
M.Sc. Course on Operational
Data Assimilation Techniques
(MTMD02): Problem Sheet for
Part I

1. Useful formula related to the Sherman-Morrison-Woodbury for-
mula
Show that the following identity holds:

BHT(R + HBHT)−1 = (B−1 + HTR−1H)−1HTR−1.

2. The Euler-Lagrange equations and the method of representers
(Here equation numbers refer to those on the Euler-Lagrange handout.)
The weak constraint Euler-Lagrange equations, which satisfy the best fit
to (18) are:

∂φ̂

∂t
+ u

∂φ̂

∂x
− F = W−1e µ̂,

Wic{φ̂(x, 0)− I(x)} − µ̂(x, 0) = 0,

Wbc{φ̂(0, t)−B(t)} − uµ̂(0, t) = 0,

Wob

p∑
i=1

{φ̂(xi, ti)− yi}δ(x− xi)δ(t− ti)−
(
∂µ̂

∂t
+ u

∂µ̂

∂x

)
= 0,

µ̂(x, T ) = 0,

ˆµ(L, t) = 0,

(see the handout for a definition of the symbols). In the method of rep-
resenters, (23, 24) are not enforced explicitly. Use the equations on the
handout to show that (23, 24) are satisfied by the representer method.

3. Inner product forms
The following term is a measure of the total square deviation between the
continuous fields φ(x) and I(x):

L̂

x=0

dx
{φ(x)− I(x)}2

σ2
I (x)

,

where x is position in the domain between x = 0 and x = L, and σ2
I (x) is

the (position dependent) standard deviation. An approximate version of
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the above is found by discretizing the domain into n points:

n∑
i=1

{(x)i − (xB)i}2

(P)ii
,

where x is the discrete vector representation of φ(x) (where (x)i = φ(iL/n)
is the ith element of x) and xB is the discrete representation of I(x) (where
(xB)i = I(iL/n) is the ith element of xB), and (P)ii = σ2

I (iL/n) represents
the ith diagonal element of the diagonal matrix P. Show that this is equal
to the following compact form:

(x− xB)
T

P−1 (x− xB) .

4. Forward model example
All bodies at a temperature above absolute zero emit thermal radiation.
In this example, the radiation from an atmosphere layer is monitored by
satellite. A model represents this layer of the atmosphere with two grid
boxes and carries temperature in each, Tm

1 and Tm
2 (see Fig. below). Radi-

ation flux, F , is related to layer temperature, T , by the Stefan-Boltzmann
Law:

F = κT 4,

where κ is the Stefan-Boltzmann constant. A flux measurement is made
above box 2.

(a) Write down the model state vector x and the observation vector y.

(b) What is the forward operator h, the Jacobian H, and its adjoint HT?

5. Maximum likelihood solution (MAP)
The following function gives the likelihood that the n-element vector x is
the state of the system given p observations in y:

L(x|y) =
1

(2π)p/2|R|1/2
exp−1

2
(y −Hx)TR−1(y −Hx),

where R is the observation error covariance matrix and H is the forward
operator matrix.
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(a) Define J as minus the natural logarithm of L and expand the vec-
tor/matrix notation of the expression for J .

(b) Differentiate J in this form with respect to one of the components of x
and then find a vector/matrix form for∇xJ=(∂J/∂x1, . . . ∂J/∂xk, . . . , ∂J/∂xn)T.

(c) Find the x that makes J stationary, i.e. ∇xJ = 0 (call this xA).

6. Minimum (co)variance solution

(a) Assume that the best estimate, x̂ has the form x̂ = b + Ay where b
is an n-element vector, A is an n× p matrix, and y is the p-element
vector of observations. Also note that y = Hx + ε. By defining
r = E [x̂], show that the following expression for b follows for an
unbiased solution with an unbiased set of observations

b = (I−AH)r.

(Note that an unbiased solution means that E [x] = E [x̂] = r, and
unbiased observations means that E [ε] = 0.)

(b) Define the a-posteriori error as εx = x − x̂. Use the result from (a)
to show that the a-posteriori error covariance, PA = E [εxε

T
x ] is

PA = Px −PxHTAT −AHPx + A(HPxHT + R)AT,

where Px = E [{x− r}{x− r}], R = E [εεT], and where it is assumed
that E [{x− r}εT] = 0 and E [ε{x− r}T] = 0.

(c) The trace of a matrix is defined as the sum of its diagonal elements.
By expanding the matrix notation of the result for PA in (b), give
an expression for the trace of PA (to cut down on the algebra, the
terms PxHT, HPx and (HPxHT + R) do not need to be expanded,
i.e. each may be considered a single matrix).

(d) Differentiate this trace w.r.t. an arbitrary element of matrix A, e.g.
Aαβ and then form a matrix expression for the matrix that makes
up all such derivatives.

(e) Show that the matrix A that makes the trace of PA stationary is

A = PxHT(HPxHT + R)−1.

(f) Put together the results for b in (a) and for A in (e) to show that
the minimum variance solution is

x̂ = r + PxHT(HPxHT + R)−1(y −Hr),

and use the result from Q. 1 to give

x̂ = r + (P−1x + HTR−1H)−1HTR−1(y −Hr).
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(g) By considering r as a-priori information and Px as its error covari-
ance, show that the resulting minimum variance solution is the same
as the MAP found in Q. 5 in the limit Px → ∞ (i.e. no a-priori
information available).

7. Forward model and null-space example
In chemical data assimilation, the aim is to use observations to help deter-
mine the field of chemical concentrations in the atmosphere. An observa-
tion commonly produced from nadir viewing (downward looking) satellites
is a so-called ’total column’ amount. This is an indirect observation of the
concentration field and requires a non-local forward model for it to be
assimilated.
Let the model representation be a 1-D column comprising q vertical levels.
The level height, zi, the air density ρi, and the ozone mass mixing ratio,
φi are stored on level i. Level 1 is the Earth’s surface and level q is well
above the ozone layer.

(a) Draw a picture showing the q levels and the quantities stored on each.

(b) There are q − 1 layers, and the amount of ozone per unit horizon-
tal area in one the ith layer is approximated by (ρi + ρi+1)(φi +
φi+1)(zi+1 − zi)/4 (ie average density × average ozone mass mixing
ratio × layer thickness). Show that the total column ozone per unit
area according to the model state is

1

4

{
φ1ρ̃1∆z1 +

q−1∑
i=2

φi [ρ̃i∆zi + ρ̃i−1∆zi−1] + φqρ̃q−1∆zq−1

}
,

where ρ̃i = ρi + ρi+1 and ∆zi = zi+1 − zi.
(c) In addition to the total column measurement, a balloon directly mea-

sures ozone mass mixing ratio half-way between levels k and k + 1.
Write down the value of the observation expected from the model
state (assume linear interpolation).

(d) The total column and in-situ observations are to be assimilated with
no a-priori data. Let there be q = 4 levels and let k = 1. Write down
the 2× 4 observation operator matrix, H.

(e) To put numbers to the problem and using dimensionless units, let
ρ̃1∆z1 = 10, ρ̃2∆z2 = 7, ρ̃3∆z3 = 5 and ρ̃3∆z3 = 4. Furthermore,
let the standard deviation of the total column observation error be
5 and the standard deviation of the in-situ observation error be 2.
Write down the 4 × 4 matrix HTR−1H, where R is the diagonal
observation error covariance matrix.

(f) Identify the null space of this observation system (you will probably
find it easier to do the computations using a computer package - e.g.
Mathematica, Maple, IDL, MatLab, NAG, Eispack or the web site
Wolfram Alpha).
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(g) An a-priori state is introduced that has the following error covariance
matrix

B =


9 6 2 0
6 9 6 2
2 6 9 6
0 2 6 9

 .

Show that the combined observation/a-priori system has no null
space.

8. Relationship between covariance and correlation
The relationship between covariance COV and correlation COR is

COV = ΣCORΣ,

where Σ is diag(σ1, . . . , σn) and where σi are the standard deviations.
Show that this general form leads to

CORij =
COVij

σiσj
,

for individual elements.

9. Structure functions
Given that u = Pv, where u,v ∈ Rn and P ∈ Rn×n show that u may be
written as

u =

n∑
i=1

pivi,

where pi is the ith column of P and vi is the ith component of v.

10. Assimilation of a single observation in VAR to probe the back-
ground error covariance structure
Use the equivalence between the optimal interpolation formula and VAR
to show that the assimilation of a single direct observation of a grid-point
value results in an analysis increment that is proportional to a column of
the background error covariance matrix.

11. Ensemble covariance in matrix form
Let the ith member of an ensemble ofN states be the n-element vector x

(i)
B ,

which has ensemble mean 〈x〉 = (1/N)
∑N
i=1 x

(i)
B . Let the n × N matrix

X have columns comprising ensemble perturbations from the ensemble
mean, and scaled in the following way:

X =

 ↑ ↑ ↑ ↑
x
(1)
B − 〈x〉 x

(2)
B − 〈x〉 · · · x

(N−1)
B − 〈x〉 x

(N)
B − 〈x〉

↓ ↓ ↓ ↓

 .
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Show that the simple expression XXT/(N − 1) is the error covariance
matrix sampled from this ensemble.

12. Implied covariances

(a) Consider a change of variable from δx to δχ via the control variable
transform δx = Uδχ, and given that the background error covari-
ance matrix in δx-space is Bδx and the background error covariance
matrix in δχ-space is Bδχ. Show that the relationship between the
background error covariances is as follows:

Bδx = UBδχUT.

(b) If the cost function is minimized with δχ as the control variable,
whose background errors are assumed to be I, show that the implied
background error covariance matrix in terms of δx is Bδx = UUT.
Is this consistent with the result of part (a) of this question?

13. The generalized chain rule
Let some scalar be a functional of a vector, vB, i.e. f(vB) and let the
vector ∇vBf be the column vector of partial derivatives of f with respect
to each component of vB. Let vB be related to another vector vA by
the linear relationship vB = NvA. Use the chain rule to show that the
corresponding relationship between the gradient vectors is

∇vAf = NT∇vBf.

14. Gradient and Hessian of the cost function w.r.t the control vari-
able
The incremental cost function written in terms of the control variable is

J [δχ] = JB +

T∑
t=0

JO(t),

=
1

2
δχTδχ+

1

2

T∑
t=0

(δy(t)−HtMt←0Uδχ)TR−1t (δy(t)−HtMt←0Uδχ),

using the notation as outlined in the lectures.

(a) Expand the vector notation to show that the gradient and Hessian
of the JB term (w.r.t. δχ) are

∇δχJB = δχ,
∂2JB
∂δχ2

= I.
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(b) Let δym(t) be defined as follows

δym(t) = HtMt←0Uδχ,

making the JO(t) term become

JO(t) =
1

2
(δy(t)− δym(t))TR−1t (δy(t)− δym(t)).

Expand the vector notation to show that the gradient and Hessian
of the JB term (w.r.t. δym(t)) are

∇δym(t)JO(t) = −R−1t (δy(t)− δym(t)) ,
∂2JO(t)

∂δym(t)2
= R−1t .

(c) Use the generalized chain rule in Q. 13 with f = JO(t), vB = ym(t),
vA = δχ and N = HtMt←0U to show that the gradient of the JO(t)
term (w.r.t. δχ) is

∇δχJO(t) = −UTMT
t←0H

T
t R−1t (δy(t)− δym(t)) .

(d) The generalized chain rule in Q. 13 can be extended to second deriva-
tives (when f is a quadratic function) in the following way

given ∇vA
= NT∇vB

,
∂2

∂v2
A

= ∇vA
∇T

vA
= NT∇vB

∇T
vB

N = NT ∂2

∂v2
B

N.

Use this to show that the Hessian of the JO(t) term (w.r.t. δχ) is

∂2JO(t)

∂δχ2
= UTMT

t←0H
T
t R−1t HtMt←0U.

(e) Use (a), (c) and (d) to give expressions for the total gradient and
total Hessian of the cost function w.r.t. δχ.

15. Efficient form of the 4D-VAR gradient
The total gradient of JO is (see Q. 14)

∇δχJO = −UT
T∑
t=0

MT
t←0H

T
t R−1t r(t),

where r(t) = δy(t)−HtMt←0Uδχ. This is inefficient to evaluate because
it involves acting with the T + 1 matrices MT

t←0. We will now investigate
a more efficient form of this summation.

(a) Consider each adjoint model operator in the form

MT
t←0 = MT

1←0M
T
2←1 . . .M

T
t−1←t−2M

T
t←t−1,

and write each contribution to the time summation on a separate line
(e.g. write t = 0, t = 1, t = 2, t = T − 1 and t = T lines explicitly).
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(b) Use the fact that many MT
j←i operators are shared to write the gra-

dient algorithm in the following way.

i. Define λ(T ) = HT
TR−1T r(T ).

ii. Apply the following for t = T − 1→ 0:

λ(t) = HT
t R−1t r(t) + MT

t+1←tλ(t+ 1).

iii. The required gradient is then ∇δχJO = −UTλ(0).

16. The NMC method
The NMC method uses the difference between two forecasts of different
lengths, but valid at the same time as a proxy for forecast error (e.g. a
forecast of 48-hours, xf48, and a forecast of 24-hours, xf24). Note the
following forms of xf48 and xf24

xf48 = xtruth + η48, xf24 = xtruth + η24,

where xtruth is the true state and ηt is the forecast error.

(a) By assuming that η48 and η24 each have the same covariance, B, and
are uncorrelated, show that the following form of B results

B =
1

2

〈
(xf48 − xf24)(xf48 − xf24)T

〉
,

where 〈〉 is the average over a population of such forecast differences.

(b) Discuss possible flaws in the NMC method.
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