M.Sc. Course on Operational Data Assimilation
Techniques (MTMDO02): Solutions for Part I

1. Useful formula related to the Sherman-Morrison-Woodbury formula
Multiply the identity from the left with B~* + HTR~'H and from the right with R + HBHT

B'+H'R'H)BH' =H'R (R + HBH").
Take the terms outside of the brackets inside and cancel where appropriate

B 'BH' + H'R"'HBH' = H'R'R+H'R 'HBH",
H' +H'R'HBHT = HT+HTR 'HBHT.

Each side is identical and so the identity is correct.

2. The Euler-Lagrange equations and the method of representers
Substitute the forms (28) and (29) into (23a) and (23b). First (23a):

M M
Wic {qu(x, 0) + Zﬁiri(x, 0) — I(x)} - Zﬂiai(x, 0) =0.

i=1

M M
Use (3) Wic Z 517}‘(13, 0) — Z ﬁiai(x, O) = 0,
i=1 i=1

M M
and now use (27a) to rewrite the L.h.s. Wi, Z BiW. tay(2,0) — Z Bici(x,0) =0,
i=1

i=1

where Lh.s. equals r.h.s. A similar procedure for (23b):

M M
Wbc {¢B(0,t) + Zﬁm(o,t) - B(t)} - uZﬁiai(O,t) =0.
i=1

i=1

M M
Use (4) Wbc Z 61‘”(07 t) —Uu Z ,Biai(O, t) = O7

i=1 i=1

M M
and now use (27b) to rewrite the Lh.s. W), Z Bthjcluai(O, t) — “Z Bia;i(0,t) =0,

i=1 i=1

where L.h.s. equals r.h.s.

3. Inner product forms
For shorthand let d = x — xp, and let f = P~'d. Expand the matrix algebra of dTP~'d:

dTPld=d"f = Zdifn

i=1

where d; is the ith element of d and f; is the ith element of f. Now,



but since P is diagonal, P~! is also diagonal and we can write (P71);; = (P71);i0;; = 6i5/(P)ii (645 is
the Kroneker delta-function). First combining the above two results and then substituting the expression
involving the delta-function leads to:

d"Pld =) d; ) (P)id, —Zd Z&]/ “dj:_zd?/( M—Z{ (xB)i}* /(P

i=1 =1

. Forward model example

(a) The state vector x and the observation vector y are

x:(§§> y = (F).

(b) The forward operator is

. Maximum likelihood solution (M AP)

(a) Take the logarithm and expand

J o= eq %(y ~Hx)"TR"!(y — Hx), (c =1In [(277)?/2|R|1/2D

5 Z yi - Z Hypxy | 3R | yi— Y Hix
j=1

2’ 1 i=1
Differentiate w.r.t. x; (use the product rule - looks complicated, but is straightforward)
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Re-index the second summation " — ¢, ¢ — @', 7/ — j. This becomes

1 p n p
52 yi— H;x; Z(R_l)ii’Hi’k-



Furthermore, note that R (and hence R™1) is symmetric and change the order in which the expressions
oceur
P

1 & _ S
3 Y Hin ) R i |yi— > Hijx;
=1 i—1 =1
This is identical to the first term and so
aJ p p n p p n
< D Hu Y R i (yi— D Hyxy | ==Y HEDY R e [vi— Y Hix;
= i =1 =1

i'=1 i=1

This is the derivative with respect to just one component, x;. This is component k of the vector/matrix
expression
Vi = -H'R™(y — Hx).

(b) Setting this to zero (at x = xa) gives
H'R '(y —Hxy) =0, H'R'Hx,=H'R'y, x,=H'R'H 'H'Ry.

Assuming that HTR~'H is positive definite, then this x5 minimizes J (maximizes L) and so is the
maximum likelihood solution.

6. Minimum (co)variance solution
What % gives minimum error that is unbiased? The error in X is ex = x — X, where x is considered the truth.
Let £ denote the expectation value (average of doing an experiment many times).

(a) Define r as the expectation of %X
r = EX=&b+Ay]=b+ Afly] =b+ AHE[x] + Ale],

where we have used the proposed form of the solution, X = b + Ay and the relationship between y and

x, y = Hx +e. For unbiased observations £[e] = 0 and for an unbiased solution, £[x] = £[x|(=r). Thus
r=b+ AHr, b=(I-AH)r.
This is an expression for b that gives an unbiased solution, i.e.
x=(1I-AH)r+ Ay =r+ A(y — Hr).
(b) The a-posteriori error covariance is

Py = Elexel] = Elx — %)(x—%)7],
= E{x-r—A(y—Hr)}{x—r—A(y — Hr)}"],
Ef{x—rH{x—r}"] - E{x—r}(y —Hr)"A"]
—E[A(y —Hr){x —r}"] + £[A(y — Hr)(y — Hr)"A™]

Note that y — Hr = Hx + e —Hr = H(x —r) + € and let Py = E[{x — r}{x —r}]

Py = P,—E[{x—r}H(x—r)+e)"AT] - E[AH(x — 1) +&){x —r}"]
+E[AMH((x —1) +e)(H(x —1) +¢)TAT],
= P, -P,H'AT - g[{x—r}e"|AT - AHP, — A€[e{x —1r}"]
+AHP, H"A" + AHE[(x — r)eT|AT + A€[e(x —r)TJHTAT + A&[ee™]AT.

Assume that E[{x —r}eT] =0, [e{x — r}*] = 0 and define £[eeT] = R. The above then simplifies

P, =P, -P,H'AT - AHP, + A(HP,H' + R)A™.



(c) What is the trace of Po?

n

tr(Pa) = > (Pa)i,

=1 =1 j=1 =1 j=1 i=1 j=1 k=1
n P n p n P P

= ) (P — > > (PHT)jA; =Y > AG(HPy) ;i + > > Y Ay (HPH' + R)j, A
i=1 =1 j=1 i=1 j=1 i=1 j=1 k=1

(d) What matrix A minimizes the trace of P57 Differentiate this trace w.r.t. an arbitrary element of matrix
A, A, and then set to zero for stationary value

otr(Py) - OA; OA;
8rAa: - 2 ;(P"HT TOA ; 2 2 aAfﬁ
1=1 )= J
n p p 8AZ n p p 3AZ
+ 2 2 ; TA Ojﬁ (HP,H™ + R);1 A1 + z; z; kzl A,;(HP,H" + R);; BAak
1=1 )= = 1=1 3= =

Note that 0A;;/0A.s = d;a0,;5 which makes the above

p p
= —(PxH")os — (HPy)ga + Y (HPH' + R)grAnk + Y Aoj(HPH' + R);g
k=1 j=1

Otr(P )
0A .5

The first two and the last two terms evaluate to the same values

dtr(Pa) _

p
T T
AL, —2(PyH")op +2> Ao (HP,H' + R);5

j=1
This is just element (a, 8) of the matrix

Otr(P )

= 2P, HT + 2A(HP,H" + R).
A 2A( tR)

(e) The stationary value is when this is zero which gives
A =P,H"HP,HT +R)!
(f) Putting this together: using the b found earlier

x=b+Ay = (I-AH)r+Ay=r+ A(y —Hr),
and using the A found above X = r + P, H'(HP,H" + R)"!(y — Hr).

This is equivalent to x = r + (P! + H'R™'H) " '"H'R!(y — Hr).

(g) rresembles the background and Py resembles its error covariance. For the situation with no background,
P, — oo and so P! — 0

¥ = r+HR'H)'H'R (y-Hr)= (H'R'H)'H'R 'y,

This result for x is the same as x, found in Q. 5.

7. Forward model and null-space example
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(b) The total column ozone per unit area is the sum of the layerwise ozone amount per unit area summed
over the ¢ — 1 layers
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Defining p; = p; + pi+1 and Az; = z;41 — 2; gives the above as

1 i 1< 1 o i i
Z ¢'piAZi + 1 Z¢iﬂi—1Azi—1 =1 {¢1P1A21 + Z¢i [0iAz + pic1Dzi—1] + ¢qﬂq—1AZq—1} .

=2 =2

I M°

(c) Linear interpolation for the second measurement gives (¢ + dr+1)/2.

1Az UpaDratpnAzy] MpsAzstpalza] 3sA
(d) H= ( ?IP%21 Z[p2 ZQ;pl Zl] 1[p3 ZS(;FPQ 22] ZPBO Z3 ) (fOI' x = (¢1 ¢2 ¢3 ¢4)T)_

4 (004 0 (25 425 3 1
R ( 0 0.25)’ H(0.5 05 0 0 )’

0.3 0475 03 0.1
0.475 0.7725 0.51 0.17
0.3 0.51 0.36 0.12
0.1 0.17 0.12 0.04

R_1H:(0.1 0.17 0.12 0.04

T -1
0.1 01 0 o)’ HRH=

There are two eigenvectors that have zero eigenvalues:

0.654 0.079

v | 0654 v — | 0079

! 0.381 |’ 2 —0.272 |
0 0.956

(each component given to 3 d.p.). These define the null space.

(f) The matrix to calculate now is B™! + HTR™'H

189 —186 98 —24 0.542 0.237 0.425 0.069
1 —186 369 —270 98 0.237 1.245 0.164 0.295
-1 _ -1 TR-117 —
B = 781 98 =270 369 —186 » BT+HRTH 0.425 0.164 0.832 —-0.118 |’
—24 98 —186 189 0.069 0.295 —0.118 0.282

which has eigenvalues (no zero eigenvalues): A\; = 1.509, Ao = 0.992, A5 = 0.291, A4, = 0.110.




8. Relationship between covariance and correlation
Expand the matrix notation

COV,; = ZZ YikCOV Xy,
k=1 1=1

but ¥;x = 0;6;; leading to COVZ'j = ZzaifsikCORklal(slj = O'iCORijO'j,
k=11=1
hence COR;; = %
0i03.

9. Structure functions
One way of doing this is to check that Pv = """ | p;v; by expanding each side. The jth component of the
left hand side is Y ., pj;v; (where pj; is the jith matrix element of P) and the jth component of the right
hand side is Y7, (p;);v; (where (p;); is the jth component of p;. Now, (p;); = pj;, making the left and right
hand sides equal.

10. Assimilation of a single observation in VAR to probe the background error covariance structure
The OI formula for the analysis increment is

x* —x® =BHT(R+HBH") !(y — h(x?)).

A single direct observation at grid-point k means that y = y, h(xB) = XE,

(both scalars). R and HBH?T are also both scalars. For the single observation, H will be the 1 x n matrix
with all elements zero except the one for element k: H=(0001000).

B
Boy

First find BHT: BHT = B . Now find HBH": HBH" = By,

Bn—l,k
Bnk

Let R = Uz (the variance of the single observation). Then, putting this all together

Bk

Bay
B
A B Y — X

x* —x" = B
Mk 02 + By
anl.,k
Bnk:

11. Ensemble covariance in matrix form
Let us define 771(32) = Xg) — {x)for shorthand. The standard expression for the error covariance matrix of these
N perturbations is:

N N o _
; WOpMT Which has matrix elements (PﬁN))kl = ﬁ ; (n](;))k (771(31))1 .



If we can show that XXT /(N — 1) has these matrix elements then we have answered the question. The &, [th
matrix element of XX7T is:

(XXT)M = Z (X)Im (XT)u = Z (X) ki (X)li :

=1 =1

From the definition of X, the matrix element (X)g; is the kth element of the ith ensemble member: (X)g; =
(ng))k. Putting this into the outer product expression above gives:

X, =3 (o), (o), = 50 (), (),

Dividing by N — 1 then concludes that the matrix elements of XXT/(IV — 1) are the same as those of the
standard expression. If all matrix elements are the same, then the matrices are the same.

12. Implied covariances

(a) Using the information given, the background error covariance matrices in each space are defined as the
following outer product expectations:

Bsx = <5X5XT>, B5X = <(5X(5XT> .

Substituting in the CVT into the first definition, taking the CVT outside of the averaging brackets, and
then using the second definition gives:

Bsx = (Usx(Usx)") = (Usxox"U") = U (6xox") U" = UBs, U™,

(b) From the lectures, the CVT is chosen to make UTB;!U = I (the matrix Bsy is denoted B in the
lectures). Re-arranging this gives:

U'B; /U = 1,
v Tu'Bluu!t = UuTul,
B, = U'U,
- Bsx = UUT.

This means that solving the (simpler) problem of minimizing J[0x] where dx has unit-matrix background
error covariances is equivalent to minimizing J[dx] with background error covariance Bsx. Bgx is the
implied background error covariance matrix. This is consistent with putting Bs, = I in part (a).

13. The generalized chain rule

0
Write down the information given in expanded form (V. f); = a(vj;) - (vB)i = Z Nij(va);-

of

(va);

Furthermore, the gradient with respect to vais (Vy, f); = 3

and the generalized chain rule relates the derivatives with respect to each variable

of = 09(ve)i Of
ova); 21: d(va); O(vB)i

ave)i _ (N L
a(VA)j - Nl] - (N )]l'

From the information given, the following is found



Substituting this into the chain rule gives (Vy, f); = » (N");i(Vyy f)i,

i

which is just the expanded form of V, f = NTV,_ f.

This is a useful result and will be used in Q. 14.

14. Gradient and Hessian of the cost function w.r.t the control variable
(a) Expand Jp
1 n
=3 Z 5)(?.
i=1
Hence, the ith component of the first derivative (w.r.t. dx) is

A 1067 a&xl

dox; 24 dox; ;

Z xidij = 0x;,

which is the jth component of the column vector Vs, Jg by definition. The second derivative

0% J; A8y ;
85Xj5§><k = 85)2 = 0;;, which is the (¢, j)th component of the matrix I.

(b) Expand Jo (do this for general - non-diagonal - R;)

Jolt) =5 D (y(t) — Sy™()i(R )iy Gy () — by™ (1)

ij=1

Hence, the kth component of the first derivative (w.r.t. Jy™(t)) is (use the differentiation product rule)

ado(t) 1L 0 . ) -
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The first summation can be re-indexed ¢ — j and the symmetric property of Ry L used

8Jo(t 1< 1<
—7 = _Z (¢ - = i (0 (). .
Both summations are shown to be equal, hence
3Jo t P
(oy(t) — oy™(1));.
Py (0 ;1 )i (83 (1) — oy™ (t));

This is the kth component of the column vector

Vsym)Jo(t) = —R; ' (6y(t) — 5y™(t)) .



Differentiating again w.r.t. oy™(t); gives

2 Jo(t) S 1
= - —(R i 0y (t) = oy™ (1)) ,
O T P R AR
- By™(t);
= Z(Rt l)kj m = Z(Rfl)kaéﬂ Ry s
= ym(th =
L. . 82Jo(t) 1
which is the (k,1)th component of the matrix Boym(B? R;".

(¢) This is done by simple substitution.
(d) This is done by simple substitution.
(e) The total gradient of the cost function is

T
Vix] = Vixds+ Z VisxJo(t) = dx — UT Z ML JHIR; ! (0y(t) — HM;, (Udx).
t=0 t=0
The total Hessian of the cost function is
*?J PJy = 92,
— By oy, ZUTM " JHTR,'H,M,._,U.

002 002 — 062

15. Efficient form of the 4D-VAR gradient

(a) Writing out contributions to the summation on separate lines gives
VixJo = —-UT{HIR;'r(0)+
M{_ HIR;'r(1) +
Mi oMy ;.- Mr_ g5
M7 i roHp R (T —1) +
M oMj; .. M¥—1<—T—2M7Tﬂ<—T—1HTR_1r(T)}-
(b) MY_, is used in all but the first line, M2, ; is used in all but the first and second lines, etc. Identifying

the adjoint matrices that are common to many lines provides the ’trick’ that is used to write the efficient
form of the gradient.

16. The NMC method

(a) The information given in the question in mathematical form is
B— <,r]48n48T> B— <,r]24,’724T> <,’748n24T> —0
The error covariance of the forecast difference is, by substitution
<(Xf48 _ Xf24)(xf48 _ Xf24)T> _ <('I748 _ ,',,24)(,'748 _ ,’,’24)T>

<T]48,’,’48T> <,’748,',’24T> <,'724?,'48T>+< 24 24T> <,r’48 48T> <,','24,’,,24T> — 9B.

(b) None of the assumptions is likely to be valid. Forecast errors are expected to grow with the length of
the forecast and so the assumption that each of (n*¥n*T) and (9?*n*8T) are the same will not be true.
Forecast errors are also likely to be correlated in time (e.g. an error in one part of the atmosphere at 24
hours is likely to be correlated with an error at 48 hours, especially downstream of the flow). Additionally,
the B-matrix is meant to represent the error covariance of forecasts of a particular range, e.g. 6 or 12
hours. The NMC method uses two forecasts of different lengths and neither of 6 or 12 hours in range.
[N.B. the reason why the NMC method usually uses a difference between the forecasts of 24 hours is to
cancel out diurnal biases.]




