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• Bennett A.F., 2002, Inverse Modeling of the Ocean and Atmosphere
(Euler-Lagrange equations and representers - sections 1.2, 1.3).

• Daley R., 1991, Atmospheric Data Analysis (historical aspects and basic
ideas - chapters 1, 13).

• Kalnay E., 2003, Atmospheric Modeling, Data Assimilation and Pre-
dictability (basic aspects of data assimilation - chapter 5).

• Lewis J.M., Lakshmivarahan S., Dhall S.K., 2006, Dynamic data as-
similation: a Least Squares Approach (applications - chapters 3,4, data
assimilation algorithms - chapter 19).

• Schlatter T.W., 2000, Variational Assimilation of Meteorological Obser-
vations in the Lower Atmosphere: a Tutorial on How it Works, Journal
of Atmospheric and Solar-Terrestrial Physics 62, pp. 1057-1070.

• Mathematics Aide Memoir handout.

Note that page numbers on the slides and on the handouts do not always match.
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1. Introduction

1(a) Inverse problems

Field Example inverse problem to be solved

Medical diagnosis What is the 3-D structure of biological tissues from X-ray images (CAT
scan)?

Seismology Determination of subterranean properties from seismic data (e.g. porosity,
hydrocarbon content)

Astrophysics Determination of the internal structure of the Sun from surface observations
Astronomy Orbit determination from observations
Astronautics Landing a spacecraft safely on another planet

Parameter estimation Determination of unknown model parameters
Atmospheric pollution What is the source/sink �eld of an atmospheric pollutant?
Atmospheric retrievals What is the vertical pro�le of atmospheric quantities from remotely sensed

observations?
Weather forecasting What are the initial conditions (e.g. u, v, T , p, q, cloud, SST, salinity) of an

atmosphere or ocean forecast model that agrees with the latest observations?
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1(b) Notation

xA analysis state
xB background state
δx incremental state
Sometimes x and y are for only one time
x-vectors have n elements in total
y-vectors have p elements in total
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1(c) History of data assimilation in meteorological operations and the data assimilation

cycle

Subjective 'data assimilation' 1910s, 1920s

• LF Richardson (1922) attempted a hind-cast (by hand!)
for 20th May 1910.

• Primitive equation-based forecast model: resolution ∆λ =
3◦, ∆φ = 1.8◦, 5 vertical levels.

• 'Data assimilation' was done for mass variables (T, p) sep-
arately from wind variables (u, v) (i.e. univariate) by in-
terpolating observations subjectively.

• A disastrous forecast: ∆P/∆t ≈ 145 hPa /6 hours.

• Catastrophic growth rate not due to the model, but due
to inadequate data assimilation � the mass and wind were
out of balance.

• Bjerknes, 1911, described the analysis problem as, �The
ultimate problem in Meteorology�.
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Successes in NWP, 1940s

• Success with �ltered dynamical models containing bal-
anced motion only (e.g. barotropic vorticity equation),
even with subjective analysis.

• BVE is less accurate than the primitive equations, but is
insensitive to imbalances in the initial conditions (there are
no gravity waves in the BVE).

• ENIAC (Electronic Numerical Integrator and Computer).

• [We now use primitive equations for NWP, but with DA
that inhibits imbalance.]
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Beginnings of objective analysis: polynomial �tting, late 1940s

• Fit a polynomial expansion to observations.

• Made no account of observation accuracy.

• Di�erent variables treated independently (univariate).

• Direct observations only.

• Unrealistic values in data voids.
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Cressman analysis / method of successive corrections, 1950s, 1960s

• Use prior knowledge (a background state).

• Provides information in data voids.

• Prior knowledge can come from climatology or a previous
forecast.

• Latter leads on to the 'data assimilation cycle'.

x0
i = �rst guess (background)

xn+1
i = xni +

∑Kn
i

k=1W
n
ik(yk − x̃nk)∑Kn

i

k=1W
n
ik + ε2k

• xni estimate of �eld at grid point i after the nth iteration.

• x̃nk �eld value at grid location closest to observation k.

• W n
ik weight of in�uence of observation k on grid point i

(reduces with distance).

• Kn
i number of observations within distance Rn of grid

point i.

• yk kth observation value.

• εk controls the degree of in�uence of the observations on
the analysis (diminishing in�uence as ε→∞).
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Nudging (Newtonian relaxation), 1970s - present

• Allows the analysis to be combined with the background
state smoothly.

• Relies on an intermediate analysis, xint (e.g. from SCM).

• xint to be introduced over a timescale τ .

• Model equations:
∂x

∂t
= f(x),

• ... are modi�ed to:

∂x

∂t
= f(x)− x− xint

τ
.
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Example with a scalar (x) for a persistence model (f(x) = 0):

dx

dt
= −x− xint

τ
,

⇒ x(t) = xint + (x(0)− xint) exp− t
τ
.
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Optimal interpolation, 1970s / 1980s

#

"

 

!
xA = xB + BHT(R + HBHT)−1(y − h(xB))

• A formal way of combining observations and models.

• Intimately related to method of least squares.

• Represents uncertainties of all information.

• Too expensive to solve for the global system (solve for
patches and glue together for 'global' analysis).

• Need accurate estimates of B and R matrices.

• xA analysis state (posterior) ∈ Rn.

• xB background state (prior) ∈ Rn.

• B background error covariance matrix (accounts for un-
certainty in xB) ∈ Rn×n.

• y observation vector ∈ Rp.

• h observation operator Rn → Rp.

• H Jacobian of h ∈ Rp×n.

• R observation error covariance matrix (accounts for un-
certainty in y) ∈ Rp×p.
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Variational methods (VAR), 1990s / 2000s

• Broadly speaking (in the case of 3D-VAR) a way of solving
the OI equations e�ciently.

• Construct a cost functional, J [x] as the sum of squares of
deviations from data.

• Analysis is de�ned as the x that minimizes J [x].

• B is not applied as an explicit matrix, but is instead
modelled (see later).

• E�cient enough for a truly global analysis.

• Still need accurate estimates of B and R matrices. B is
usually static.

• Variants: 1D-VAR / 3D-VAR / 4D-VAR / etc. (see later).

• Example for strong constraint 4D-VAR:

J(x) =
1

2
(x− xB) TB−1 (x− xB) +

1

2

T∑
t=0

(y(t)− ht[Mt←0(x)])T R−1
t ×

(y(t)− ht[Mt←0(x)]) ,

where x is the state vector at t = 0.

Part I of this course is mainly about variational methods.
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Ensemble methods 2000s / 2010s

• The spread in an ensemble of N background forecasts has
information about background uncertainty, member i x(i).

• Flow-dependent background error covariances, Pf .

• Formulation starts with the OI equation (B → Pf), but
for an ensemble of states.

• Does not need the Pf-matrix explicitly.

• Severe rank de�ciency problems with Pf due to undersam-
pling (use, e.g., localization techniques to overcome).

• Deterministic (square-root) and non-deterministic (non-
square-root) formulations exist - see part II of the course.

Pf ≈ Pf
(N) =

1

N − 1

N∑
i=1

〈(
x(i) − 〈x〉

)(
x(i) − 〈x〉

)T
〉
,

〈x〉 ≈ 1

N

N∑
i=1

x(i).
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Hybrid methods 2010s

• Combine the robustness of the B-matrix with the �ow-dependence of the Pf-matrix.

• Most simple is the arithmetic average:
PH = αB + (1− α)Pf

(N)

• Solve a VAR-like problem but B→ PH.

• Still need localization methods.

• Other approaches exist too.

• Uses methods that avoid the need to hold large matrices explicitly.
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The data assimilation cycle
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2. Variational techniques

2(a) The Euler-Lagrange equations

This section teaches us formally about the variational solution of an inverse problem, backward (or adjoint) variables and the
strong and weak constraint formulations. The method of representers, used to solve the Euler-Lagrange equations, is introduced.

Statement of problem

What is the optimal state, φ(x, t) of the 1-D system whose
dynamics are governed by

∂φ

∂t
+ u

∂φ

∂x
− F = e, (1)

which lies close to some given observations, some initial condi-
tions and some boundary conditions?

The (imperfectly known) information we have about the sys-
tem is (see Fig.):

• φ(x, 0) ≈ I(x) imperfectly known initial conditions (i.c.s),
0 ≤ x ≤ L,

• φ(0, t) ≈ B(t) imperfectly known boundary conditions
(b.c.s), 0 ≤ t ≤ T , and

• ym imperfect observation of the system (a direct observa-
tion of φ(xm, tm)), 1 ≤ m ≤ p.

The a-priori state φB(x, t) satis�es the known bits of the
problem (the speci�ed i.c.s and b.c.s, and (1) with e = 0):

∂φB

∂t
+u

∂φB

∂x
−F = 0, φB(x, 0) = I(x), φB(0, t) = B(t).

(2)
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The strong constraint formulation

The strong constraint formulation imposes the known parts of the system equations exactly (that is we assume that there is no
model error, even though in reality there nearly always is). We still allow for imperfections in the other pieces of information though
(i.c.s, b.c.s and observations). In order to �nd the optimal solution to the problem in this formulation, construct a functional f [φ]:

f [φ] = Wic

Lˆ

x=0

dx{φ(x, 0)− I(x)}2 +Wbc

T̂

t=0

dt{φ(0, t)−B(t)}2 +

Wob

p∑
i=1

{φ(xi, ti)− yi}2. (3)

We ask the question: what φ(x, t) makes f [φ] stationary, subject to the following model constraint:

g(x, t) =
∂φ

∂t
+ u

∂φ

∂x
− F = 0 ? (4)

The constrained minimization problem introduces a new functional, J , which is the sum of f and all of the constraint terms. Each
constraint term represents the constraint at a position and time and is represented as the product of g(x, t) and the Lagrange
multiplier, 2λ(x, t):

J [φ, λ] = f [φ] + 2

Lˆ

x=0

dx

T̂

t=0

dt λ(x, t)g(x, t),

= Wic

Lˆ

x=0

dx{φ(x, 0)− I(x)}2 +Wbc

T̂

t=0

dt{φ(0, t)−B(t)}2 +

Wob

p∑
i=1

{φ(xi, ti)− yi}2 + 2

Lˆ

x=0

dx

T̂

t=0

dt λ(x, t)

(
∂φ

∂t
+ u

∂φ

∂x
− F

)
. (5)

This is standard variational calculus (see, e.g., the Aide Memoir handout). The problem now is to minimize (5) w.r.t. the �elds
φ(x, t) and λ(x, t).
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Variations of J (strong constraint formulation) Construct variations of J about some reference �elds φ̂, λ̂, i.e. J [φ̂ +

δφ, λ̂+ δλ] = J [φ̂, λ̂] + δJ |φ̂,λ̂, where:

δJ |φ̂,λ̂ =

Lˆ

x=0

dx

T̂

t=0

dt
∂J

∂φ
|φ̂,λ̂δφ+

Lˆ

x=0

dx

T̂

t=0

dt
∂J

∂λ
|φ̂,λ̂δλ+O(δφ2, δλ2, δφδλ),

= 2Wic

Lˆ

x=0

dx{φ̂(x, 0)− I(x)}δφ(x, 0) + 2Wbc

T̂

t=0

dt{φ̂(0, t)−B(t)}δφ(0, t) +

2Wob

p∑
i=1

{φ̂(xi, ti)− yi}δφ(xi, ti) +

(∗) 2

Lˆ

x=0

dx

T̂

t=0

dt λ̂(x, t)

(
∂δφ

∂t
+ u

∂δφ

∂x

)
+

2

Lˆ

x=0

dx

T̂

t=0

dt δλ(x, t)

(
∂φ̂

∂t
+ u

∂φ̂

∂x
− F

)
+O(δφ2, δλ2, δφδλ). (6)

We impose the following conditions on λ̂: λ̂(x, T ) = 0, λ̂(L, t) = 0.
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Changing form (strong constraint formulation)

bˆ

a

v
du

dx
dx = [uv]ba −

bˆ

a

u
dv

dx
dx. (7)

Using this to rewrite the �rst term in (*):

T̂

t=0

dt λ̂(x, t)
∂δφ

∂t
= [δφλ̂]T0 −

T̂

t=0

dt δφ
∂λ̂

∂t
,

= δφ(x, T )λ̂(x, T )− δφ(x, 0)λ̂(x, 0)−
T̂

t=0

dt δφ
∂λ̂

∂t
, (8)

and the second term in (*):

Lˆ

x=0

dx λ̂(x, t)u
∂δφ

∂x
= u[δφλ̂]L0 −

Lˆ

x=0

dx uδφ
∂λ̂

∂x
,

= uδφ(L, t)λ̂(L, t)− uδφ(0, t)λ̂(0, t)−
Lˆ

x=0

dx uδφ
∂λ̂

∂x
. (9)

Note also for the observation term:

{φ̂(xi, ti)− yi}δφ(xi, ti) =

Lˆ

x=0

dx

T̂

t=0

dt {φ̂(xi, ti)− yi}δφ(x, t)δ(x− xi)δ(t− ti). (10)

Using (8), (9) and (10) in (11) and noting the conditions on λ̂ given after (11):
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δJ |φ̂,λ̂ = 2Wic

Lˆ

x=0

dx{φ̂(x, 0)− I(x)}δφ(x, 0) + 2Wbc

T̂

t=0

dt{φ̂(0, t)−B(t)}δφ(0, t) +

2Wob

Lˆ

x=0

dx

T̂

t=0

dt

p∑
i=1

{φ̂(xi, ti)− yi}δφ(x, t)δ(x− xi)δ(t− ti)−

2

Lˆ

x=0

dx λ̂(x, 0)δφ(x, 0)− 2

Lˆ

x=0

dx

T̂

t=0

dt
∂λ̂

∂t
δφ(x, t)−

2

T̂

t=0

dt uλ̂(0, t)δφ(0, t)− 2

T̂

t=0

dt

Lˆ

x=0

dx u
∂λ̂

∂x
δφ(x, t) +

2

Lˆ

x=0

dx

T̂

t=0

dt

(
∂φ̂

∂t
+ u

∂φ̂

∂x
− F

)
δλ(x, t) +O(δφ2, δλ2, δφδλ). (11)
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The Euler-Lagrange equations for the strong constraint formulation Setting the linear part of (11) to zero, and

using the conditions on λ̂, gives Euler-Lagrange equations for the strong constraint:'

&

$

%

∂φ̂

∂t
+ u

∂φ̂

∂x
− F = 0, (12)

Wic{φ̂(x, 0)− I(x)} − λ̂(x, 0) = 0, (13)

Wbc{φ̂(0, t)−B(t)} − uλ̂(0, t) = 0, (14)

Wob

p∑
i=1

{φ̂(xi, ti)− yi}δ(x− xi)δ(t− ti)−

(
∂λ̂

∂t
+ u

∂λ̂

∂x

)
= 0, (15)

λ̂(x, T ) = 0, (16)

λ̂(L, t) = 0. (17)

(12) is known as the forward equation, and (13)/(14) are its initial/boundary conditions. (15) is known as the backward

equation, and (16)/(17) are its conditions. The solution to these Euler-Lagrange equations for φ̂ solves the original problem that
we posed in Section 1 (with the assumption of a perfect model).
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The weak constraint formulation

The weak constraint formulation imposes the known parts of the system equations approximately.

J [φ] = Wic

Lˆ

x=0

dx{φ(x, 0)− I(x)}2 +Wbc

T̂

t=0

dt{φ(0, t)−B(t)}2 +

Wob

p∑
i=1

{φ(xi, ti)− yi}2 +We

Lˆ

x=0

dx

T̂

t=0

dt

{
∂φ

∂t
+ u

∂φ

∂x
− F

}2

. (18)

Variations of J (weak constraint formulation) Construct variations of J about some reference �eld φ̂, i.e. J [φ̂+ δφ] =

J [φ̂] + δJ |φ̂, where:

δJ |φ̂ =

Lˆ

x=0

dx

T̂

t=0

dt
∂J

∂φ
|φ̂δφ+O(δφ2),

= 2Wic

Lˆ

x=0

dx{φ̂(x, 0)− I(x)}δφ(x, 0) + 2Wbc

T̂

t=0

dt{φ̂(0, t)−B(t)}δφ(0, t) +

2Wob

Lˆ

x=0

dx

T̂

t=0

dt

p∑
i=1

{φ̂(xi, ti)− yi}δφ(x, t)δ(x− xi)δ(t− ti) +

(∗) 2We

Lˆ

x=0

dx

T̂

t=0

dt

{
∂φ̂

∂t
+ u

∂φ̂

∂x
− F

}{
∂δφ

∂t
+ u

∂δφ

∂x

}
+O(δφ2). (19)

De�ne:

µ̂(x, t) = We

(
∂φ̂

∂t
+ u

∂φ̂

∂x
− F

)
, (20)

(like the λ(x, t) in (5)) where µ̂(x, T ) = 0, µ̂(L, t) = 0.
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Changing form (weak constraint formulation) Note that (*) of (21) is like (*) of (6) so change the form using the
integration by parts formula (7), making (21) into:

δJ |φ̂ = 2Wic

Lˆ

x=0

dx{φ̂(x, 0)− I(x)}δφ(x, 0) + 2Wbc

T̂

t=0

dt{φ̂(0, t)−B(t)}δφ(0, t) +

2Wob

Lˆ

x=0

dx

T̂

t=0

dt

p∑
i=1

{φ̂(xi, ti)− yi}δφ(x, t)δ(x− xi)δ(t− ti)−

2

Lˆ

x=0

dx µ̂(x, 0)δφ(x, 0)− 2

Lˆ

x=0

dx

T̂

t=0

dt
∂µ̂

∂t
δφ(x, t)−

2

T̂

t=0

dt uµ̂(0, t)δφ(0, t)− 2

T̂

t=0

dt

Lˆ

x=0

dx u
∂µ̂

∂x
δφ(x, t) +O(δφ2). (21)

The Euler-Lagrange equations for the weak constraint formulation Setting the linear part of (21) to zero, using the
model equation (1), and de�nition (21) gives Euler-Lagrange equations for the weak constraint:'

&

$

%

∂φ̂

∂t
+ u

∂φ̂

∂x
− F = W−1

e µ̂, (22)

Wic{φ̂(x, 0)− I(x)} − µ̂(x, 0) = 0, (23)

Wbc{φ̂(0, t)−B(t)} − uµ̂(0, t) = 0, (24)

Wob

p∑
i=1

{φ̂(xi, ti)− yi}δ(x− xi)δ(t− ti)−
(
∂µ̂

∂t
+ u

∂µ̂

∂x

)
= 0, (25)

µ̂(x, T ) = 0, (26)

µ̂(L, t) = 0. (27)
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Solving the weak-constraint Euler-Lagrange equations using the method of representers

The forward equation (22) is solved for φ̂(x, t) 'upwards and to the right' (since the conditions for φ̂ are given for x = 0 and

t = 0, see Fig.), and the backward equation (25) is solved for µ̂(x, t) 'downwards and to the left' (since the conditions for φ̂ are
given for x = L and t = T , see Fig.).

Problem: In order to solve (22) for φ̂(x, t), µ̂(x, t) is needed, but in order to solve (25) for µ̂(x, t), φ̂(x, t) is needed! The set of
Euler-Lagrange equations must be all solved together.

Recipe for the solution using the method of representers

1. Solve the background problem (2) for φB(x, t). This is an exercise in solving partial di�erential equations (PDEs) analytically
or numerically.

2. De�ne the p forward representer functions and the p backward representer functions (one each per observation) as:

Forward representer function ri(x, t)
Backward representer function αi(x, t)

}
1 ≤ i ≤ p.

The modi�ed equations that these representers satisfy are based on the Euler-Lagrange equations, but have φ̂→ ri, µ̂→ αi,
F = 0, I(x) = 0, B(t) = 0 and replace the observations with a single impulse at the position and time of the ith

observation (Wob

∑p
i=1{φ̂(xi, ti)− yi}δ(x− xi)δ(t− ti)→ δ(x− xi)δ(t− ti)).

∂ri
∂t

+ u
∂ri
∂x

= W−1
e αi, (28)

Wicri(x, 0)− αi(x, 0) = 0, (29)

Wbcri(0, t)− uαi(0, t) = 0, (30)

δ(x− xi)δ(t− ti)−
(
∂αi
∂t

+ u
∂αi
∂x

)
= 0, (31)

αi(x, T ) = 0, (32)

αi(L, t) = 0. (33)
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3. Start with the backward representers. Solve (31), (32) and (33) for each i 'downwards and to the left' (again an exercise
in solving PDEs). This gives the p backward representers, αi(x, t). In the modi�ed equations, the backward representers
do not depend upon the forward representers, ri(x, t).

4. Now �nd the forward representers. Solve (28), (29) and (30) for each i 'upwards and to the right' (again an exercise in
solving PDEs). This gives the p forward representers, ri(x, t), which can be found because the αi are now known.

5. Look for a solution of φ̂(x, t) (the �eld that we are really interested in) that is a linear combination of the forward representer
functions:

φ̂(x, t) = φB(x, t) +

p∑
i=1

βiri(x, t), (34)

where the βi are the coe�cients which are determined by insisting that φ̂(x, t) satis�es the Euler-Lagrange equations.

6. To make (34) satisfy the Euler-Lagrange equations, act with ∂/∂t+ u∂/∂x on (34), then use (22), (2) and (31):

∂φ̂

∂t
+ u

∂φ̂

∂x
=

∂φB

∂t
+ u

∂φB

∂x
+

p∑
i=1

βi

(
∂ri
∂t

+ u
∂ri
∂x

)
,

⇒ F +W−1
e µ̂ = F +

p∑
i=1

βiW
−1
e αi,

⇒ µ̂(x, t) =

p∑
i=1

βiαi(x, t). (35)

7. Substitute (35) into (25), then use (34) and (31):

Wob

p∑
i=1

{φ̂(xi, ti)− yi}δ(x− xi)δ(t− ti) =

p∑
i=1

βi

(
∂αi
∂t

+ u
∂αi
∂x

)
,

⇒ Wob

p∑
i=1

{φB(xi, ti) +

p∑
j=1

βjrj(xi, ti)− yi}δ(x− xi)δ(t− ti) =

p∑
i=1

βiδ(x− xi)δ(t− ti). (36)
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8. Equate coe�cients of impulses in (36):

Wob

{
φB(xi, ti) +

p∑
j=1

βjrj(xi, ti)− yi

}
= βi,

⇒ Wob {φB(xi, ti)− yi}+

p∑
j=1

{Wobrj(xi, ti)− δij} βj = 0, (37)

where δij is the Kronecker delta-function. This is the equation that we have to solve for the βi coe�cients. Once these are
known, the solution can be built using (34).

Finding the coe�cients Equation (37) is the remaining equation to solve. We will use some linear algebra (vectors and
matrices) to do this. This is a standard procedure in a wide range of numerical analysis problems. Let the vectors y ∈ Rp, β ∈ Rp

and φob
B ∈ Rp (bold symbols) represent the following collections of information:

y =


y1

y2
...
yp

 , β =


β1

β2
...
βp

 , φob
B =


φB(x1, t1)
φB(x2, t2)

...
φB(xp, tp)

 .

These represent (respectively) the observations, the (as yet) unknown coe�cients that we are trying to �nd and the background
values at the observation positions and times. The equations represented by (37) (1 ≤ i ≤ p) may be written in linear algebraic
form:

Wob

(
φob

B − y
)

+ (WobP− I)β = 0,

where P ∈ Rp×p is

P =


r1(x1, t1) r2(x1, t1) · · · rp(x1, t1)
r1(x2, t2) r2(x2, t2) · · · rp(x2, t2)

...
... . . . ...

r1(xp, tp) r2(xp, tp) · · · rp(xp, tp)

 ,

and I ∈ Rp×p is the identity matrix. All of these vectors and matrices are known except for β. Providing that the matrix
WobP− I is full rank, then the solution is found to be

β = Wob (WobP− I)−1 (y − φob
B

)
.
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2(c) Cost functions and simpli�cations for operational assimilation

Weak constraint 4D-VAR

Jwc[x] =
1

2
[x(0)− xB(0)]T Pf−1 [x(0)− xB(0)] +

1

2

T∑
t=0

[y(t)− ht (x(t))]T R−1
t [y(t)− ht (x(t))] +

1

2

T∑
t=1

T∑
t′=1

[x(t)−Mt←t−1 (x(t− 1))] (Q−1)tt′ [x(t′)−Mt′←t′−1 (x(t′ − 1))] .

Here x is called the control variable and is the 4D state vector:
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Simpli�cation 3: Assume that the numerical model is perfect (strong constraint 4D-VAR)

Jsc[x] =
1

2
(x− xB)TB−1(x− xB) +

1

2

T∑
t=0

[y(t)− ht (Mt←0(x))]T R−1
t ×

[y(t)− ht (M t←0(x))] ,

Mt←0(x) =

{
Mt←t−1 (· · ·M2←1 (M1←0(x))) t > 0

I t = 0
.

This is equivalent to making Qtt → 0 in the weak constraint
cost function.
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Simpli�cation 4: Incremental data assimilation

�

�

�

�
x(t) = xref

k (t) + δx(t).

Linearizing the forecast model:

x(t) = Mt←t−1(x(t− 1)),

xref
k (t) + δx(t) = Mt←t−1

(
xref
k (t− 1) + δx(t− 1)

)
,

' Mt←t−1

(
xref
k (t− 1)

)
+ Mt←t−1δx(t− 1),

δx(t) = Mt←t−1δx(t− 1),

where the reference state

xref
k (t) ≡ Mt←t−1

(
xref
k (t− 1)

)
,

and Mt←t−1 ≡
∂Mt←t−1 (x(t− 1))

∂x(t− 1)

∣∣∣∣
xref
k

∈ Rn×n,

with matrix elements

{Mt←t−1}ij =
∂ {Mt←t−1 (x(t− 1))}i

∂ {x(t− 1)}j

∣∣∣∣∣
xref
k

.

Linearizing the observation operator:

ymo(t) = ht(x(t)),

= ht
(
xref
k (t) + δx(t)

)
,

' ht
(
xref
k (t)

)
+ Htδx(t),

' ymo
ref,k(t) + Htδx(t),

δymo(t) = Htδx(t),

where δymo(t) ≡ ymo(t)− ymo
ref,k(t),

and Ht ≡
∂ht(x(t))

∂x(t)

∣∣∣∣
xref
k

∈ Rp×n,

with matrix elements

{Ht}ij =
∂ {ht(x(t))}i
∂ {x(t)}j

∣∣∣∣∣
xref
k

.
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By writing the background as a perturbation with respect to the reference state, xB(t) ≡ xref
k (t) + δxB(t), and de�ning

δy(t) ≡ y(t)− ht
(
Mt←0(x

ref
k )
)
, the strong constraint cost function becomes:'

&

$

%

J4Dinc[δx] =
1

2
(δx− δxB)TB−1(δx− δxB) +

1

2

T∑
t=0

[δy(t)−HtMt←0δx]T R−1
t [δy(t)−HtMt←0δx] .

• The control variable is δx = δx(0) in this incremental formulation.

• Later we will call δy(t)−HtMt←0δx the residual vector, r(t).

• J4Dinc[δx] is exactly quadratic and so is easier to minimize than J4D[δx].

• If the value of δx that minimizes this is δxA ('inner loop'), then the analysis is

xA = xref
k + δxA.

• Set xref
k+1(t) = xA and repeat ('outer loop').
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Simpli�cation 6: 3D-VAR
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3. A-priori information and the B-matrix

3(a) The null space of the observation operator and the importance of a-priori information



33

Physical example of an observation operator and null space

Let

x =

(
u
v

)
=

(
uniform zonal wind − ↔+

uniform meridional wind l+
−

)
,

y = measurement of wind component in a direction θ from E,

σ2
y = Error variance of measurement.

This measurement is given e.g. by a Doppler radar instrument.

û is the unit vector in the line of sight of the radar beam,

û =

(
cos θ
sin θ

)
.



34

3(b) The role of the background error covariance matrix
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3(c) Spatial aspects (inverse Laplacians, di�usion operators)

Inverse Laplacians

Consider the following form of a B-matrix for a single �eld
(univariate):

COR = γ

(
I +

l4

2
(∇2)2

)−1

,

B = COV = Σγ

(
I +

l4

2
(∇2)2

)−1

Σ,

B−1 = γ−1Σ−1

(
I +

l4

2
(∇2)2

)
Σ−1,

(where l is the (chosen) correlation length-scale). What is the
result of acting with COR on the arbitrary function f(x) in
1-D?

Let g(x) = COR{f(x)} = γ

(
1 +

l4

2

d4

dx4

)−1

f(x).

This can be easily solved in Fourier space:

f(x) =
1√
2π

ˆ
dk f̄(k)eikx g(x) =

1√
2π

ˆ
dk ḡ(k)eikx,

f(x) = γ−1

(
1 +

l4

2

d4

dx4

)
g(x),

ˆ
dk f̄(k)eikx = γ−1

(
1 +

l4

2

d4

dx4

)ˆ
dk ḡ(k)eikx,

=

ˆ
dk ḡ(k)γ−1

(
1 +

l4k4

2

)
eikx.

Multiply each side by e−ik
′x, integrate over x, and use orthogo-

nality of complex exponentials:

ḡ(k) = γ

(
1 +

l4k4

2

)−1

f̄(k).

Inverse Fourier transform this to get the result in x-space:

g(x) = I.F.T.

{
γ

(
1 +

l4k4

2

)−1

f̄(k)

}
,

= I.F.T.
{
c̄(k)f̄(k)

}
,

=
1

2π

ˆ
dx′ c(x− x′)f(x′),

by the convolution theorem of Fourier transforms. c(x) is the
inverse Fourier transform of γ/(1 + l4k4/2).
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Di�usion operators

Consider the following di�usion equation for integration from
t = 0 to T :

∂g(x, t)

∂t
− κ∂

2g(x, t)

∂x2
= 0,

κ : di�usion co-e�cient, initial condition g(x, 0) = f(x).

The di�usion equation can be integrated analytically in Fourier
space. For wavenumber k:

∂ḡ(k, t)

∂t
+ κk2ḡ(k, t), ḡ(k, 0) = f̄(k).

Integrate from t = 0 to T :

ˆ T

t=0

d ln ḡ(k, t) + κk2

ˆ T

t=0

dt = 0,

ln ḡ(k, T )− ln ḡ(k, 0) + κk2T = 0,

ḡ(k, T ) = f̄(k) exp(−κk2T ).

To �nd the solution in real space, inverse Fourier transform the
above. The right hand side is a product of functions in Fourier

space, so use the convolution theorem again:

g(x, T ) =
1

2π

ˆ
dx′ f(x′) c(x− x′).

c(x) is here the inverse Fourier transform of exp(−κk2T ), which
is
√
π/κT exp(−x2/4κT ) (a Gaussian function with length-

scale
√

2κT ). The solution is thus:

g(x, T ) =
1√

4πκT

ˆ
dx′ f(x′) exp(−(x− x′)2/4κT ).

Note the correspondence between the convolution and action
with a homogeneous covariance matrix (as in the previous section
on inverse Laplacians), which means that the structure functions
have the form:

1√
4πκT

exp(−(x− x′)2/4κT ).
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3(d) Multivariate aspects and balance

Example with perfect geostrophic balance

For �ows with small Rossby number, Ro = U/fL � 1, the momentum equations approximate to the following diagnostic
equations:

v =
1

fρ

∂p

∂x
, u = − 1

fρ

∂p

∂y
,

(this is geostrophic balance).
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Now derive the multivariate error covariances between positions i and j:

p− p covs: 〈δpiδpj〉 = σ2
pµij (by de�nition),

p− u covs: 〈δpiδuj〉 = − 1

fρ

〈
δpi

∂δpj
∂yj

〉
= − 1

fρ

∂

∂yj
〈δpiδpj〉 = −

σ2
p

fρ

∂µij
∂yj

,

p− v covs: 〈δpiδvj〉 =
1

fρ

〈
δpi

∂δpj
∂xj

〉
=

1

fρ

∂

∂xj
〈δpiδpj〉 =

σ2
p

fρ

∂µij
∂xj

,

u− p covs: 〈δuiδpj〉 = − 1

fρ

〈
∂δpi
∂yi

δpj

〉
= − 1

fρ

∂

∂yi
〈δpiδpj〉 = −

σ2
p

fρ

∂µij
∂yi

,

u− u covs: 〈δuiδuj〉 =
1

f 2ρ2

〈
∂δpi
∂yi

∂δpj
∂yj

〉
=

1

f 2ρ2

∂2

∂yi∂yj
〈δpiδpj〉 =

σ2
p

f 2ρ2

∂2µij
∂yi∂yj

,

u− v covs: 〈δuiδvj〉 = − 1

f 2ρ2

〈
∂δpi
∂yi

∂δpj
∂xj

〉
= − 1

f 2ρ2

∂2

∂yi∂xj
〈δpiδpj〉 = −

σ2
p

f 2ρ2

∂2µij
∂yi∂xj

,

v − p covs: 〈δviδpj〉 =
1

fρ

〈
∂δpi
∂xi

δpj

〉
=

1

fρ

∂

∂xi
〈δpiδpj〉 =

σ2
p

fρ

∂µij
∂xi

,

v − u covs: 〈δviδuj〉 = − 1

f 2ρ2

〈
∂δpi
∂xi

∂δpj
∂yj

〉
= − 1

f 2ρ2

∂2

∂xi∂yj
〈δpiδpj〉 = −

σ2
p

f 2ρ2

∂2µij
∂xi∂yj

,

v − v covs: 〈δviδvj〉 =
1

f 2ρ2

〈
∂δpi
∂xi

∂δpj
∂xj

〉
=

1

f 2ρ2

∂2

∂xi∂xj
〈δpiδpj〉 =

σ2
p

f 2ρ2

∂2µij
∂xi∂xj

.
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Note the following �rst and second derivatives of µ:

∂µij
∂xi

= −µij
(xi − xj)

L2

∂µij
∂xj

= µij
(xi − xj)

L2
,

∂µij
∂yi

= −µij
(yi − yj)
L2

,

∂µij
∂yj

= µij
(yi − yj)
L2

,

∂2µij
∂xi∂xj

=
µij
L2

(
1− (xi − xj)2

L2

)
,

∂2µij
∂yi∂yj

=
µij
L2

(
1− (yi − yj)2

L2

)
,

∂2µij
∂yi∂xj

= −µij
(xi − xj)(yi − yj)

L4
,

∂2µij
∂xi∂yj

= −µij
(xi − xj)(yi − yj)

L4
.

Example structure functions giving the output �eld (p, u or v
down the side) associated with a point in the centre of the do-
main (either of p, u or v along the top). Red is positive, blue is
negative.
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3(e) Control variable transforms and the implied B-matrix'

&

$

%

Solving a variational problem using CVTs involves the following steps:

• Assume that we know the CVT, U, and its adjoint and that they are practical to apply.

• Minimize J [δχ] with respect to varying δχ. The cost function is:

J [δχ] =
1

2
δχTδχ+

1

2

T∑
t=0

[δy(t)−HtMt←0Uδχ]T R−1
t [δy(t)−HtMt←0Uδχ] .

• The analysis increment in control variable space that minimizes the above is δχA.

• The analysis in model space is xA = xB + UδχA.

• This is equivalent to minimizing the original cost function J [δx] with the implied background error covariance matrix
Bimp = UUT.
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Example of the CVT method to model horizontal background error covariances (e.g. for pressure, p)

See Fig. for de�nitions of angles and lengths in real and
Fourier spaces. Note the following:

∆r =

(
∆x
∆y

)
= ∆r

(
cos θx
sin θx

)
,

k =

(
kx
ky

)
= K

(
cos θk
sin θk

)
,

dk = KdKdθk.

What is the saving of this CVT method of modelling
B compared to an explicit matrix method?

• No. of grid points: nx × ny.

• No. of pieces of information in δx: 3× nx × ny.

• No. of pieces of information in δχ: nx × ny.

• No. of independent elements in explicit B: ∼
1
2 (3× nx × ny)2 ∼ 9

2n
4
x (assuming nx ∼ ny).

• No. of pieces of information needed for CVT: ∼
No. of total wavenumbers needed to know λp(K) ∼√
2nx.

If nx = 1000, then

• No. of independent elements in explicit B: ∼ 5× 1012.

• No. of pieces of information needed for CVT: ∼ 1500.
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Operational CVTs

• The Met O�ce use a similar approach in its operational 4D-VAR and 3DFGAT systems. Geostrophic balance (imposed
weakly) and hydrostatic balance are used. The spatial component includes a similar approach as shown above (spectral
space) for the horizontal structure of background error covariances, and vertical modes (empirical orthogonal functions) for
the vertical structure. Lorenc A.C., Ballard S.P., Bell R.S., Ingleby N.B., Andrews P.L.F., Barker D.M., Bray J.R., Clayton A.M., Dalby T., Li D., Payne T.J.,
Saunders F.W., The Met O�ce global 3-dimensional variational data assimilation scheme, Q.J.R.Meteor.Soc. 126 pp.2991-3012 (2000).

• The ECMWF use similar balance relationships, but use a spatial component that makes use of wavelets. Fisher M., Andersson E.,
Developments in 4d-Var and Kalman �ltering, ECMWF Research Report No. 347 pp.36 (2001).

• The di�usion operator approach is used in ocean data assimilation systems. Weaver A.T., Deltel C., Machu E., Ricci S., Daget N., A
multivariate balance operator for variational ocean data assimilation, Q.J.R.Meteor.Soc. 131 pp.3605-3626 (2005).
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3(f) Conditioning of the variational problem

The rate of convergence of the variational problem is a�ected strongly by the conditioning of the variational problem. Consider
the case when δx is the control variable. A Taylor expansion of J(x) with respect to perturbations δx about x is:

J(x + δx) = J(x) +
∂J

∂δx

∣∣∣∣
x

δx +
1

2
δxT ∂2J

∂δx2

∣∣∣∣
x

δx.

gradient Hessian

vector matrix

(1× 1) (1× 1) (1× n)(n× 1) (1× n)(n× n)(n× 1)

The Hessian matrix is an n × n matrix that describes all possible second derivatives of J with respect to the control variable
elements:

∂2J

∂δx2
=


∂2J
∂x21

∂2J
∂x1∂x2

· · · ∂2J
∂x1∂xn

∂2J
∂x2∂x1

∂2J
∂x22

· · · ∂2J
∂x2∂xn

...
... . . . ...

∂2J
∂xn∂x1

∂2J
∂xn∂x2

· · · ∂2J
∂x2n

 ,

and describes the eccentricity and orientation of the ellipsoids that describe surfaces of constant J in phase space. In particular,
the condition number is important:

κ = condition number =
maximum eigenvalue of the Hessian

minimum eigenvalue of the Hessian
.
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• If κ ≈ 1, then the variational problem is well conditioned and it will be possible for the solution to be found to a high
accuracy.

• If κ� 1, then the variational problem will converge slowly and it is hard for the solution to be found to a high accuracy.

The following table compares weak constraint 4D-VAR with δχ and δx as the control variable.
δχ δx

Hessian I +
∑T

t=0 UTMT
t←0H

T
t R−T

t HtMt←0U B−1 +
∑T

t=0 MT
t←0H

T
t R−T

t HtMt←0

min eigenvalue λχmin & 1 λxmin ≥ 0

max eigenvalue λχmax λxmax � 1 in practice

condition No. λχmax/1 ∼ λχmax λxmax/0
+ →∞
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4. Operational algorithms

'
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5. Measuring the B-matrix

5(a) Analysis of innovations

(b)(a)

• The H+L method was popular in the 1980s and 1990s.

• It replies on a huge number of direct (in-situ) observations.

• Not useful in practice to probe �ow dependence of B, or B in unobserved regions.

• Hollingsworth A., Lonnberg P., The statistical structure of short-range forecast errors as determined from radiosonde data. Part I: The wind �eld, Tellus 38A pp.111-136
(1986). Lonnberg P., Hollingsworth A., The statistical structure of short-range forecast errors as determined from radiosonde data. Part II: The covariance of height and
wind errors, Tellus 38A pp.137-161 (1986).



48

5(b) The NMC method

Propose a proxy for forecast error:
ηNMC ≈ x48

f (0)− x24
f (0).
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5(c) Monte-Carlo (ensemble) method

Generate an ensemble that ideally simulates all known
sources of forecast error.

For the ith ensemble member (1 ≤ i ≤ N):

x(i)(t+ δt) = Mt+δt←t

(
x(i)(t)

)
+ e(i)(t),

integrated from t = −T to t = 0. The following sources of error
are considered:

• Initial condition error, δx
(i)
A (−T ), e.g.:

x(i)(−T ) = xA(−T ) + δx
(i)
A (−T ),

where

1

N − 1

N∑
i=1

δx
(i)
A (−T )δx

(i)T
A (−T ) ≈ PA(−T ).

All errors inherited from previous DA cycles are represented
as initial condition errors.

• Model error, the integrated e�ect of e(i)(t). The model
error is unknown, but can be included stochastically dur-
ing the integration of the model. Practical methods of
implicitly approximating model error include:

� Multi-model/multi-physics methods (these use dif-
ferent models, di�erent parameterizations or di�er-
ent parameter values of the parameterizations for
each ensemble methods to approximate the e�ect
of e(i)(t)).

� Stochastic kinetic energy backscatter (SKEB) meth-
ods (forecast models do not represent the energy well
at scales close to the grid-scale - leading to signi�-
cant model errors; SKEB injects kinetic energy into
the model to try to make up for this).

� Stochastically perturbed tendencies (SPT) (tenden-
cies from the - imperfect - parametrization schemes
are scaled and added as possible model errors).

• Other errors (e.g. boundary condition perturbations for
limited area models, perturbations to the unknown forc-
ings of the model).
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6. Hybrid (var/ensemble) formations

6(a) Basic ideas

Let us consider the pros and cons of variational data assimilation and ensemble data assimilation (such as the ensemble Kalman
�lter discussed in part II of this course).

VARIATIONAL DATA
ASSIMILATION

ENSEMBLE KALMAN
FILTER

1. E�ciency Good Good
2. Data voids Reverts to the background state,

xB

Reverts to the background state,
xB

3. Processing Continuous (within assimilation
window)

Intermittent

4. Scaling for parallel
computing

Limits to scaling No limits to scaling

5. Errors in inputs Allows for errors in xB and y Allows for errors in xB and y
6. Errors in model Accounted for in WC 4D-VAR Accounted for
7. Indirect observations Yes Yes
8. Balance and smoothness
of analysis

Yes No, unless N is su�ciently large *

9. Flow dependent
background error
covariance matrix

No, Pf is approximated by B Yes, Pf is approximated by Pf
(N) *

10. Rank of background
error covariance matrix

Full rank rank ≤ N *

* These issues are related. The aim of hybrid data assimilation is to combine VAR with an ensemble to get the best bits of
each approach.
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Variational assimilation structure function

• Full rank, but not �ow dependent.

Ensemble-derived structure function (N = 24)

co
rr

el
at

io
n

(c) v−p correlation (NAE)

longitude

24−members

15−members

05−members

theoretical

• Flow dependent, but rank de�cient.

In the hybrid solution, we solve a VAR-like problem but B→ PH:

PH = αB + (1− α)Pf
(N), where 0 ≤ α ≤ 1.
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6(b) Incorporating a simple hybrid scheme in VAR

In order to use PH = αB + (1 − α)Pf
(N) in variational assimilation, PH needs to be made compatible with the control variable

transform (CVT).

Recall from 3(e), B is modelled by minimizing the cost func-
tion with respect to a control variable δχ:

J [δχ] =
1

2
δχTδχ+

1

2

T∑
t=0

[δy(t)−HtMt←0Uδχ]T R−1
t ×

[δy(t)−HtMt←0Uδχ] ,

where δx = Uδχ,

and
〈
δχδχT

〉
= I,

and the implied background error covariance matrix is:

Bimp = UUT.

Now consider the following cost function and modi�cation to the
control variable and its CVT:

JH[δχH] =
1

2
δχT

varδχvar +
1

2
δχT

ensδχens +

1

2

T∑
t=0

[
δy(t)−HtMt←0U

HδχH
]T

R−1
t ×[

δy(t)−HtMt←0U
HδχH

]
,

where δx = UHδχH,

and
〈
δχHδχHT

〉
= I,

but now δχH =

(
δχvar

δχens

)
, δχvar ∈ Rn, δχens ∈ RN ,

and UH =
( √

αU
√

1−α
N−1X

)
.

What is the implied background error covariance matrix of this scheme?

BH
imp =

〈
δxδxT

〉
= UH

〈
δχHδχHT

〉
UHT = UHUHT,

=

( √
αU

√
1−α
N−1X

) ( √
αUT√

1−α
N−1X

T

)
= αUUT +

1− α
N − 1

XXT,

= αB + (1− α)Pf
(N).

The �rst term contains UUT, which is the implied background error covariance matrix from the pure variational scheme, and the
second term contains XXT/(N − 1), which is the ensemble-derived background error covariance matrix (we used this notation
in section 3(b), and in problem 11).
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6(c) Incorporating a localized hybrid scheme in VAR

The ensemble contribution to the hybrid covariance is noisy when N is small. How can we mitigate this noise?

• A statistical result tells us that the error in the sample correlation between two variables x and y has expectation
(1− cor2(x, y))/

√
N − 1.

• For a given N , sampling errors are expected to be largest when the correlations are close to zero.

• Correlations are expected to be smaller at larger separations.

• 'Localization' arti�cially reduces covariances between variables separated by large distances.

Let x = ηB(r1) and y = ηB(r2). The raw covariance between x and y is:

Pf
(N)(r1, r2) =

1

N − 1

N∑
i=1

η
(i)
B (r1)η

(i)
B (r2).

For the covariance actually used in the hybrid scheme, we wish to multiply this by a moderation function that decreases with
separation between r1 and r2: Ω(r1, r2) = prescribed function of |r1 − r2|, 0 ≤ Ω(r1, r2) ≤ 1. The covariance used is then:

Pf,l
(N)(r1, r2) = Pf

(N)(r1, r2)Ω(r1, r2).

This is for a particular matrix element. For the whole covariance matrix, introduce the Schur product of matrices:

Pf,l
(N) = Pf

(N) ◦Ω, Ω ∈ Rn×n.
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How do we incorporate this into the CVT?

This section is provided for information only. In outline:

• We know that Pf
(N) = 1

N−1XXT, Pf
(N) ∈ Rn×n, X ∈ Rn×N .

• Now suppose that we can decompose Ω in terms of M members in Y: Ω = 1
M−1YYT, Ω ∈ Rn×n, Y ∈ Rn×M .

• Then the localized background error covariance matrix is:

Pf,l
(N) = Pf

(N) ◦Ω,

=

(
1

N − 1
XXT

)
◦
(

1

M − 1
YYT

)
,

=
1

(M − 1)(N − 1)

(
XXT

)
◦
(
YYT

)
.

• It is possible to construct a new matrix XΩ such that Pf,l
(N) = 1

(N−1)(M−1)XΩXT
Ω, XΩ ∈ Rn×NM .

• This new matrix has the form:

XΩ =

 ↑ ↑ ↑ ↑ ↑ ↑
η

(1)
B ◦ y(1) η

(1)
B ◦ y(2) · · · η(1)

B ◦ y(M) η
(2)
B ◦ y(1) · · · η(2)

B ◦ y(M) · · · · · · η(N)
B ◦ y(M)

↓ ↓ ↓ ↓ ↓ ↓

 ,

where η
(i)
B is the ith column of X and y(j) is the jth column of XΩ. There are other compact ways to write this matrix:

Buehner M., Ensemble derived stationary and �ow dependent background error covariances: Evaluation in a quasi-operational NWP setting, Q.J.R.Meteor.Soc. 131

pp.1013-1043 (2005).

• The localized hybrid scheme is then the same as the unlocalized one, but with

� the N -element part of the control vector δχH relaced with an NM -element control vector, and

�
√

1−α
N−1X in the CVT replaced with

√
1−α

(N−1)(M−1)XΩ.

N.B. There are other ways of representing a hyrid system in terms of control variables: Lorenc A.C., The potential of the ensemble Kalman �lter

for NWP - a comparison with 4d-Var, Q.J.R.Meteor.Soc. 129 pp.3183-3203 (2003).



55

7. Data assimilation diagnostics

• What can go wrong with a data assimilation scheme? For a strong constraint 4D-VAR, e.g.:

� Incorrect error covariance matrices.

� Non-Gaissian or biased errors in the background or the observations.

� Errors in M, h, M or H.

� Strong non-linearities in M or h.

� Variational procedure not converged to the minimum.

� Background and observation errors are correlated.

• How can we assess if a given data assimilation scheme is sub-optimal? E.g. for variational data assimilation:

� Bennett-Talagrand diagnostic.

� Desrozier's diagnostics.
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7(a) The Bennett-Talagrand theorem

Twice the cost function value at the minimum (i.e. at the analysis) for an optimal assimilation system is a random variable
that obeys χ2 statistics and therefore has a particular expectation value. Statistics tells us that the expectation value of a χ2

distribution that results from a �t of ν degrees of freedom to q pieces of data is E(2Jmin) = q− ν. The data assimilation problem
tries to �t ν = n pieces of information to q = n + p pieces of information (the background state and the observations). Then,
E(2Jmin) = n+ p− n = p. Therefore the expected value of Jmin is

E(Jmin) =
p

2
.

If a given assimilation run does not give a value of Jmin close to this value then it is an indication that something is wrong with
the data assimilation. This can also be proved directly for the data assimilation problem (the Bennet-Talagrand theorem - see
notes on handout for a proof).
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Desrozier's Diagnostics

Desrozier diagnostics use the following quantities calculated for a data assimilation run (all in observation space):

• Innovations (observation minus background): do
b = y −Hxb.

• Analysis increment (analysis minus background):da
b = Hδxa.

• Residuals (observation minus analysis): do
a = y −Hxa.

The covariances of these quantities reveals the consistency (or inconsistency) of the data assimilation. E.g. for 3D-VAR:
Covariance Actual result (sub-optimal) Result if optimal

E{do
bd

o
b

T} R + HBHT R + HBHT

E{da
bd

o
b

T} HB̂HT(HB̂HT + R̂)−1(R + HBHT) HBHT

E{do
ad

o
b

T} (I−HB̂HT(HB̂HT + R̂)−1)(R + HBHT) R

E{da
bd

o
a
T} HB̂HT(HB̂HT + R̂)−1(R + HBHT)(I−HB̂HT(HB̂HT + R̂)−1)T HAHT

Here B and R are the true background and observation error covariances matrices, and B̂ and R̂ are the ones assumed for
the data assimilation. H is assumed perfect. See notes on handout for a proof.


