M.Sc. Course on Operational
Data Assimilation Techniques
(MTMDO02): Problem Sheet for
Part 1

1. Useful formula related to the Sherman-Morrison-Woodbury for-
mula
Show that the following identity holds:

BH'R+HBH") '= B '+H'R'H)'H'R .

2. The Euler-Lagrange equations and the method of representers
(Here equation numbers refer to those on the Euler-Lagrange handout.)
The weak constraint Euler-Lagrange equations, which satisfy the best fit

to (18) are:
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(see the handout for a definition of the symbols). In the method of rep-
resenters, (23, 24) are not enforced explicitly. Use the equations on the
handout to show that (23, 24) are satisfied by the representer method.

3. Inner product forms
The following term is a measure of the total square deviation between the
continuous fields ¢(x) and I(x):
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where z is position in the domain between z = 0 and = L, and o%(x) is
the (position dependent) standard deviation. An approximate version of



the above is found by discretizing the domain into n points:
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where x is the discrete vector representation of ¢(z) (where (x); = ¢(iL/n)
is the ith element of x) and xp is the discrete representation of I(x) (where
(xp); = I(iL/n) is the ith element of xg), and (P);; = 0%(iL/n) represents
the ith diagonal element of the diagonal matrix P. Show that this is equal
to the following compact form:

(x—xp) P! (x—xp).

. Forward model example

All bodies at a temperature above absolute zero emit thermal radiation.
In this example, the radiation from an atmosphere layer is monitored by
satellite. A model represents this layer of the atmosphere with two grid
boxes and carries temperature in each, 71" and T3" (see Fig. below). Radi-
ation flux, F', is related to layer temperature, T, by the Stefan-Boltzmann
Law:

F = kT*,

where x is the Stefan-Boltzmann constant. A flux measurement is made

above box 2.
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(a) Write down the model state vector x and the observation vector y.
(b) What is the forward operator h, the Jacobian H, and its adjoint HT?

. Maximum likelihood solution (MAP)
The following function gives the likelihood that the n-element vector x is
the state of the system given p observations in y:
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where R is the observation error covariance matrix and H is the forward
operator matrix.
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Define J as minus the natural logarithm of L and expand the vec-
tor/matrix notation of the expression for J.

Differentiate J in this form with respect to one of the components of x

and then find a vector/matrix form for Vi J=(9J/0x1,...0J/0zk, . ..

Find the x that makes J stationary, i.e. VxJ =0 (call this x4 ).

6. Minimum (co)variance solution

(a)

Assume that the best estimate, X has the form X = b 4+ Ay where b
is an n-element vector, A is an n X p matrix, and y is the p-element
vector of observations. Also note that y = Hx + &. By defining
r = £[X], show that the following expression for b follows for an
unbiased solution with an unbiased set of observations

b=(I-AH)r.
(Note that an unbiased solution means that £[x] = £[x] = r, and

unbiased observations means that £[e] = 0.)

Define the a-posteriori error as ex = x — X. Use the result from (a)

to show that the a-posteriori error covariance, Py = E[exel] is

P, =P, - P,HTAT - AHP, + A(HP,HT + R)AT,
where Py = E[{x —r}{x —r}], R = €[ee"], and where it is assumed
that £[{x —r}e’] =0 and E[e{x —r}T] = 0.

The trace of a matrix is defined as the sum of its diagonal elements.
By expanding the matrix notation of the result for P in (b), give
an expression for the trace of P (to cut down on the algebra, the
terms P,HT, HPy and (HP,H™ + R) do not need to be expanded,
i.e. each may be considered a single matrix).

Differentiate this trace w.r.t. an arbitrary element of matrix A, e.g.
A, and then form a matrix expression for the matrix that makes
up all such derivatives.

Show that the matrix A that makes the trace of P stationary is
A=P,H"HP,H' +R)" ..

Put together the results for b in (a) and for A in (e) to show that
the minimum variance solution is

x=r+P,H'(HP,HT + R)"!(y — Hr),
and use the result from Q. 1 to give

x=r+ P +H'R'H)'H'R (y - Hr).

,0./0x,)7.



(g) By considering r as a-priori information and Py as its error covari-

ance, show that the resulting minimum variance solution is the same
as the MAP found in Q. 5 in the limit Py — oo (i.e. no a-priori
information available).

7. Forward model and null-space example

In chemical data assimilation, the aim is to use observations to help deter-
mine the field of chemical concentrations in the atmosphere. An observa-
tion commonly produced from nadir viewing (downward looking) satellites
is a so-called 'total column’ amount. This is an indirect observation of the
concentration field and requires a non-local forward model for it to be
assimilated.

Let the model representation be a 1-D column comprising ¢ vertical levels.
The level height, z;, the air density p;, and the ozone mass mixing ratio,
¢; are stored on level i. Level 1 is the Earth’s surface and level ¢ is well
above the ozone layer.

()
(b)

Draw a picture showing the ¢ levels and the quantities stored on each.

There are ¢ — 1 layers, and the amount of ozone per unit horizon-
tal area in one the ith layer is approximated by (p; + pit1)(¢; +
@it1)(zip1 — 2i)/4 (ie average density x average ozone mass mixing
ratio x layer thickness). Show that the total column ozone per unit
area according to the model state is
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where p; = p; + pi+1 and Az; = z;41 — 2.

In addition to the total column measurement, a balloon directly mea-
sures ozone mass mixing ratio half-way between levels k and k + 1.
Write down the value of the observation expected from the model
state (assume linear interpolation).

The total column and in-situ observations are to be assimilated with
no a-priori data. Let there be ¢ = 4 levels and let £k = 1. Write down
the 2 x 4 observation operator matrix, H.

To put numbers to the problem and using dimensionless units, let
p1Az = 10, poAzy = 7, p3Azs = 5 and psAzz = 4. Furthermore,
let the standard deviation of the total column observation error be
5 and the standard deviation of the in-situ observation error be 2.
Write down the 4 x 4 matrix HTR™'H, where R is the diagonal
observation error covariance matrix.

Identify the null space of this observation system (you will probably
find it easier to do the computations using a computer package - e.g.
Mathematica, Maple, IDL, MatLab, NAG, Eispack or the web site
Wolfram Alpha).
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(g) An a-priori state is introduced that has the following error covariance

matrix
9 6 2 0
6 9 6 2
B= 2 6 9 6
0 2 6 9
Show that the combined observation/a-priori system has no null
space.

Relationship between covariance and correlation
The relationship between covariance COV and correlation COR is

COV = SCORSZ,

where ¥ is diag(oq,...,0,) and where o; are the standard deviations.
Show that this general form leads to
COV;;
COR;; = —2,
0i0;

for individual elements.

Structure functions
Given that u = Pv, where u,v € R” and P € R"*" show that u may be

written as
n
u= E Pivi,
i=1

where p; is the ith column of P and v; is the ith component of v.

Assimilation of a single observation in VAR to probe the back-
ground error covariance structure

Use the equivalence between the optimal interpolation formula and VAR
to show that the assimilation of a single direct observation of a grid-point
value results in an analysis increment that is proportional to a column of
the background error covariance matrix.

Ensemble covariance in matrix form

Let the ith member of an ensemble of NV states be the n-element vector x
which has ensemble mean (x) = (1/N) vazl xg). Let the n x N matrix
X have columns comprising ensemble perturbations from the ensemble
mean, and scaled in the following way:
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Show that the simple expression XXT /(N — 1) is the error covariance
matrix sampled from this ensemble.

12. Implied covariances

(a) Consider a change of variable from dx to §x via the control variable
transform dx = Udyx, and given that the background error covari-
ance matrix in dx-space is Bgsx and the background error covariance
matrix in dx-space is Bsy. Show that the relationship between the
background error covariances is as follows:

Bsx = UB;, UT.

(b) If the cost function is minimized with dx as the control variable,
whose background errors are assumed to be I, show that the implied
background error covariance matrix in terms of §x is Bsx = UUT.
Is this consistent with the result of part (a) of this question?

13. The generalized chain rule
Let some scalar be a functional of a vector, vg, i.e. f(vp) and let the
vector Vy, f be the column vector of partial derivatives of f with respect
to each component of vg. Let vp be related to another vector va by
the linear relationship vg = Nwva. Use the chain rule to show that the
corresponding relationship between the gradient vectors is

Ve f =NTV,. 1.

14. Gradient and Hessian of the cost function w.r.t the control vari-
able
The incremental cost function written in terms of the control variable is

J[6x]

T
JB + Z Jo(t),
=0

T
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using the notation as outlined in the lectures.

(a) Expand the vector notation to show that the gradient and Hessian
of the Jp term (w.r.t. dx) are

9% Js
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(b) Let dy™(¢) be defined as follows
Sy™(t) = H:MoUdx,

making the Jo(¢) term become

Jo(t) = 5By (1) — y™(1) "Ry 5y (1) — oy™ (1))

Expand the vector notation to show that the gradient and Hessian
of the Jp term (w.r.t. Jy™(¢)) are

Vs doll) = —R; y(t) —oy™(r)),  2L70W g
Sy (t) o t Yy Yy I adym(t)2 t
(c) Use the generalized chain rule in Q. 13 with f = Jo(t), vg = y™(¢),
va = 0x and N = H;M;, (U to show that the gradient of the Jo(¢)
term (w.r.t. dx) is

VixJo(t) = =UTM{_(HIR; " (0y(t) — 5y™(t)).

(d) The generalized chain rule in Q. 13 can be extended to second deriva-
tives (when f is a quadratic function) in the following way
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Use this to show that the Hessian of the Jo(t) term (w.r.t. dx) is
0%Jo(t)
052

=U™} HIR;'H;M,, ,U.
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(e) Use (a), (c¢) and (d) to give expressions for the total gradient and
total Hessian of the cost function w.r.t. dx.

15. Efficient form of the 4D-VAR gradient
The total gradient of Jo is (see Q. 14)

T
VixJo =—U"Y ML HR; 'r(t),
t=0

where r(t) = 0y (t) — H:M;, ¢Udx. This is inefficient to evaluate because
it involves acting with the T+ 1 matrices M, _,. We will now investigate
a more efficient form of this summation.

(a) Consider each adjoint model operator in the form
T T T T T
M/ o=Mi My y.. My_1, oM, 4,

and write each contribution to the time summation on a separate line
(e.g. writet =0,t=1,t=2,t=T —1 and t = T lines explicitly).



(b) Use the fact that many M7, , operators are shared to write the gra-

J1
dient algorithm in the following way.

i. Define \(T') = HFR,'r(T).
ii. Apply the following for t =T — 1 — 0:

A(t) = H R "r(t) + M, A(E+1).

iii. The required gradient is then VsyJo = —UTA(0).

16. The NMC method
The NMC method uses the difference between two forecasts of different
lengths, but valid at the same time as a proxy for forecast error (e.g. a
forecast of 48-hours, x™®, and a forecast of 24-hours, x*). Note the
following forms of x™® and x!?4

f48 _ Xtruth 4 ,',,487 f24 _ Xtruth + 24

X n,

X

truth

where x is the true state and n? is the forecast error.

(a) By assuming that n*® and n?* each have the same covariance, B, and
are uncorrelated, show that the following form of B results

B = % <(Xf48 _ Xf24>(xf48 _ Xf24)T> ,

where () is the average over a population of such forecast differences.

(b) Discuss possible flaws in the NMC method.




