smith
et al., 2007), being a mapped expression of the error gap
between the NOASSIM and ASSIM errors in the graphs
in Figure 3. A second atmospheric variable, the sea-level
pressure (SLP), standard deviation differences are also
shown in Figure 4(g,h). The Grand ensemble is used for
the ASSIM errors and 11 NOASSIM members are used with
the one sided F-test to establish the significant differences
for SAT and SLP. Note that the F-test already accounts
for differences in regional variability of the temperature
and pressure anomalies in assessing where ASSIM has
significantly smaller STD errors. For the ocean variables,
SST and OHC, in Figure 4(c)–(f), only four NOASSIM
members are used because the ASSIM errors cannot be
lowered by averaging when three different versions of the
ocean truth are being assessed. The first-year additional skill
in ASSIM is dominated by the ENSO region, along with
associated areas with SAT and SLP known to be influenced
by ENSO such as northern Australia, the southwest USA
and eastern China (e.g. Trenberth et al., 1998), with areas
defined as in Table I, based on C02 wherever possible. We
did test whether the single 1997–1998 ENSO provided all
the year 1 skill by removing the relevant start dates, but we
still found mean skill in the same locations from the rest of
the decade.

There is also enhanced first-year SAT skill in the Atlantic
subpolar gyre and around the periphery of the Atlantic
subtropical gyre and in the Nordic seas. These areas are
potentially important to the European climate as they
may affect the behaviour of the North Atlantic Oscillation
(Rodwell et al., 1999) and storm tracks, although a higher-
resolution model may be required to show this. In the second
year, areas of enhanced skill in ASSIM are greatly reduced,
with the ENSO signal in the Pacific almost disappearing.
There are small areas of greater SAT skill in the Indian
ocean and South Pacific but nothing in the North Atlantic.
Over land there is slightly greater skill over India, South
Africa, northern Australia and tropical South America. These
areas of enhanced skill are also significant in the individual
hindcast ensembles (using separate ocean datasets), although
there are equally many areas where initialized skill is reduced.
There are no obvious regions of enhanced SLP skill anywhere
in the second year (Figure 4(h)).

Figure 4(c,d) and (e,f) shows the equivalent maps to
Figure 4(a,b) but for the SST and the top 113 m OHC,
respectively. Both SST and OHC show similar regions of
enhanced skill over the oceans as for SAT and show that
skill is linked to the presence of predictable OHC anomalies.
Some areas have more ocean temperature skill that SAT
skill in the second year, including the tropical Pacific and
the Nordic seas and the eastern boundary of the Atlantic.
The only area showing significantly poorer ASSIM results is
in the Atlantic subpolar gyre in the second year. This area
requires further attention, as noted by Robson (2010), where
large changes occur during the mid 1990s. The OHC does
not show the large areas of enhanced skill in the southern
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4. Maps of NOASSIM–ASSIM standard deviation errors for the SAT (a,b), SST (c,d), top 113 m OHC (e,f) and SLP (g,h). Only significant
differences are shown using the F-test. The first-year anomaly standard deviation errors are on the left and the second-year standard deviation errors are
on the right. Units are◦C or Pa.

oceans as shown in Smith et al. (2007), which are likely an
artefact of model drift (Robson, 2010).

Returning now to the comparison with C02, Table I
indicates the regions identified in Figure 4 of C02 for
assessing error growth. In addition, the mapped NOAS-
SIM–ASSIM differences in our Figure 4 suggest identifying
several additional areas, including the Indian Ocean, the
Nordic seas, South Africa and eastern China – all areas
clearly defined in Table I.

Figure 5 shows the SAT standard deviation errors in each
of the ocean regions and Figure 6 for each of the land regions
identified in Table I. Over the ocean (see Figures 3 and 5) the
tropical Atlantic and the subtropical Pacific show the most
consistently enhanced skill going out to 1 and 2 years ahead,
respectively. This is entirely consistent with the C02 results
and is also consistent with Hermanson and Sutton (2010),
who looked at an idealized case study of predictability in

HadCM3 over the tropical Atlantic. In the North Atlantic
and the Atlantic subpolar gyre there is also some enhanced
skill for the first year. All these regions are identifiable with
enhanced skill in the individual ASSIM hindcast ensembles
using the single-ocean datasets. However, over land areas
(Figure 6) there is very little evidence of enhanced skill
from the initialized runs, and this is also consistent with the
C02 results. Although the maps in Figure 4(a, b) do show
some regions of extra skill, these regions are small and may
represent the expected level of noise in the results.

Enhanced skill in the North Atlantic (see Figure 3) is
particularly relevant to the European climate, although the
enhanced skill we find (Figure 4) is mostly focused on
the Atlantic subpolar gyre and Nordic seas and tends only
to persist for the first year. We tested the robustness of
this result by looking at the NOASSIM–ASSIM error maps
for the different ocean initialization states separately, and
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Figure 5. Ocean SAT anomaly error standard deviations for different regions as labelled. Regions are defined in Table I and taken from Collins (2002),
along with additional regions chosen from Figure 4. The solid line is the NOASSIM ensemble mean errors, thicker dashed lines are persistence errors,
and thin dashed lines are the Grand ensemble ASSIM errors, marked with a dot where the seasonal mean is significantly lower. Units are ◦C.

Figure 6. As Figure 5 but for land SAT.
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found that in all three hindcasts there was some additional
significant error reduction in the Atlantic subpolar gyre
and the Nordic seas, although these are not as clear as in
the Grand ensemble. In the second year only the Nordic
seas appear still to show enhanced skill and this may be
associated with predictability of the ice edge, which plays a
crucial role in air–sea interaction in this region, although
further studies of this are needed. The enhanced skill we
find in the North Atlantic is therefore shorter lived and
focused in different regions from the decadal skill identified
in C02 and Pohlmann et al. (2009). We think this is due
to the much longer time period sampled by these other
authors with the decadal hindcasts from a wider range of
decadal periods (whereas here we are reproducing only a
single 12-year period of observational anomalies).

4. Summary and discussion

In this study we have quantified the hindcast skill of the
HadCM3 climate model to predict the evolution of observed
surface air temperature, sea surface temperature and heat
content anomalies over 2-year periods. The enhanced skill
of the system due to the initialization with observed ocean
temperature and salinity anomalies is assessed by looking
for significantly smaller standard deviation errors than
equivalent forecasts without initialization. We show that,
at least over the period of study (1990–2001), different
realizations of the ocean initial conditions (which have
considerable uncertainty in places) make little difference to
the mean skill of the anomaly forecasting system (although
individual forecasts will differ), and so we show most of the
results as a Grand ensemble using all the ocean conditions
in the hindcasts.

We show that the period of enhanced skill from the
initialization is in many places remarkably similar to the
idealized perfect twin results found in Collins (2002) with
the same HadCM3 model. The areas noted as having
enhanced skill in Collins (2002), such as the tropical Atlantic,
show up clearly in this study. It is a remarkable result and
very encouraging that the hindcasting of real observational
anomalies can be improved, by using assimilation and
initialization methods, to the same extent as for hindcasting
idealized anomalies, and it strongly supports the use of these
models in the development of real operational long-term
forecasting systems (e.g. Smith et al., 2007). Furthermore,
our results provide important further evidence of regional
prediction skill beyond the seasonal time-scale arising from
initial conditions. We anticipate that the level of skill
will be further improved in future with continued model
improvements and sustained ocean observations.

However, in contrast to the predictions in C02, we are only
evaluating against observational anomalies over a single 12-
year period (1990–2001). In consequence it could be argued
that these results should be regarded more as a case study
of predictability over this particular period rather than a
definitive measure of the mean predictability available from
the DePreSys system. Hermanson and Sutton (2010) noted
that individual cases of enhanced predictive skill may arise
over many regions, e.g. long-range skill over land areas,
in particular periods, when on average the enhanced skill
attainable by initialization may be much less.

Although we find enhanced skill in the North Atlantic,
by the second year this is focused at high latitudes over the
Nordic seas. We do not find greatly enhanced skill further to

the south as in C02 or Figure 2(c,d) of Pohlmann (2009), but
we are not assessing the long decadal hindcast periods they
studied, and we have only assessed skill against a very limited
12-year period of observational anomalies. The results are
encouraging and suggest that many more detailed studies
are possible, particularly looking at hindcasts over longer
time periods.
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