The Radiative Transfer Equation

Ross Bannister, January/April 2007

Derivation of the radiative transfer equation

As a pencil of radiation traverses a layer of the atmosphere, the radiance is modified in three ways (acting to either increase (+) or decrease (-) the radiation).

- Emission. The air in the layer emits as a grey body according to its temperature and emission characteristics (+).
- Absorption. The air in the layer absorbs a fraction of the radiation traversing it ().
- Scattering. The air in the layer scatters the a fraction of the radiation to another direction (-), and a fraction of other radiation is scattered into the pencil (+).
Here scattering processes will be ignored. Let the intensity of radiation at wavelength λ and at height s above the ground be I_{λ} (known as the monochromatic radiance). Radiance has dimensions of power/(wavelength \times area \times solid angle). The radiation enters the layer at height s and leaves the layer at height $s+\delta s$ (Fig. 1).

Figure 1: Radiation traversing a layer of the atmosphere.

Emission of radiation

The emission of radiance from the layer involves the Planck function, $B_{\lambda}(T)$, which is a function of the layer's temperature, $T . B_{\lambda}$ has the same units as I_{λ}. Emission modifies the radiation according to

$$
\begin{equation*}
\delta I_{k}^{\text {emission }}=\text { area of emitter } \times B_{\lambda}(T) \tag{1}
\end{equation*}
$$

Let k_{λ} be the air's absorption cross section (equivalent to the emission cross section by Kirchoff's law), which has units of area/mass. In a unit area of radiation into which the radiation passes, the mass of the layer is $\rho \delta s$ (where ρ is the air's density), and so the area of the emitter is then $k_{\lambda} \rho \delta s$. The contribution from emission is thus

$$
\begin{equation*}
\delta I_{\kappa}^{\text {emission }}=k_{\lambda} \rho \delta s B_{\lambda}(T) . \tag{2}
\end{equation*}
$$

Absorption of radiation

The absorption of radiance from the layer is

$$
\begin{equation*}
\delta I_{\kappa}^{a b s o p t i o n}=- \text { area of absorber } \times I_{\lambda}, \tag{3}
\end{equation*}
$$

where the area of the absorber is the same as the area of the emitter in (1). Equation (3) then leads to

$$
\begin{equation*}
\delta I_{k}^{\text {absoption }}=-k_{\lambda} \rho \delta s I_{\lambda} . \tag{4}
\end{equation*}
$$

Equation (4) is sometimes known as Lambert's law.

The total change of radiation

The sum of (2) and (4) gives the combined effect, which gives a differential equation describing radiative transfer in the absence of scattering

$$
\begin{equation*}
\frac{\mathrm{d} I_{\lambda}}{\mathrm{d} s}=\rho k_{\lambda}\left(B_{\lambda}(T)-I_{\lambda}\right) \tag{5}
\end{equation*}
$$

Integrating the radiative transfer equation

Multiplying (5) by the integrating factor $\exp \int_{0}^{s} \rho k_{\lambda} \mathrm{d} s^{\prime}$, gives

$$
\begin{equation*}
\frac{\mathrm{d} I_{\lambda}}{\mathrm{d} s} \exp \int_{0}^{s} \rho k_{\lambda} \mathrm{d} s^{\prime}=\rho k_{\lambda}\left(B_{\lambda}(T) \exp \int_{0}^{s} \rho k_{\lambda} \mathrm{d} s^{\prime}-I_{\lambda} \exp \int_{0}^{s} \rho k_{\lambda} \mathrm{d} s^{\prime}\right) \tag{6}
\end{equation*}
$$

Note the following identity, found by the product rule for integration, which will be useful in rewriting (6)

$$
\begin{align*}
\frac{1}{\rho k_{\lambda}} \frac{\mathrm{d}}{\mathrm{~d} s}\left(I_{\lambda} \exp \int_{0}^{s} \rho k_{\lambda} \mathrm{d} s^{\prime}\right) & =\frac{1}{\rho k_{\lambda}}\left(\frac{\mathrm{d} I_{\lambda}}{\mathrm{d} s} \exp \int_{0}^{s} \rho k_{\lambda} \mathrm{d} s^{\prime}+I_{\lambda} \frac{\mathrm{d}}{\mathrm{~d} s} \exp \int_{0}^{s} \rho k_{\lambda} \mathrm{d} s^{\prime}\right) \\
& =\frac{1}{\rho k_{\lambda}}\left(\frac{\mathrm{d} I_{\lambda}}{\mathrm{d} s} \exp \int_{0}^{s} \rho k_{\lambda} \mathrm{d} s^{\prime}+I_{\lambda} \exp \int_{0}^{s} \rho k_{\lambda} \mathrm{d} s^{\prime} \frac{\mathrm{d}}{\mathrm{~d} s} \int_{0}^{s} \rho k_{\lambda} \mathrm{d} s^{\prime}\right) \\
& =\frac{1}{\rho k_{\lambda}}\left(\frac{\mathrm{d} I_{\lambda}}{\mathrm{d} s} \exp \int_{0}^{s} \rho k_{\lambda} \mathrm{d} s^{\prime}+I_{\lambda} \rho k_{\lambda} \exp \int_{0}^{s} \rho k_{\lambda} \mathrm{d} s^{\prime}\right) \\
& =\left(\frac{1}{\rho k_{\lambda}} \frac{\mathrm{d} I_{\lambda}}{\mathrm{d} s}+I_{\lambda}\right) \exp \int_{0}^{s} \rho k_{\lambda} \mathrm{d} s^{\prime} \tag{7}
\end{align*}
$$

Equation (6) can therefore be written

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} s}\left(I_{\lambda} \exp \int_{0}^{s} \rho k_{\lambda} \mathrm{d} s^{\prime}\right)=\rho k_{\lambda} B_{\lambda}(T) \exp \int_{0}^{s} \rho k_{\lambda} \mathrm{d} s^{\prime} \tag{8}
\end{equation*}
$$

Integrating (8) from the bottom of the domain $(s=0)$ to height s

$$
\begin{equation*}
I_{\lambda}(s) \exp \int_{0}^{s} \rho k_{\lambda} \mathrm{d} s^{\prime}-I_{\lambda}(0)=\int_{0}^{s} \rho k_{\lambda} B_{\lambda}\left(T\left(s^{\prime \prime}\right)\right)\left(\exp \int_{0}^{s^{\prime \prime}} \rho k_{\lambda} \mathrm{d} s^{\prime}\right) \mathrm{d} s^{\prime \prime} \tag{9}
\end{equation*}
$$

where some reindexing has been performed for clarity. The term $I_{\lambda}(0)$ is the emission from the ground, which will depend upon the surface temperature. Taking the surface term to the right hand side and multiplying by $\exp -\int_{0}^{s} \rho k_{\lambda} \mathrm{d} s^{\prime}$ gives an expression for the radiance at height s

$$
\begin{align*}
I_{\lambda}(s) & =I_{\lambda}(0) \exp -\int_{0}^{s} \rho k_{\lambda} \mathrm{d} s^{\prime}+\int_{0}^{s} \rho k_{\lambda} B_{\lambda}\left(T\left(s^{\prime \prime}\right)\right)\left(\exp \int_{0}^{s^{\prime \prime}} \rho k_{\lambda} \mathrm{d} s^{\prime}-\int_{0}^{s} \rho k_{\lambda} \mathrm{d} s^{\prime}\right) \mathrm{d} s^{\prime \prime} \tag{10}\\
& =I_{\lambda}(0) \exp -\int_{0}^{s} \rho k_{\lambda} \mathrm{d} s^{\prime}+\int_{0}^{s} \rho k_{\lambda} B_{\lambda}\left(T\left(s^{\prime \prime}\right)\right)\left(\exp -\int_{s^{\prime \prime}}^{s} \rho k_{\lambda} \mathrm{d} s^{\prime}\right) \mathrm{d} s^{\prime \prime} \tag{11}
\end{align*}
$$

An important radiance is the top-of-atmosphere radiance since this is measured by satellites

$$
\begin{equation*}
I_{\lambda}(\infty)=I_{\lambda}(0) \exp -\int_{0}^{\infty} \rho k_{\lambda} \mathrm{d} s^{\prime}+\int_{0}^{\infty} \rho k_{\lambda} B_{\lambda}\left(T\left(s^{\prime \prime}\right)\right)\left(\exp -\int_{s^{\prime \prime}}^{\infty} \rho k_{\lambda} \mathrm{d} s^{\prime}\right) \mathrm{d} s^{\prime \prime} \tag{12}
\end{equation*}
$$

The optical depth and the atmospheric transmittance

The optical depth, u, is a dimensionless unit of depth that determines the amount of attenuation that a pencil of radiation suffers. Optical depth between s_{1} and s_{2} is defined as follows

$$
\begin{equation*}
u\left(s_{1}, s_{2}\right)=\int_{s_{1}}^{s_{2}} \rho k_{\lambda} \mathrm{d} s^{\prime} . \tag{13}
\end{equation*}
$$

The attenuation between s_{1} and s_{2} is therefore

$$
\begin{equation*}
\exp -u\left(s_{1}, s_{2}\right) . \tag{14}
\end{equation*}
$$

Radiation that traverses an optical depth of 1 will be reduced by a factor e. The atmospheric transmittance, $\tau(s)$, is defined as the attenuation factor that a pencil of radiation suffers as it traverses the atmosphere from height s to the top of the atmosphere

$$
\begin{align*}
\tau(s) & =\exp -\int_{s}^{\infty} \rho k_{\lambda} \mathrm{d} s^{\prime}, \tag{15}\\
& =\exp -u(s, \infty) . \tag{16}
\end{align*}
$$

Another useful quantity is the derivative of τ with respect to s.

$$
\begin{align*}
\frac{\mathrm{d} \tau(s)}{\mathrm{d} s} & =\tau(s) \frac{\mathrm{d}}{\mathrm{~d} s} \int_{\infty}^{s} \rho k_{\lambda} \mathrm{d} s^{\prime} \\
& =\tau(s) \lim _{\delta s \rightarrow 0} \frac{1}{\delta s}\left(\int_{\infty}^{s+\delta s} \rho k_{\lambda} \mathrm{d} s^{\prime}-\int_{\infty}^{s} \rho k_{\lambda} \mathrm{d} s^{\prime}\right) \\
& =\tau(s) \lim _{\delta s \rightarrow 0} \frac{1}{\delta s} \int_{s}^{s+\delta s} \rho k_{\lambda} \mathrm{d} s^{\prime}, \\
& =\tau(s) \rho(s) k_{\lambda}(s) \tag{17}
\end{align*}
$$

Using (16) and (17), the top-of-atmosphere radiance (12) can be written in a very compact form

$$
\begin{align*}
I_{\lambda}(\infty) & =I_{\lambda}(0) \tau(0)+\int_{0}^{\infty} \rho\left(s^{\prime \prime}\right) k_{\lambda}\left(s^{\prime \prime}\right) B_{\lambda}\left(T\left(s^{\prime \prime}\right)\right) \tau\left(s^{\prime \prime}\right) \mathrm{d} s^{\prime \prime} \\
& =I_{\lambda}(0) \tau(0)+\int_{0}^{\infty} B_{\lambda}\left(T\left(s^{\prime \prime}\right)\right) \frac{\mathrm{d} \tau\left(s^{\prime \prime}\right)}{\mathrm{d} s^{\prime \prime}} \mathrm{d} s^{\prime \prime} . \tag{18}
\end{align*}
$$

The temperature weighting function

The weighting function with respect to the Planck function at height s is defined as $\mathrm{d} I_{\lambda}(\infty) / \mathrm{d} B(T(s))$. It can be found from (18)

$$
\begin{align*}
\frac{\mathrm{d} I_{\lambda}(\infty)}{\mathrm{d} B(T(s))} & =\frac{\mathrm{d}}{\mathrm{~d} B(T(s))} \int_{0}^{\infty} B_{\lambda}\left(T\left(s^{\prime \prime}\right)\right) \frac{\mathrm{d} \tau\left(s^{\prime \prime}\right)}{\mathrm{d} s^{\prime \prime}} \mathrm{d} s^{\prime \prime} \\
& =\int_{0}^{\infty} \delta\left(s^{\prime \prime}-s\right) \frac{\mathrm{d} \tau\left(s^{\prime \prime}\right)}{\mathrm{d} s^{\prime \prime}} \mathrm{d} s^{\prime \prime}, \\
& =\frac{\mathrm{d} \tau(s)}{\mathrm{d} s} \tag{19}
\end{align*}
$$

The weighting function with respect to temperature at height s is defined as $\mathrm{d} I_{\lambda}(\infty) / \mathrm{d} T(s)$. It can be found from (19) and the chain rule

$$
\begin{equation*}
\frac{\mathrm{d} I_{\lambda}(\infty)}{\mathrm{d} T(s)}=\frac{\mathrm{d} I_{\lambda}(\infty)}{\mathrm{d} B(T(s))} \frac{\mathrm{d} B(T(s))}{\mathrm{d} T(s)}=\frac{\mathrm{d} \tau(s)}{\mathrm{d} s} \frac{\mathrm{~d} B(T(s))}{\mathrm{d} T(s)} . \tag{20}
\end{equation*}
$$

