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The purpose of these notes is to derive the equations provided by TT, so I can understand the
current thinking, and the limitations, and then to suggest possible ways forward.

1 Current method

1.1 Data and regression model

Consider a set of radiance measurements made by (i) a reference instrument, Lr
i(k), and (ii) a target

instrument, Lt
i(k) (i is the measurement number for channel k). It is desired that the target instrument

should have the same characteristics as the reference instrument (ideally that it should produce the
same pro�le as the reference instrument when looking at the same scene under the same conditions).
A calibration procedure is to be performed to allow this. It is assumed (for now at least) that the two
instruments share the same set of channels, and that they are measuring the atmosphere at the same
place and time.

Suppose that the following is a reasonable model of how the parallel measurements are related:

Lt
i(k) = ar(k) + br(k)L

r
i(k) + νi(k), (1)

where ar(k) and br(k) are channel-dependent parameters, and νi is the mismatch between the mea-

surement from the target instrument, Lt
i(k), and that from the processed version of the reference

instrument, ar(k) + br(k)L
r
i(k). Assume that

〈
νi(k)

〉
= 0 and that

〈
ν2i(k)

〉
= σt

i(k)
2
, where 〈•〉 means take

the expectation over a large number of imagined repeated measurements.
Inverting (1) (and ignoring the mismatch term since it is unknowable) gives

L̂t
i(k) ≡ L

r
i(k) ≈

Lt
i(k)

br(k)
−
ar(k)

br(k)
. (2)

Posing the equation this way round allows us to de�ne the calibration: L̂t
i(k) is de�ned as the calibrated

version of the target radiances.

1.2 Posing the least-squares problem

Suppose that we have n pieces of data for each of Lr
i(k) and, Lt

i(k), i.e. 1 ≤ i ≤ n and let these be

organised in vectors lr(k) and lt(k). Furthermore, let

x(k) =

(
ar(k)
br(k)

)
. (3)

Equation (1) may then be written as

lt(k) = H(k)x(k) + ν(k), (4)

where

H(k) =


1 Lr

1(k)

1 Lr
2(k)

...
...

1 Lr
n(k)

 =
(

1 lr(k)

)
. (5)
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The usual interpretation of (1) and (4) is that lri(k) is known perfectly, but lt(k) is not (errors in lt(k) are

described by ν(k)).
We form the following least squares problem:

J(k)[x(k)] =
1

2

(
lt(k) −H(k)x(k)

)T
R−1

(k)

(
lt(k) −H(k)x(k)

)
. (6)

There may be one such cost function for each channel, k, considered.

1.3 Solving the least-squares problem

The minimum is this cost function is the x(k) that makes this stationary (i.e. the �rst derivative zero):

∇J(k) = −HT
(k)R

−1
(k)

(
lt(k) −H(k)x

optimal
(k)

)
= 0, (7)

which rearranges to

xoptimal
(k) =

(
HT

(k)R
−1
(k)H(k)

)−1

HT
(k)R

−1
(k)l

t
(k). (8)

Assuming that R(k) is diagonal (diagonal elements σti(k)
2
), and using (5) gives the following parts of

(8): (
HT

(k)R
−1
(k)H(k)

)−1

=
1

s1srr − sr2

(
s1 −sr
−sr srr

)
, (9)

HT
(k)R

−1
(k)l

t
(k) =

(
srt

st

)
, (10)

where s1, sr, srr, st, and srt are shorthand for terms that are calculable from the data (we drop the
channel (k) subscript for convenience):

s1 =
∑
i

σt
i(k)

−2
, sr =

∑
i

Lr
i(k)σ

t
i(k)

−2
, srr =

∑
i

Lr
i(k)

2σt
i(k)

−2
,

st =
∑
i

Lt
i(k)σ

t
i(k)

−2
, srt =

∑
i

Lr
i(k)L

t
i(k)σ

t
i(k)

−2
. (11)

Putting this together in (8) leads to

xoptimal
(k) =

(
ar(k)
br(k)

)
=

1

s1srr − sr2

(
s1 −sr
−sr srr

)(
srt

st

)
. (12)

1.4 Uncertainty of the solution

In addition to the optimal set of parameters, the least squares problem also estimates the error co-
variance of the parameters. This is the inverse of the Hessian (second derivative) of the cost function.
The Hessian is

∇2J(k) = HT
(k)R

−1
(k)H(k), (13)

so the inverse Hessian is simply (9). In particular, the variances of ar(k) and b
r
(k) are

σ2
ar
(k)

=
s1

s1srr − sr2
, (14)

σ2
br
(k)

=
srr

s1srr − sr2
, (15)

and the error cross covariance is

car
(k)
br
(k)

=
−sr

s1srr − sr2
. (16)
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1.5 Uncertainty in the target radiances post calibration (i.e. in use)

Consider (2). Performing a �rst-order error analysis for errors in L̂t
i(k) (denoted δL̂

t
i(k)):

δL̂t
i(k) ≈

∂L̂t
i(k)

∂Lt
i(k)

δLt
i(k) +

∂L̂t
i(k)

∂br(k)
δbr(k) +

∂L̂t
i(k)

∂ar(k)
δar(k),

=
1

br(k)
δLt

i(k) +

(
−
Lt
i(k)

br(k)
2 +

ar(k)

br(k)
2

)
δbr(k) −

1

br(k)
δar(k).

The variance is then:〈
δL̂t

i(k)

2
〉

=
1

br(k)
2

〈
δLt

i(k)
2
〉

︸ ︷︷ ︸
σt
i(k)

2

+ 2

(
−
Lt
i(k)

br(k)
3 +

ar(k)

br(k)
3

)〈
δLt

i(k)δb
r
(k)

〉
︸ ︷︷ ︸

0

− 2
1

br(k)
2

〈
δLt

i(k)δa
r
(k)

〉
︸ ︷︷ ︸

0

+

(
−
Lt
i(k)

br(k)
2 +

ar(k)

br(k)
2

)2 〈
δbr(k)

2
〉

︸ ︷︷ ︸
σ2
br
(k)

− 2

(
−
Lt
i(k)

br(k)
3 +

ar(k)

br(k)
3

)〈
δbr(k)δa

r
(k)

〉
︸ ︷︷ ︸

car
(k)

br
(k)

+
1

br(k)
2

〈
δar(k)

2
〉

︸ ︷︷ ︸
σ2
ar
(k)

,

=
1

br(k)
2

[
σti(k)

2
+
(
ar(k) − L

t
i(k)

)2
σ2
br
(k)

+ σ2
ar
(k)
− 2

br(k)

(
ar(k) − L

t
i(k)

)
car

(k)
br
(k)

]
. (17)

Equation (17) is slightly di�erent from TT's equation. Some of the di�erences are in details (possibly

algebraic errors), but one di�erence (the σt
i(k)

2
term) is present because here we account for random

error in the target measurements.

2 Issues

TT's listed issues with the conventional method are reproduced as follows (some of my thoughts are
given in italics).

1. Assumes relationship is linear, some detectors are non-linear at cold temperatures.

(a) By �cold temperatures� if you mean low brightness temperatures, then assuming that any
non-linear e�ects are weak over the adjustments by the calibration, then it is possible to do
a separate calibration for di�erent bins of brightness temperatures, providing that enough
data are available.

(b) If you mean the temperature of the detector, then I need to know more about how detec-
tors work. I would presume that detectors are kept very cold to minimise spurious signals
emanating from the spacecraft itself.

2. Assumes no uncertainty in any observations. Both observations have observation error covari-
ances � still waiting for new FCDR �les with target covariances.

(a) The analysis here does account for random error in the target measurements (σt
i(k)

2
), but

not in the reference measurements. See point 6 below.

(b) The above neglects errors between channels (k). Accounting for errors between channels
results in similar equations, but would require a rethink. More in Sect. 4.

3. Assumes if the di�erence between the target and environment areas is with 3σ of environment
area to be consistent.

4. No accounting for representativeness or collocation uncertainty of the independent measurements.

(a) This is the big problem.

5. Error-in-variables (EIV) models provide a more suitable approach. However are non-trivial.
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6. Substitution of OLS [ordinary least squares] minimisation for EIV method such as orthogonal
distance regression (ODR) would account for uncertainties in observations but not collocation
uncertainty.

(a) More of this in Sect. 3 below.

7. Can data assimilation provide a framework to account for all uncertainties in the system and
propagate the correlation structures within the uncertainties?

(a) Almost certainly the methods used in DA can be applied here to some degree. More of this
to follow.

Some issues of my own are as follows (perhaps just categories of problems of the type 4 above).

1. Cloud contamination issues (if the reference has cloud but the target does not, or vice-versa).

2. Surface di�erences between target scene and reference scene (for channels that see the surface).

3 Considering observation errors of both instruments

3.1 Posing the least-squares problem when errors are present for both in-
struments

Suppose that each measurement of the target radiance has error variance σt
i(k)

2
, and additionally that

each measurement of the reference radiance has error radiance σr
i(k)

2 (before we had assumed that the

latter is zero). We ask the question, �What is the distance between a measurement pair (Lr
i(k), L

t
i(k))

and the straight line Lt
(k) = ar(k) + br(k)L

r
(k) where the distance is speci�ed in multiples of the error

standard deviations of each measurement?� (see Fig. � (Lr
(k), L

t
(k))→ (x, y) in the Fig.)

The scaled distance between an arbitrary point on the line (Lr
(k), L

t
(k)) = (Lr

(k), a
r
(k) + br(k)L

r
(k)) and

the measurement (Lr
i(k), L

t
i(k)) is di(k):

d2i(k) =
(Lr

(k) − L
r
i(k))

2

σr
i(k)

2 +
(ar(k) + br(k)L

r
(k) − L

t
i(k))

2

σt
i(k)

2 . (18)

Finding the Lr
(k) that minimises this:

dd2i(k)

dLr
(k)

= 2
Lr
(k) − L

r
i(k)

σr
i(k)

2 + 2
(ar(k) + br(k)L

r
(k) − L

t
i(k))b

r
(k)

σt
i(k)

2 .

The derivative is zero when Lr
(k) = Lr0

(k):

Lr0
(k) =

Lr
i(k)σ

t
i(k)

2
+ (Lt

i(k)b
r
(k) − a

r
(k)b

r
(k))σ

r
i(k)

2

σt
i(k)

2
+ br(k)

2σr
i(k)

2
, (19)
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making the shortest scaled distance between the (Lr
i(k), L

t
i(k)) and the straight line from (18) (after

some algebra):

d2i(k) =

(
Lt
i(k) − L

r
i(k)b

r
(k) − a

r
(k)

)2
σt
i(k)

2
+ br(k)

2σr
i(k)

2
.

Notice that in the case when σr
i(k)

2 = 0 the problem reduces to the case discussed in Sect. 1. The cost
function is the sum of contributions from all measurement pairs:

J(k)(a
r
(k), b

r
(k)) =

1

2

∑
i

d2i(k) =
1

2

∑
i

(
Lt
i(k) − L

r
i(k)b

r
(k) − a

r
(k)

)2
σt
i(k)

2
+ br(k)

2σr
i(k)

2
. (20)

The aim is to �nd the ar(k) and b
r
(k) that minimise this cost function. This cost function is non-linear

in br(k), making it more di�cult to solve than (6), but below is my suggested method.

3.2 Solving the least-squares problem when errors are present for both
instruments

This suggested solution is iterative (not sure if it will converge).

1. Solve the problem in Sect. 1 when errors are present for lt(k) only. This gives a �rst guess (p = 0)

for the value of xp=0
(k) , de�ned in a similar way to (3), i.e.

xp(k) =

(
ar,p(k)
br,p(k)

)
. (21)

2. Set p = 1. This is the iteration number.

3. Solve a similar problem for iteration p as follows. De�ne the following cost function (c.f. (6)):

Jp(k)[x
p
(k)] =

1

2

(
lt(k) −H(k)x

p
(k)

)T
Rp

(k)

−1
(
lt(k) −H(k)x

p
(k)

)
, (22)

where H(k) is de�ned in (5), and Rp
(k) is the diagonal matrix with elements Rp

(k)ii
= σt

i(k)
2

+

br,p−1
(k)

2
σr
i(k)

2 (the denominator in (20)). The solution at the pth iteration is similar to (8), i.e.

xp(k) =
(
HT

(k)R
p
(k)

−1
H(k)

)−1

HT
(k)R

p
(k)

−1
lt(k). (23)

The solution is similar to (12), but where s1, sr, srr, st, and srt are (11), but where σt
i(k)

2 →

σt
i(k)

2
+ br,p−1

(k)

2
σr
i(k)

2.

4. If converged, stop. Otherwise, increment p and go to step 3.

3.3 Uncertainty of the solution when errors are present for both instru-
ments

An approximation of the uncertainties in xp(k) can be found by assuming that errors are approximately

Gaussian. In this case the variances of and covariance between errors in the best �t ar(k) and b
r
(k) are

given as (14), (15), and (16), but with the modi�ed versions of s1, sr, srr, st, and srt as detailed in
step 3 in the solution procedure. It is also possible to re�ne the Hessian calculation in (13) to allow
for the br,p(k) in the denominator in this case.
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4 Considering observation error covariances between channels

If there are error covariances between di�erent channels then we need to solve the problem for all
channels at once. Let us build on the case in Sect. 3 now when errors between channels are correlated.
The channel index (k) will now be useful. We will consider K channels, and m measurements of each
channel.

4.1 Starting to pose the least-squares problem for correlated observation
errors and when errors are present for both instruments

The solution will be along the same lines as the algorithm in Sect. 3. Let us call the set of observations
of di�erent channels, but made at the same instant/scene/instrument an observation packet (for want
of a better term) [in this sense each observation packet comprises a spectrum; let there bem observation
packets]. Let i be the observation packet index (1 ≤ i ≤ m). De�ne the following objects:

• An observation packet for the reference instrument is lr. This is a K-element vector. For a
particular observation packet, i, this is denoted lri.

• The associated observation packet for the target instrument is lt. This is a K-element vector.
For a particular observation packet this is denoted lti.

• The ar(k)-values (as in (1)) assembled into a vector is a. This is a K-element vector.

• The br(k)-values (as in (1)) assembled into a vector is b. This is a K-element vector. The diagonal

matrix whose diagonal elements are those of b is B = diag(b). This is a K ×K matrix (used
below).

• The regression model relating lr and lt is

lt = a + Blr. (24)

This represents the same regression model used before (1), but expressed for all channels in one
expression. Eq. (24) itself does not mix-up regression coe�cients between channels. This model
may be thought of as existing in a 2K-dimensional parameter space (K dimensions each for a and
b; compare this to the case in Sect. 1 where there were just two unknowns as we were considering
each channel separately). N.B. The above formulation is di�erent to that used before in (4), e.g.
we do not here use a H-matrix.

• The observation error covariance matrix for the reference instrument is Rr. This is a K × K
matrix.

• The observation error covariance matrix for the target instrument is Rt. This is a K×K matrix.

Let the distance (in 2K-dimensional observation space) of observation packet i (lri, l
t
i) from an arbitrary

point de�ned by (lr, lt) and weighted by the error covariances be di:

d2i = (lr − lri)
T

Rr−1 (lr − lri) +
(
lt − lti

)T
Rt−1 (

lt − lti
)
,

(we have assumed that errors between those of lri and lti are correlated). Imposing the constraint (24)
leaves us with

d2i = (lr − lri)
T

Rr−1 (lr − lri) +
(
a + Blr − lti

)T
Rt−1 (

a + Blr − lti
)
. (25)

(c.f. (18)). The value of the vector lr that minimises this distance is found by making (25) stationary:

∇lrd
2
i = Rr−1 (lr − lri) + BRt−1 (

a + Blr − lti
)

= 0,

which happens when

lr =
(
Rr−1 + BRt−1

B
)−1 [

Rr−1lri −BRt−1 (
a− lti

)]
, (26)
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(c.f. (19)). This is the value of lr that, when used with (24) to give the associated lt (for a given a and
b), gives a point in observation space (lr, lt) that is closest to the ith pair of observation packets (lri, l

t
i)

(by allowing for the expected degree of uncertainty in the measurements). Now turn this problem
around. Substitute (26) into (25), sum up the contributions for each pair of observation packets, and
then determine the a and b that minimises the resulting cost function. First substitute (26) into
(25) (this gets a bit messy, so we will do this in parts; it is possible to skip to (29) for the resulting
expression for d2i to avoid the details). The di�erence that appears in the �rst term of (25):

lr − lri =
(
Rr−1 + BRt−1

B
)−1 [

Rr−1lri −BRt−1 (
a− lti

)]
− lri

=
(
Rr−1 + BRt−1

B
)−1 [

���
�Rr−1lri −BRt−1 (

a− lti
)
−
(
���Rr−1 + BRt−1

B
)

lri

]
=

(
Rr−1 + BRt−1

B
)−1 [

BRt−1 (
lti − a

)
−BRt−1

Blri

]
=

(
Rr−1 + BRt−1

B
)−1

BRt−1 [
lti − a−Blri

]
. (27)

The di�erence that appears in the second term of (25):

a + Blr − lti = a + B
(
Rr−1 + BRt−1

B
)−1 [

Rr−1lri −BRt−1 (
a− lti

)]
− lti

= B
(
Rr−1 + BRt−1

B
)−1 [(

Rr−1 + BRt−1
B
)

B−1a + Rr−1lri −BRt−1 (
a− lti

)
−
(
Rr−1 + BRt−1

B
)

B−1lti

]
= B

(
Rr−1 + BRt−1

B
)−1 [

Rr−1B−1a +��
��

BRt−1
a + Rr−1lri −��

��
BRt−1

a +
XXXXBRt−1

lti

−Rr−1B−1lti −
XXXXBRt−1

lti

]
= B

(
Rr−1 + BRt−1

B
)−1 [

Rr−1B−1a + Rr−1lri −Rr−1B−1lti

]
= B

(
Rr−1 + BRt−1

B
)−1

Rr−1 [B−1a + lri −B−1lti
]

= B
(
Rr−1 + BRt−1

B
)−1

Rr−1B−1
[
a + Blri − lti

]
= −B

(
Rr−1 + BRt−1

B
)−1

Rr−1B−1
[
lti − a−Blri

]
. (28)

Substituting (27) and (28) into (25) gives

d2i = (lr − lri)
T

Rr−1 (lr − lri) +
1

2

(
a + Blr − lti

)T
Rt−1 (

a + Blr − lti
)

=
[
lti − a−Blri

]T
Rt−1

B
(
Rr−1 + BRt−1

B
)−1

Rr−1 ×(
Rr−1 + BRt−1

B
)−1

BRt−1 [
lti − a−Blri

]
+[

lti − a−Blri
]T

B−1Rr−1
(
Rr−1 + BRt−1

B
)−1

BRt−1 ×

B
(
Rr−1 + BRt−1

B
)−1

Rr−1B−1
[
lti − a−Blri

]
=

[
lti − a−Blri

]T ×{
Rt−1

B
(
Rr−1 + BRt−1

B
)−1

Rr−1
(
Rr−1 + BRt−1

B
)−1

BRt−1
+

B−1Rr−1
(
Rr−1 + BRt−1

B
)−1

BRt−1
B
(
Rr−1 + BRt−1

B
)−1

Rr−1B−1

}
[
lti − a−Blri

]
. (29)

We now attempt to factorise the term in curly brackets.
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4.2 Factorising the covariance matrix

Factorising the term in curly brackets in (29) (it is possible to skip the details here and go straight to
the simpli�ed form of the total cost function J [a,b] = 1

2

∑
i d

2
i found as (33)):

Rt−1
B
(
Rr−1 + BRt−1

B
)−1

Rr−1
(
Rr−1 + BRt−1

B
)−1

BRt−1
+

B−1Rr−1
(
Rr−1 + BRt−1

B
)−1

BRt−1
B
(
Rr−1 + BRt−1

B
)−1

Rr−1B−1 (30)

Note �rst what can be done with the following pattern of operators:

B−1Rr−1
(
Rr−1 + BRt−1

B
)−1

BRt−1
=([

BRt−1
]−1 [

Rr−1 + BRt−1
B
] [

B−1Rr−1
]−1
)−1

=(
RtB−1

[
Rr−1 + BRt−1

B
]

RrB
)−1

=(
Rt + BRrB

)−1
, (31)

which can also be written as:(
Rr−1 + BRt−1

B
)−1

= RrB
(
Rt + BRrB

)−1
RtB−1. (32)

Identify (31) in each line of the expression to be factorised (30) (the underlined parts of the following):

Rt−1
B
(
Rr−1 + BRt−1

B
)−1

BB−1Rr−1
(
Rr−1 + BRt−1

B
)−1

BRt−1

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
+

B−1Rr−1
(
Rr−1 + BRt−1

B
)−1

BRt−1

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
B
(
Rr−1 + BRt−1

B
)−1

Rr−1B−1

So (30) becomes:

Rt−1
B
(
Rr−1 + BRt−1

B
)−1

B
(
Rt + BRrB

)−1
+(

Rt + BRrB
)−1

B
(
Rr−1 + BRt−1

B
)−1

Rr−1B−1.

Each term in (30) is symmetric (even though this is not obvious in the rewritten form). Transposing
the �rst line of the above therefore does not change the equation, but reverses the order of the matrices
(note that they are all symmetric):(

Rt + BRrB
)−1

B
(
Rr−1 + BRt−1

B
)−1

BRt−1
+(

Rt + BRrB
)−1

B
(
Rr−1 + BRt−1

B
)−1

Rr−1B−1

Now use (32): (
Rt + BRrB

)−1
BRrB

(
Rt + BRrB

)−1
RtB−1BRt−1

+(
Rt + BRrB

)−1
BRrB

(
Rt + BRrB

)−1
RtB−1Rr−1B−1 =(

Rt + BRrB
)−1

BRrB
(
Rt + BRrB

)−1
+(

Rt + BRrB
)−1

BRrB
(
Rt + BRrB

)−1
RtB−1Rr−1B−1 =(

Rt + BRrB
)−1

BRrB
(
Rt + BRrB

)−1
[
I + RtB−1Rr−1B−1

]
.

Note: [
I + RtB−1Rr−1B−1

]
=
[
BRrB + Rt

]
B−1Rr−1B−1.

8



Therefore we can �nish the factorisation:(
Rt + BRrB

)−1
BRrB

(
Rt + BRrB

)−1 [
BRrB + Rt

]
B−1Rr−1B−1 =(

Rt + BRrB
)−1

.

Thus, expression (30) may be replaced by the above. This is a worthwhile exercise to simplify the cost
function!

4.3 Finishing posing the problem

The cost function found by sum of the squares of the observation packet distances from the set of
straight lines (and dividing by 2 by convention):

J [a,b] =
1

2

∑
i

d2i =
1

2

m∑
i=1

[
lti − a−Blri

]T (
Rt + BRrB

)−1 [
lti − a−Blri

]
, (33)

where recall, B = diag(b). As was found in the case when the errors between channels are uncorrelated
(20), this problem is not quadratic due to the B de�ning the combined covariance matrix (just as for
the uncorrelated case in Sect. 3). As an example, the Fig. plots J [a, b] in the case of two pairs of
observations of a single channel, for a �xed a for four possible values of σr2 (Rr=σr2) as shown in the
key to the Fig. Changing σr2 from zero results in a non-quadratic cost function with a less well-de�ned
minimum, an aymmetric pro�le around the minimum, and a nearby maximum.

5 Allowing for non-coincidental scenes

Let us make the following assumptions and considerations.

1. Let us put aside for now serious inhomogeneities like the potentially varying presence of cloud
in the target and reference scenes (e.g. by assuming clear skies in all scenes considered).

2. We have access to the following extra information concerning the scenes:

(a) A radiative transfer model (RTM) that is capable of simulating the reference and target
observation packets.

(b) Reasonably accurate model pro�les of geophysical variables that are needed by the RTM.

9



3. Assume that the reference and target instruments share the same RTM.

We will allow for deviations in the positions and viewing angles corresponding to the reference and
target observation packets.

5.1 Proposal � a possible solution by adapting the approach already used

Take the following de�nitions:

• xr is the model's vertical pro�le for the scene of the reference instrument, with particular error
δxr. This is an n-element vector.

• θr is the viewing angle of the reference instrument's view. This is a scalar.

• xr
true is the true version of xr (xr is the model version, which will be in error). This is an
n-element vector.

• lr is an observation packet from the reference instrument, with particular error δlr. This is a
K-element vector.

• lrtrue is the noise-free observation packet that a perfect reference instrument would observe. This
is a K-element vector.

• xt is the model's vertical pro�le seen by the target instrument, with particular error δxt. This
is an n-element vector.

• θt is the viewing angle of the target instrument's view. This is a scalar.

• xt
true is the true version of xt. This is an n-element vector.

• lt is an observation packet from the target instrument, with particular error δlt. This is a
K-element vector.

• lttrue is the noise-free observation packet that a perfect target instrument would observe. This is
a K-element vector.

• h(x, θ) is the RTM (assumed the same model for the target and reference instruments), with
particular error εh. This operator accepts an n-element vector, and a scalar as its input and has
a K-element vector as its output.

• δxrt is the di�erence in modelled vertical pro�les of reference and target instruments. This is an
n-element vector.

• δθrt is the di�erence in viewing angles of reference and target instruments. This is a scalar.

Some equations that we assume link these de�nitions:

xr = xr
true + δxr

xt = xt
true + δxt

h(xr
true, θ

r) = lrtrue + εh1

h(xt
true, θ

t) = lttrue + εh2

lr = lrtrue + δlr

lt = lttrue + δlt

δxrt = xt − xr

δθrt = θt − θr.

Let us assume that the overarching problem is now to regress the target instrument's observation to
something that is as close as possible to lttrue. This, presumably, is the idea behind the current strategy

10



(Sect. 1), but where it is the reference instrument's data itself, lr, that is a proxy for the `truth'. Now
develop an expression for lttrue (using the above de�nitions and by linearising where necessary):

lttrue = h(xt
true, θ

t)− εh2

= h(xt − δxt, θt)− εh2

≈ h(xt, θt)−Hxt,θtδx
t − εh2

= h(xr + δxrt, θr + δθrt)−Hxt,θtδx
t − εh2

≈ h(xr, θr) + Hxr,θrδx
rt + Hθr,xrδθrt −Hxt,θtδx

t − εh2

= h(xr
true + δxr, θr) + Hxr,θrδx

rt + Hθr,xrδθrt −Hxt,θtδx
t − εh2

≈ h(xr
true, θ

r) + Hxr,θrδx
r + Hxr,θrδx

rt + Hθr,xrδθrt −Hxt,θtδx
t − εh2

= lrtrue + εh1 + Hxr,θrδx
r + Hxr,θrδx

rt + Hθr,xrδθrt −Hxt,θtδx
t − εh2

= lr − δlr + εh1 + Hxr,θrδx
r + Hxr,θrδx

rt + Hθr,xrδθrt −Hxt,θtδx
t − εh2 , (34)

where the Jacobians are

Hx0,θ0 =
∂h

∂x

∣∣∣∣
x0,θ0

a K × n matrix

Hθ0,x0 =
∂h

∂θ

∣∣∣∣
θ0,x0

. a K × 1 matrix

Equation (34) shows how the reference measurement, lr, is related to the object that we actually want
to regress to, lrtrue (the current approach ignores all of the correction terms on the right hand side of
(34)). The idea now is to understand which of the other terms we know or can estimate, which we
only know the statistics of, and which we have little idea of.

lttrue = lr + Hxr,θrδx
rt + Hθr,xrδθrt︸ ︷︷ ︸

known/calculable

+−δlr + Hxr,θrδx
r −Hxt,θtδx

t︸ ︷︷ ︸
statistics known

+ εh1 − εh2︸ ︷︷ ︸
known unknowns

. (35)

• The �known/calculable� terms comprise the reference measurement, the linear correction due to
the non-coincident scenes, and the linear correction due to the non-coincident viewing angles.

• The �statistics known� terms comprise the reference measurement error, the state error in the
reference scene, and the state error in the target scene.

• The �known unknown� terms comprise the RTM errors at the reference and target scenes, which
I assume have unknown statistics.

This method would work in practice by �nding a,b by minimising (33) using the following information:

• lri in (33) would be replaced by the e�ective reference measurement packet lri + Hxr,θrδx
rt
i +

Hθr,xrδθrti .

• lti in (33) is still lti.

• Rr in (33) would be replaced by the e�ective reference error covariance (the covariance of the
�statistics known� terms):〈

δlrδlrT
〉

+
〈

(Hxr,θrδx
r) (Hxr,θrδx

r)
T
〉

+
〈(

Hxt,θtδx
t
) (

Hxt,θtδx
t
)T〉

+
〈

(Hxr,θrδx
r)
(
Hxt,θtδx

t
)T〉

+
〈(

Hxt,θtδx
t
)

(Hxr,θrδx
r)

T
〉
,

noting that
〈
δlrδlrT

〉
is the original Rr. We have assumed that:

� δlr is uncorrelated with δxr and δxt,

� correlations between δxr and δxtcannot be neglected,

� model errors εh1 and εh2 are negligible.
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• Rt in (33) is still Rt.

Terms like
〈

(Hxr,θrδx
r) (Hxr,θrδx

r)
T
〉
can be written in the form Hxr,θr

〈
δxrδxrT

〉
HT

xr,θr only if the

result is insensitive to the linearisation state of the linear operators. The linear operators (in this
example Hxr,θr) depend upon a linearisation state (in this example xr, θr). The di�culty now is to

estimate terms like
〈

(Hxr,θrδx
r) (Hxr,θrδx

r)
T
〉
. This may be achieved by having a large number of

vertical model pro�les of proxy errors representative of the conditions present at the reference and
target scenes (e.g. the right season, latitude, cloud conditions, low/high surface pressure, land/sea,
etc). It will be simpler (and may even be adequate) to take an average of the covariances. There are
well-used methods to compute proxy errors (the particular one will depend upon the data available to
the user).

5.2 Summary

Equation (33) with the above adaptations becomes:

J [a,b] =
1

2

m∑
i=1

[
lti − a−B

{
lr + Hxr,θrδx

rt + Hθr,xrδθrt
}]T (

Rt + BRrB
)−1 [•] . (36)

6 Options for solving the total least squares problem

Minimizing a �total least squares problem� (36) (or in a more generic form (33)) is generally regarded
as considerably more di�cult than an �ordinary least squares problem� (where the errors are on the
dependent variable only). There are a number of options:

1. Minimize the problem by assuming that the problem may be thought of as a sequence of ordinary
least squares problems � see eg. Sect. 3.2. Code for this has already been made.

2. Solve the problem with a `numerical analysis' approach. This poses the problem in terms of a
singular value decomposition � see Sect. 7.

3. Use the approach used by many physicists, e.g. [3, 4] � see Sect. (8).

7 Solving the total least squares problem using the numerical

analysis approach

It is claimed [1] that the total least squares problem can be solved using the following procedure. We
�rst use the following symbols (consider the scalar case �rst):

β =

(
b
a

)
, X =

 x1 1
...

...
xn 1

 , y =

 y1
...
yn

 , (37)

where the xi are di�erent measurements of the reference measurement (the analogy of lr +Hxr,θrδx
rt +

Hθr,xrδθrt in (36) but in the scalar case), the yiare di�erent measurement of the target instrument
(the analogy of lti but in the scalar case), and b and a are the regression coe�cients (analogies of b and
a respectively but in the scalar case). The multivariate case will be dealt with later if a satisfactory
solution can be found using this approach1.

1In fact I think that this approach is unsuitable for the problem in hand, so this section can be ignored if required.
See Sect. 7.2 for the reasons.
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7.1 The basis of the numerical analysis approach

The model relating these variables is
y ≈ Xβ,

where the approximation accounts for the fact that y and X are in error. The errors are accounted
for by allowing residuals in these quantities (∆y and ∆X respectively) leading to

y + ∆y = (X + ∆X)β. (38)

The idea now is to �nd the smallest ∆y and ∆X that satisfy the above2.This will be done through a
singular value decomposition. The matrix to be decomposed in this way is found from (38):

((X + ∆X) 2 (y + ∆y))

(
β
−1

)
= 0, (39)

where the light square reminds us that the two matrices are not multiplied, but are block matrices
(this is only used in situations that are ambiguous in this respect). The matrix (X2y) � of dimension
n× 3 � has the following singular value decomposition

(X2y) = UΣVT. (40)

Assuming that the rank of (X2y) is 3, U is the n× 3 orthogonal matrix (UTU = I3) of left singular
vectors, V is the 3×3 orthogonal matrix of right singular vectors (VTV = I3), and Σ is the ordered 3×3
diagonal matrix of singular values (ordered in the sense that the largest singular value is positioned
in Σ11, and the smallest in Σ33). Let us look for the modi�cation matrix (∆X2∆y) such that
(X2y) + (∆X2∆y) has the same singular vectors as (X2y), and has the same singular values apart
from the smallest one which is replaced by 0. To see this, consider U, V, and Σ partitioned in the
following way:

U = (UX2uy)

Σ =

(
ΣX 0
0 Σy

)
V =

(
VXX vXY

vT
YX VYY

)
, (41)

where UX is the n× 2 submatrix, uy is the n element vector comprising the last column of U, ΣX is
2× 2, Σy is scalar, VXX is 2× 2, vXY is a 2-element column vector, vT

YX is a 2-element row vector,
and VYY is a scalar. The singular value decomposition (40) in this form is

(X2y) = (UX2uy)

(
ΣX 0
0 Σy

)(
VT

XX vYX

vT
XY VYY

)
, (42)

and the singular value decomposition of (X2y) + (∆X2∆y) is

(X + ∆X2y + ∆y) = (UX2uy)

(
ΣX 0
0 0

)(
VT

XX vYX

vT
XY VYY

)
,

by design (as a result of the strategy mentioned above). This means that

(∆X2∆y) = − (UX2uy)

(
0 0
0 Σy

)(
VT

XX vYX

vT
XY VYY

)
. (43)

Note the following properties of the singular vectors:

UTU = I3

=

(
UT

X

uT
y

)
(UX2uy)

=

(
UT

XUX UT
Xuy

uT
yUX uT

yuy

)
=

(
I2 0
0 1

)
, (44)

2I cannot currently prove that this procedure is exactly the same as the one in (36), but the equivalence appears to
be claimed in other sources, e.g. [2].
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VTV = I3

=

(
VT

XX vYX

vT
XY VYY

)(
VXX vXY

vT
YX VYY

)
=

(
VT

XXVXX + vYXvT
YX VT

XXvXY + vYXVYY

vT
XYVXX + VYYvT

YX vT
XYvXY + V 2

YY

)
=

(
I2 0
0 1

)
. (45)

Expanding (43) gives

(∆X2∆y) = − (UX2uy)

(
0 0

ΣyvT
XY ΣyVYY

)
= −

(
uyΣyvT

XY2uyΣyVYY

)
= −uyΣy

(
vT
XY2VYY

)
. (46)

This can be rewritten by �rst noting that (42) can be written � using orthogonality (45) � as

(X2y)

(
VXX vXY

vT
YX VYY

)
= (UX2uy)

(
ΣX 0
0 Σy

)
= (UXΣX2uyΣy) .

The second column of the above is

(X2y)

(
vXY

VYY

)
= uyΣy,

which can be substituted into (46)

(∆X2∆y) = − (X2y)

(
vXY

VYY

)(
vT
XY2VYY

)
.

Now act from the right with the column vector as indicated in the following, and then use orthogonality
(45)

(∆X2∆y)

(
vXY

VYY

)
= − (X2y)

(
vXY

VYY

)(
vT
XY2VYY

)( vXY

VYY

)
.

= − (X2y)

(
vXY

VYY

)
,

so

(X + ∆X2y + ∆y)

(
vXY

VYY

)
= 0.

Divide by −VYY (assuming that it is non-zero)

(X + ∆X2y + ∆y)

(
−vXY/VYY

−1

)
= 0.

Comparing this with (39), we get
β = −vYX/VYY. (47)

7.2 Some thoughts on the numerical analysis approach

There are some di�culties that I have with this approach to solving the total least squares problem.

1. I cannot prove that the above solution is formally equivalent to minimizing functions like (33).

2. How are the error covariance matrices of the measurements incorporated in this approach? Does
it e�ectively assume that the errors are iid (identical and independently distributed)?

3. How should the multivariate aspect of the problem be introduced?

4. The X matrix as de�ned in (37) has a constant second column (comprised of 1s), yet the method
implies that there is a correction potentially to all components X (called ∆X), which includes
changes to the second column. As it stands there appears to be no constraint to enforce the
second column of ∆X to be zero. In my mind this is a show-stopper for this method.

14



8 Solving the total least squares problem using the approach

developed by physicists

We will follow the method described in [3]. This is based on a problem of �nding one gradient and
one intercept (a 2-dimensional problem). Our problem is multivariate, so we �rst transform the single
problem of 2K dimensions problem to K 2-dimensional problems. We will refer to (33) in how to do
this3.

8.1 Reminder of the problem

Equation (33) is

J [a,b] =
1

2

∑
i

d2i =
1

2

m∑
i=1

[
lti − a−Blri

]T (
Rt + BRrB

)−1 [
lti − a−Blri

]
,

where lti is one source of information (K elements) with error covariance Rt, and lri is the other source
(K elements) with error covariance Rr.

8.2 Reducing to a number of separate problems

Multiplying lti and lri by Rt−1/2
and Rr−1/2 respectively yields variables (indicated with a hat) whose

errors are iid:

l̂ti = Rt−1/2
lti,

l̂ri = Rr−1/2lri. (48)

Each component of these vectors can then be treated independently. The error variances of each
component is unity, so the weights W (xi) and W (yi) in [3] are all unity (where his xi is our l̂ri and

his yi is our l̂ti). Let us consider the kth component of l̂ti and l̂ri (denoted as l̂ti and l̂
r
i respectively, and

dropping a k label for brevity). The problem that we solve is to �nd the best �t â and b̂ such that

l̂ti ≈ b̂l̂ri + â, where l̂ti and l̂
r
i each have error variances of unity.

8.3 Developing the solution in [3]

8.3.1 Straight from paper in our notation and with unit weights

All summations are from i = 1 to i = m.

• Solve the following equation f(b̂) = b̂3 − 3αb̂2 + 3βb̂− γ = 0.

• α = 2/(3δ)
∑
W 2
i UiVi.

• β = 1/(3δ)
(∑

W 2
i V

2
i −

∑
WiU

2
i

)
.

• γ = −1/δ
∑
WiUiVi.

• δ =
∑
W 2
i U

2
i .

• Wi = 1/(b̂2 + 1).

• Ui = l̂ri −
〈
l̂r
〉
.

• Vi = l̂ti −
〈
l̂t
〉
.

•
〈
l̂ri

〉
=
∑
Wi l̂

r
i/
∑
Wi.

3In the full problem (36) is actually the relevant cost function to minimize (since it accounts for the di�erences in
positions of the two instruments in each measurement). The two cost functions have the same form, and are related by
following the prescription in Sect. (5.1).
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•
〈
l̂ti

〉
=
∑
Wi l̂

t
i/
∑
Wi.

• Then from b̂ we compute â =
〈
l̂ti

〉
− b̂

〈
l̂ri

〉
.

Notice that although f(b̂) appears to be a cubic equation, there is a b̂ dependence to Wi. We shall see
though things simplify below, showing that the overall problem reduces to a quadratic problem.

8.3.2 Subsitute for Wi

• Solve the following equation f(b̂) = b̂3 − 3αb̂2 + 3βb̂− γ = 0.

• α = 2/(3δ)
∑
UiVi/(b̂

2 + 1)2.

• β = 1/(3δ)
(∑

V 2
i /(b̂

2 + 1)2 −
∑
U2
i /(b̂

2 + 1)
)
.

• γ = −1/δ
∑
UiVi/(b̂

2 + 1).

• δ =
∑
U2
i /(b̂

2 + 1)2.

8.3.3 Substitute for δ

• Solve the following equation f(b̂) = b̂3 − 3αb̂2 + 3βb̂− γ = 0.

• α = 2/3
∑
UiVi/

∑
U2
i .

• β = 1/3
(∑

V 2
i /
∑
U2
i − (b̂2 + 1)

∑
U2
i /
∑
U2
i

)
= 1/3

(∑
V 2
i /
∑
U2
i − (b̂2 + 1)

)
.

• γ = −(b̂2 + 1)
∑
UiVi/

∑
U2
i .

8.3.4 Substitute α, β, and γ into the cubic-like equation

f(b̂) = b̂3 − 2

∑
UiVi∑
U2
i

b̂2 +

(∑
V 2
i∑
U2
i

− (b̂2 + 1)

)
b̂+ (b̂2 + 1)

∑
UiVi∑
U2
i

= b̂3 − 2

∑
UiVi∑
U2
i

b̂2 +

∑
V 2
i∑
U2
i

b̂− (b̂2 + 1)b̂+ (b̂2 + 1)

∑
UiVi∑
U2
i

= b̂3 − 2

∑
UiVi∑
U2
i

b̂2 +

∑
V 2
i∑
U2
i

b̂− b̂3 − b̂+ b̂2
∑
UiVi∑
U2
i

+

∑
UiVi∑
U2
i

= −
∑
UiVi∑
U2
i

b̂2 +

(∑
V 2
i∑
U2
i

− 1

)
b̂+

∑
UiVi∑
U2
i

= 0

g(b̂) =
∑

U2
i f(b̂) = −

∑
UiVib̂

2 +
(∑

V 2
i −

∑
U2
i

)
b̂+

∑
UiVi = 0.

The cubic term is zero by cancellation.

8.3.5 Find the roots

The roots of g(b̂) are as follows:

b̂ =

(∑
V 2
i −

∑
U2
i

)
±
√

(
∑
V 2
i −

∑
U2
i )

2
+ 4 (

∑
UiVi)

2

2
∑
UiVi

.

There are, perhaps surprisingly two roots (which are real). These are, presumably, both equivalent

best �t solutions. This procedure is repeated for all components of l̂ti and l̂ri to yield components of

vectors â and b̂.

16



8.4 Transform to the original variables

We require a transform between lti and lri (rather than between l̂ti and l̂ri). The transform between l̂ti
and l̂ri is

l̂ti = B̂l̂ri + â,

where B̂ = diag(b̂). Using (48) yields

Rt−1/2
lti = B̂Rr−1/2lri + â

lti = Rt1/2B̂Rr−1/2lri + Rt1/2â

= Blri + a (49)

where B = Rt1/2B̂Rr−1/2 (50)

and a = Rt1/2â. (51)

Note that here the matrix that multiplies lri (the matrix B) is no longer diagonal.
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