

Seasonal Predictability of North Atlantic Climate in the ECMWF System II Forecasting System

Steve George and Rowan Sutton Centre for Global Atmospheric Modelling Department of Meteorology University of Reading, UK

Aim

- To investigate predictability and skill in the ECMWF System II seasonal forecasting system
- Predictability
 - Is the ocean influence (signal) strong by comparison with weather noise?
- Skill
 - Is the model consistent with observations?

ECMWF Model System

- Details:
 - ECMWF IFS (TL95) atmosphere, coupled to HOPE ocean model.
 - 14 years of hindcasts, 40 member ensembles
- Verification:
 - Compared with ERA15/observational analysis

Interval Test

Skill Test!

- Seasonal (DJF) values: time mean extracted to remove bias
- If the observations are consistent with the model then we expect them to fall in the range: $\overline{x}_{i,model} \pm 1.960_{i,model}$

^{95%} of the time

Interval Test

500mb geopotential height

Atlantic: 110W:35E, 20N:85N

Expected coverage: ~95%

Pacific: 260W:110W,20N:85N

Test for Variance Explained by Ensemble Mean Mixed Test!

- Regression analysis to assess the amount of ensemble member/observational variability that can be explained by the ensemble mean.
- Calculate R² values :

$$\frac{\sum (x_{i,F} - \overline{x})^2}{\sum (x_i - \overline{x})^2}$$

• High R² implies high signal-to-noise.

Variance Explained

PEC

- Model shows high S/N in tropics and some regions of extra-tropics
- Observations similar
- Model-Obs differences only partly explained by sampling

F-test Analysis

Mixed Test!

- Ratio of the observational variance to the average ensemble member variance.
- Significant differences in variances
- Supports previous analysis, suggesting model is too variable over the Mediterranean and Southern Europe.

- White areas show rejection at the 90% level of significance
- Expected value = 1

Model Predictability

Predictability Test!

- How does model predictability vary from year to year?
- Signal-to-noise problem. Calculate the size of a seasonal anomaly w.r.t to internal noise (weather): $\sqrt{n(\bar{x} - \bar{x})}$

$$t_i = \frac{\sqrt{n(\bar{x}_i - \bar{x})}}{\mathbf{O}_{INT}}$$

Significant Predictability (T2m)

Contours show ensemble mean anomaly

All DJF season

Significant Predictability (GPH500)

Contours show ensemble mean anomaly

All DJF season

Conclusions

- Interval test shows that, in a broad sense, the model is consistent with the observations.
- Test for variance explained show that the model exhibits significant predictability in tropical and some extra-tropical regions
- Differences between model and observations only partly explained by sampling.
- There is evidence that the model may have too much variability (& hence too low signal-to-noise) over the Mediterranean/Southern Europe.

This document was created with Win2PDF available at http://www.daneprairie.com. The unregistered version of Win2PDF is for evaluation or non-commercial use only.