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1. Introduction

1(a) Inverse problems

|

Field

Example inverse problem to be solved

Medical diagnosis

What is the 3-D structure of biological tissues from X-ray images (CAT
scan)?

Seismology Determination of subterranean properties from seismic data (e.g. porosity,
hydrocarbon content)

Astrophysics Determination of the internal structure of the Sun from surface observations

Astronomy Orbit determination from observations

Astronautics

Landing a spacecraft safely on another planet

Parameter estimation

Determination of unknown model parameters

Atmospheric pollution

What is the source/sink field of an atmospheric pollutant?

Atmospheric retrievals

What is the vertical profile of atmospheric quantities from remotely sensed
observations?

Weather forecasting

What are the initial conditions (e.g. u, v, T', p, q, cloud, SST, salinity) of an
atmosphere or ocean forecast model that agrees with the latest observations?




1(b) Notation

Yy
Y1
x(0) .
X3 y2
©, A
x(1) ] Y3
®, l1 .X .
2

X analysis state

xp background state

0x incremental state

Sometimes x and y are for only one time
x-vectors have n elements in total
y-vectors have p elements in total




1(c) History of data assimilation in meteorological operations and the data assimilation
cycle

Subjective 'data assimilation’ 1910s, 1920s

e LF Richardson (1922) attempted a hind-cast (by hand!)
for 20th May 1910.

e Primitive equation-based forecast model: resolution A\ =
3°, A¢p = 1.8°, 5 vertical levels.

e 'Data assimilation’ was done for mass variables (T, p) sep-
arately from wind variables (u,v) (i.e. univariate) by in-
terpolating observations subjectively.

e A disastrous forecast: AP/At ~ 145 hPa /6 hours.

e Catastrophic growth rate not due to the model, but due {3 Zorch® | Friefuh'n
to inadequate data assimilation — the mass and wind were g ! F o F
out of balance. s000 Pa da Deene "
.
— Menoalio wrin £ ¥ Pala
e Bjerknes, 1911, described the analysis problem as, “The b_sx jrace | ot R NE ws | wz |

ultimate problem in Meteorology".



Successes in NWP, 1940s

e Success with filtered dynamical models containing bal-
anced motion only (e.g. barotropic vorticity equation),
even with subjective analysis.

e BVE is less accurate than the primitive equations, but is
insensitive to imbalances in the initial conditions (there are
no gravity waves in the BVE).

e ENIAC (Electronic Numerical Integrator and Computer).

e [We now use primitive equations for NWP, but with DA
that inhibits imbalance ]




Beginnings of objective analysis: polynomial fitting, late 1940s

» OUbservation

e Fit a polynomial expansion to observations.

e Made no account of observation accuracy.

e Different variables treated independently (univariate).
e Direct observations only.
e Unrealistic values in data voids.



Cressman analysis / method of successive corrections, 1950s, 1960s

e Use prior knowledge (a background state).
e Provides information in data voids.

e Prior knowledge can come from climatology or a previous
forecast.

e Latter leads on to the 'data assimilation cycle’.

x) = first guess (background)
Kr .

ntl _ on Zk:l Wi (yr, — XJ.)

pooTxT T L 2
2k Wik + €

x" estimate of field at grid point ¢ after the nth iteration.

x}. field value at grid location closest to observation k.

7 weight of influence of observation k on grid point ¢

(reduces with distance).

K] number of observations within distance R" of grid
point 7.

yi kth observation value.

€ controls the degree of influence of the observations on
the analysis (diminishing influence as € — o).



Nudging (Newtonian relaxation), 1970s - present

e Allows the analysis to be combined with the background

state smoothly.
Relies on an intermediate analysis, X;, (e.g. from SCM).
Xint to be introduced over a timescale 7.

Model equations:

ox
_ = f
ar — 1),
.. are modified to:
ox F(x) — X — Xint

2 T

/gample with a scalar () for a persistence model (f(x)

o

dx
dt
= x(t)

L — Tint

)
T

t

= @iy + (2(0) = Zine) exp ——.

0):
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Optimal interpolation, 1970s / 1980s

xpx = xg + BH' (R + HBH") !(y — h(xp))

e A formal way of combining observations and models. e x4 analysis state (posterior) € R™.
e xp background state (prior) € R".
e Intimately related to method of least squares. , _
e B background error covariance matrix (accounts for un-
certainty in xg) € R™*™.
e Represents uncertainties of all information. :
e y observation vector € RP.
. e h observation operator R" — RP?.
e Too expensive to solve for the global system (solve for
patches and glue together for "global’ analysis). e H Jacobian of h € RP*™.
e R observation error covariance matrix (accounts for un-
e Need accurate estimates of B and R matrices. certainty in y) € RP*P,



Variational methods (VAR), 1990s / 2000s

Broadly speaking (in the case of 3D-VAR) a way of solving
the Ol equations efficiently.

Construct a cost functional, J[x] as the sum of squares of
deviations from data.

Analysis is defined as the x that minimizes J[x]. X5

B is not applied as an explicit matrix, but is instead A
modelled (see later).

Efficient enough for a truly global analysis.

Still need accurate estimates of B and R matrices. B is
usually static.

Variants: 1D-VAR / 3D-VAR / 4D-VAR / etc. (see later).

Example for strong constraint 4D-VAR:

J(x) = %(x —xp) B! (x — xp) +

12 (y(t) = hy[Myo(x)]) " Ry x

(y(t) — hy M o(x)]),

where x is the state vector at ¢t = 0.

Part | of this course is mainly about variational methods.

[}

11



Ensemble methods 2000s / 2010s

e The spread in an ensemble of N background forecasts has
information about background uncertainty, member ¢ x(0).

e Flow-dependent background error covariances, Pt

e Formulation starts with the Ol equation (B — P?), but

for an ensemble of states.
e Does not need the Pf-matrix explicitly.

e Severe rank deficiency problems with Pf due to undersam-
pling (use, e.g., localization techniques to overcome).

e Deterministic (square-root) and non-deterministic (non-
square-root) formulations exist - see part Il of the course.

12

2
s
(%]
-
time
- . T
P ~ PEN) = — Z (x(’) — <X>> <X(’) - <X>> :
N -1 P
| N
~ (4)
(x) =~ ~ ;X :



Hybrid methods 2010s

e Combine the robustness of the B-matrix with the flow-dependence of the Pf-matrix.

Most simple is the arithmetic average:
P" = aB+ (1—a)Py,

Solve a VAR-like problem but B — PH.

Still need localization methods.

Other approaches exist too.

Uses methods that avoid the need to hold large matrices explicitly.

13
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The data assimilation cycle

/ ANALYSIS ALGORITHM A

] thHAUZAﬂON]
; i
OBS [ ] >[XA:x§+U6X]

= I ) '

QUALITY [ FORECAST ]
CONTROL ~ =~
INNOVATIONS Xg

dy(t)=y(t)
_htMt(—0<xB) \ /
t=0,T )
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2. Variational techniques

2(a) The Euler-Lagrange equations

This section teaches us formally about the variational solution of an inverse problem, backward (or adjoint) variables and the
strong and weak constraint formulations. The method of representers, used to solve the Euler-Lagrange equations, is introduced.

Statement of problem

What is the optimal state, ¢(x,t) of the 1-D system whose dynamics are governed by

— t+u— —F =e¢, (1)

which lies close to some given observations, some initial conditions and some boundary conditions?The symbols have the following
meanings:

° gb unknown tracer concentration,
e u known, but constant advection speed,
e [ known source field, which may vary in time and

e ¢ unknown model error, which may vary in time.
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T —
X
X
B(t) X(Xi’ti)
X
X
X

00—

f I(x) t X

0 L

The (imperfectly known) information we have about the system is (see Fig.):

e o(x,0) =~ I(x) imperfectly known initial conditions (i.c.s), 0 <z < L,

e ¢(0,t) = B(t) imperfectly known boundary conditions (b.c.s), 0 <t < T, and

e y,, imperfect observation of the system (a direct observation of ¢(x,,,t,)), 1 <m < p.

The a-priori state ¢p(x,t) satisfies the known bits of the problem (the specified i.c.s and b.c.s, and (1) with e = 0):

oy 0
gf T aiB —F=0,  ¢p(z,00=1I(),  ¢8(0,1) = B(). (2)

The strong constraint formulation

The strong constraint formulation imposes the known parts of the system equations exactly (that is we assume that there is no
model error, even though in reality there nearly always is). We still allow for imperfections in the other pieces of information though
(i.c.s, b.c.s and observations). In order to find the optimal solution to the problem in this formulation, construct a functional f[¢]:

T

16l = Wi / a2 {é(,0) — I(2)}* + Whe / at{6(0,1) — B} +

=0 t=0
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Worn Z{¢($z’, ti) — yi}’. (3)

We ask the question: what ¢(z,t) makes f[¢] stationary, subject to the following model constraint:

do 0o
r,t)=—4+u——F =07 4
g(x,t) = 2 +ug (4)
The constrained minimization problem introduces a new functional, J, which is the sum of f and all of the constraint terms. Each
constraint term represents the constraint at a position and time and is represented as the product of g(x,t) and the Lagrange

multiplier, 2\(x, t):

Tox = flo+2 [ do [ atrzbgen),

= Wi | da{o(x,0) — I(x)}> + Whe / dt{¢(0,t) — B(t)}* +
Wob Z{gb(xz, t;) — yi}? + 2 / dx / dt Mz, t) (g—(f + u% — F) : (5)
=1 =0 t=0

This is standard variational calculus (see, e.g., the Aide Memoir handout). The problem now is to minimize (5) w.r.t. the fields

o(x,t) and A(z,t).

Variations of J (strong constraint formulation) Construct variations of J about some reference fields ¢, A, i.e. J[¢p +
60, A+ 0A] = J[@, A] + 6|5 5, where:

L

T L
0J
5;]‘5)’5\ = /d:z:/dta—(ﬁu;’ﬂéqb#—/daz
=0 =0

=0 t

at 27

o\ [5.30X + O(3¢%,50%, 6¢0N),

L —

t
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L T
— 2 / dr{d(x,0) — I(x)}6o(x,0) + 2Wh, / dt{B(0,1) — B(£)}d6(0, 1) +
=0 t=0
p
2I/Vob Z{¢ 5171, yz}5¢($27 )
i i 1T 06 o)
(%) Q/da;/m( ) (a—f+ aj>+
;vzg t:; )
Z/d:z:/dtc”\(a:,t) (?—f— %— >+O(5¢2,5A2,5¢5)\). (6)
=0 t=0

We impose the following conditions on A: A(z, T) = 0, A(L,t) = 0.

Changing form (strong constraint formulation) We would like to separate terms to do with d¢ at different positions
and times. The line marked (*) in (6) is not in the required form as it involves derivatives of d¢ in space and time. Use the
integration by parts formula to rewrite. In generic form this is:

b b
/vj—udx = [uv]® — /uj—vdx (7)

Using this to rewrite the first term in (*):

T T ~
N )
=0 =0

t t

= 6¢(x, )Nz, T) — d¢(x,0)A(z, 0) —

g\ﬂ
S
(o)
%\Qv
SE
=
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and the second term in (*):

/\

= wbp(L, )NL,t) — udd(0,)A(0,t) — [ da udgb—. (9)

Jla\h

Note also for the observation term:

dx

t

{B(i,t;) — yi}ogp(wi, ti) = dt {o(zi,t;) — yi Yo (x,1)0(x — 2;)6(t — t;). (10)

T

Using (8), (9) and (10) in (11) and noting the conditions on A given after (11):

L~
g\.ﬂﬂ

555 = 2Wm/dx{gb:1: 0) — I(x)}06(x, 0) +2Wbc/dt{¢ (0.£) — B(£)}56(0, 1) +

2Wo, / dx / dt > {(wi, ti) — yi}op(x, )8(x — x)8(t — t;) —
=0 t=0 =1
L L T 8A
2/d:c)\(:c,O)chb(:v,O)—Q/d:c/dta&b(x,t)—
=0 =0 t=0
T T L a;\
) / dt ud (0, £)56(0, 1) — 2 / dt / o S0(r, 1) +
t=0 t=0 =0
L T 3(& 8(5
2 / d:v/dt (EML%F) SA(z, 1) + O(5¢?, ON%, 60 N). (11)
=0 t=0
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The Euler-Lagrange equations for the strong constraint formulation Setting the linear part of (11) to zero, and
using the conditions on A, gives Euler-Lagrange equations for the strong constraint:

-

3¢ 3¢

A 8t “or
Wield(2,0) — 1(2)} ~ Mz.0) = 0,
Whe{0(0,1) — B(t)} — uA(0,¢) = 0,

~F =0,

L o ~
4 o\ O\
Nz, T) = 0,
AL,t) = 0.

(12) is known as the forward equation, and (13)/(14) are its initial/boundary conditions. (15) is known as the backward
equation, and (16)/(17) are its conditions. The solution to these Euler-Lagrange equations for ¢ solves the original problem that
we posed in Section 1 (with the assumption of a perfect model).

The weak constraint formulation

The weak constraint formulation imposes the known parts of the system equations approximately (that is we acknowledge that
there is unknown model error).

dt{p(0,t) — B(t)}? +

L~

Tl = W / A {o(r,0) — I(2)}? + W
=0

WobZ{ng(xi,ti)yi}2+We/Ldas/Td {—+ ——F}Q. (18)



21

Variations of J (weak constraint formulation) Construct variations of J about some reference field b, i.e. J[q3+ do] =
J[¢] 4+ 0.J|;, where:

L T
o,
5], = /dx/dta—¢\$5¢+0(6¢2),
0

dt{$(0,t) — B(t)}d¢(0,t) +

g\ﬂ

t

ZWOb/dx/dtZ{é(x,, D) —yitop(x,t)o(x — x;)6(t — t;) +

=0 t=0 =1
L T . .
0 0 ol o))
(%) 2We/da:/dt {8—f+ua—iF} {a—;bJr a—j}+0(5¢2), (19)
=0 t=0
Define: R X
. B dp 09
f(x,t) =W (EJru%—F) : (20)

(like the A(x,t) in (5)) where fi(z,T) =0, a(L,t) = 0.

Changing form (weak constraint formulation) Note that (*) of (21) is like (*) of (6) so change the form using the
integration by parts formula (7), making (21) into:

L

1] = 2We [ de{d(e.0) ~ I2)}56(.0) + 2Wie [ dH{50,) - B}oo(0.0) +

L T p

2Wo, [ da [ dt Y {d(zit;) — yi}0d(x, 1) (x — 2)5(t — t;) —

=0 t=0 =1
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dx

t

dx fi(z,0)0¢(z,0) — 2 dt %&b(:{:, t) —

1.
L~

dt

X

2

t

dt ufi(0,t)6¢(0,t) — 2 dx u%égb(w, t) + O(5¢%). (21)

—

L~
£ —= Tl:\..h

t 0

The Euler-Lagrange equations for the weak constraint formulation Setting the linear part of (21) to zero, using the
model equation (1), and definition (21) gives Euler-Lagrange equations for the weak constraint:

-

0 0 o _ g
A 8t+u8x F = W. L,
0

Wbc{é(()? t) o B(t)} - uﬂ(07 t) -

p N N
~ o o\
W, ;{qﬁ(% t:) —yiYo(x — x;)0(t — t;) — (E n u%> = 0,

\_ a(L,t) = 0.

Solving the weak-constraint Euler-Lagrange equations using the method of representers

The forward equation (22) is solved for &(x,t) 'upwards and to the right’ (since the conditions for ¢ are given for x = 0 and
t =0, see Fig.), and the backward equation (25) is solved for ji(x,t) "downwards and to the left’ (since the conditions for ¢ are
given for x = L and t = T, see Fig.).

Problem: In order to solve (22) for ¢(x,t), fi(x,t) is needed, but in order to solve (25) for ji(z,t), ¢(x,t) is needed! The set of
Euler-Lagrange equations must be all solved together.
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Recipe for the solution using the method of representers

1. Solve the background problem (2) for ¢p(x,t). This is an exercise in solving partial differential equations (PDEs) analytically
or numerically.

2. Define the p forward representer functions and the p backward representer functions (one each per observation) as:

Forward representer function r;(x,t)

: <i<p.
Backward representer function «;(x,t) } lsvsp

The modified equations that these representers satisfy are based on the Euler-Lagrange equations, but have ¢ — i, i — «,
F =0, I(z) = 0, B(t) = 0 and replace the observations with a single impulse at the position and time of the ith
observation (Wo, Y 0 {o(xi t;) — yi}o(x — x;)0(t — t;) — d(x — )d(t — t;)).

87“2- 87%'

5 + U = W, (28)

Wieri(x,0) — ai(z,0) = 0, (29)

Wheri(0,t) — uey;(0,t) = 0, (30)

5z — a;)8(t — ;) — (‘9;: + u%o;;> = 0, (31)
a;(x,T) = 0, (32)

ai(L,t) = 0. (33)

3. Start with the backward representers. Solve (31), (32) and (33) for each i 'downwards and to the left’ (again an exercise
in solving PDEs). This gives the p backward representers, «;(z,t). In the modified equations, the backward representers
do not depend upon the forward representers, 7;(z,t).

4. Now find the forward representers. Solve (28), (29) and (30) for each 7 'upwards and to the right’ (again an exercise in
solving PDEs). This gives the p forward representers, r;(x,t), which can be found because the «; are now known.

5. Look for a solution of ¢(x, t) (the field that we are really interested in) that is a linear combination of the forward representer
functions:

d(z,t) = dp(z,t) + Z Biri(z, t), (34)
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where the (3; are the coefficients which are determined by insisting that qg(:v,t) satisfies the Euler-Lagrange equations.

6. To make (34) satisfy the Euler-Lagrange equations, act with 9/9t + ud/dx on (34), then use (22), (2) and (31):

6¢ 8¢ _ 8¢B 8¢B . ‘ or; or;
o T Yar T o TYar +;@ ot T )

p
:>F+We_1ﬂ = F—i_ZﬁiWe_lai)

P
= j(x,t) = Zp;&ai(x,t). (35)
7. Substitute (35) into (25), then use (34) and (31):
W Z_f;{a%xi, ) — oo — )3l — 1) = ZB (5 +u5e)
= W, Zp:{cbg(%ti) +
Z Biri(ziti) — yi}o(x — ;)0 (t — t;) = zp; Bib(x — 2;)0(t — ;). (36)

8. Equate coefficients of impulses in (36):

Wop {¢B T, b +Zﬁj7nj Ty b)) — } = B,

= Wob {QSB('IZ') yz} +Z{W bTJ ml? )_ ZJ}BJ - 07 (37)

where 0;; is the Kronecker delta-function. This is the equation that we have to solve for the 3; coefficients. Once these are
known, the solution can be built using (34).
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Finding the coefficients Equation (37) is the remaining equation to solve. We will use some linear algebra (vectors and
matrices) to do this. This is a standard procedure in a wide range of numerical analysis problems. Let the vectors y € R?, 3 € R?
and @ € R? (bold symbols) represent the following collections of information:

Y1 ) ¢B(1,11)
y = y2 7 /8 — 52 : oBb _ ¢B(1’;27 t2)
Yp By ¢B(xp> tp)

These represent (respectively) the observations, the (as yet) unknown coefficients that we are trying to find and the background
values at the observation positions and times. The equations represented by (37) (1 < ¢ < p) may be written in linear algebraic
form:

Wob( (])Sb _y) + (WobP _I)/B =0,
where P € RP*P ig

ri(x,t) ro(xr,t) - rp(zr,th)
P r1(xe,ta) To(x2,t2) - Tp(x2,t2)
Tl(xmtp) 7’2(%7%) Tp(xpvtp)

and I € RP*P is the identity matrix. All of these vectors and matrices are known except for 3. Providing that the matrix
WopP — 1 is full rank, then the solution is found to be

B=Wop (WP -1)"' (y — o).



2(c) Cost functions and simplifications for operational assimilation

Weak constraint 4D-VAR
Joel¥] = 5 [x(0) —x5(0)]' P! [x(0) — x5(0)] +

[y(8) =y (x(8)]" Ry [y () — by (x(t)] +

N — DN =

E

t=0

T

N | —
(]~

t=1 t'=1

Here x is called the control variable and is the 4D state vector:

state

t=0 t=1 t=2 t=3 t=4
time

D () = My (x(t = I)]Q ) [x(¢) = Mycpy (x(t' = 1))].

26
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Simplification 3: Assume that the numerical model is perfect (strong constraint 4D-VAR)

1
Jelx] = 5(x = x5) BT (x - xp) + :
T (7]
1
5 > [y(t) = hy (Mco(x))] Ry x
=0 3 i 1 z
(t) = by (M o(x))]. ; ; ; .
Mg (- Moy (Mio(x)) t>0
Mt<—0(x) - { I F—0 - t=0 t=1 t=2 t=3 t=4
time
/- Xt(t)
/- XB(t>_Mt<-OxB<O)
/‘ Xy (t)
o= s\l
This is equivalent to making Q; — 0 in the weak constraint s’ Xl O

cost function.



Simplification 4: Incremental data assimilation

x(t) = x5 () + 6x(t).

Linearizing the forecast model: Linearizing the observation operator:
x(t) = Mpca(x(t—1)), y™ () = h(x(t)),

L) +0x(t) = My (x5t — 1)+ 0x(t — 1)), hy (% (£) + (1)) .
~ My ( vt 75— 1 ) + Mt<—t—15x(t - 1)7

12

12

Yreﬂk( ) + thx(t)v
5X(t) = Mt<_t_1(5X(t — 1),

ay™°(t) = Hpox(t),
where the reference state
Xr,ff(t) = M, ( ref(t — 1)) where 0y™°(t) = y™(t) — yffelﬁk(t),
oM 1 (x(t—1 oh,(x(t
and My 1 = . (1t(_(1) M| g and H, = —5}(( (Lf))) e RP™,
with matrix elements with matrix elements
O{ My (x(t— 1))}, 0 {hy(x(t))},
M _ . . — L . H .. pr L2
e T s = Tatan, |,

ref

hy (x7 () + Hyox(t),

28

By writing the background as a perturbation with respect to the reference state, xp(t) = %} (t) + dxp(t), and defining

Sy (t) = y(t) — hy (Myo(xh)), the strong constraint cost function becomes:



Ko Set x

ref
k+1

1
J4Dinc[5x] = 5((5}( — 5XB)TB71(5X — 5XB) +
T

1
2
t=0

The control variable is 0x = x(0) in this incremental formulation.
Later we will call dy(¢) — Hi M. gdx the residual vector, r(t).
JiDinc[0X] is exactly quadratic and so is easier to minimize than Jyp[0x].

If the value of dx that minimizes this is dxa (‘inner loop’), then the analysis is

XA = eref + 0Xap.

(t) = xa and repeat (‘outer loop’).

0y (t) — H:M, 06x]" Ry [6y (¢) — H,M,. (%] .

29



Simplification 6: 3D-VAR

state

4D-VAR time: t=0 t=1 t=2 t=3 t=4
3D-VAR time: t=-2 t=-1 t=0 t=1 t=2
T T
3D-VAR

4D-VAR

analysis time analysis time

30
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3. A-priori information and the B-matrix
3(a) The null space of the observation operator and the importance of a-priori information

Vi

Xy

Physical example of an observation operator and null space

Let

. - u\ uniform zonal wind ~— <
- v /  \ uniform meridional wind f_r ’

= measurement of wind component in a direction 6 from E,

<«

= FError variance of measurement.

<o

This measurement is given e.g. by a Doppler radar instrument.



North

e
.
.
.
.
.
.
.

.
.
.
.
-
.
.
o

East
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U is the unit vector in the line of sight of the radar beam,

A~

u =

(

cos 6
sin 0

)



3(b) The role of the background error covariance matrix

Pressure increment (long/lat) - Pot. T increment (long/lat)

Illlllllh"l-lll
norBRREESEREBRE

latitude
shnemrSERELEERRENE

longitude

Structure function i (in this case i is the pressure field at this position)

- Zonal wind increment (long/lat) Meri ind increment (lat/height)
o — 3,
T4 ?E-_
[ = |
82 T /:E-
56 sal
B = asl
44 B
-] 2 2
aa
2 w 3 ¥
§ = g b
20 18F
14 12
aj &
2 = of
-4 _I -8
e 120 150 180 210 240 270 300 120 150 180 HO 240 270 i
longitude longitude

In this case the wind part of the structure function is in geostrophic
balance with the pressure

33
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3(c) Spatial aspects (inverse Laplacians, diffusion operators)

Inverse Laplacians

Consider the following form of a B-matrix for a single field
(univariate):

4 -
COR = 7<I+§(V2)2) :
4 -
B=COV = Xy (I — 5(v2)2> ¥,
l4
B—l — 7—12—1 <I—f— §(V2)2) 2—1’

(where [ is the (chosen) correlation length-scale). What is the
result of acting with COR on the arbitrary function f(x) in
1-D?
tdt !
Let g(x) = COR{f(x)} = (1 n 5@) f(@).

This can be easily solved in Fourier space:

1 r tkx _L — eix
@) = <= / B JRe gla) = = / dk g(k)e™,

r ikx — l4 d4 — tkx
/dkf(k:)ek = <1+§@)/dkg(k)ek :
PEY
- / dk g(k)y ™! (1+—2 )

Multiply each side by e~*#, integrate over x, and use orthogo-

nality of complex exponentials:

a9 = (1475 )

Inverse Fourier transform this to get the result in z-space:

LF.T. {7 (1 - #) B f(k)} :

= LE.T. {c(k)f(k)} .
_ 1 dr' c(x — ') f(2'),

27

g(z) =

by the convolution theorem of Fourier transforms. c¢(x) is the
inverse Fourier transform of v/(1 + 1k%/2).



SPECTRAL SPACE

REAL SPACE
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60
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0.85

08
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Diffusion operators

Consider the following diffusion equation for integration from space, so use the convolution theorem again:
t=0toT": Do(e. 1) (.t
9 ZC,t g ZC,t o !
ot " a2 =0, 9(x,T) = Q—/dx’f(x’) c(x — ).

/i

k : diffusion co-efficient, initial condition g(z,0) = f(z).

The diffusion equation can be integrated analytically in Fourier c¢(z) is here the inverse Fourier transform of exp(—rk*T), which
space. For wavenumber k: is /7/KkT exp(—2%/4xT) (a Gaussian function with length-
scale v2kT'). The solution is thus:

0g(k,t _ _ 3
WD | wkglh.n),  a(k,0) = F(k)
1 / / N2
ntegrate from £ = 0 to T o(0.7) = o= [ do’ fla)exp((z =o' /4nT)
T T
/ dIng(k,t) +/1k2/ dt = 0, Note the correspondence between the convolution and action
=0 B =0, with a homogeneous covariance matrix (as in the previous section
Ing(k,T) —Ing(k,0) + kk"T" = 0, on inverse Laplacians), which means that the structure functions
g(k, T) _ J?(k) exp(—/ikQT). have the form:
To find the solution in real space, inverse Fourier transform the 1

N2
above. The right hand side is a product of functions in Fourier WGXP(_@: —@)°/4xT).
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For flows with small Rossby number, Ro = U/fL < 1, the momentum equations approximate to the following diagnostic

equations:

3(d) Multivariate aspects and balance
Example with perfect geostrophic balance

(this is geostrophic balance).
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Now derive the multivariate error covariances between positions i and j:

P — P COVS:
P — U COVS:
P — U COVS:
U — P COVS:
U — U COVS:
U — U COVS:
U — P COVS:
U — U COVS:
U — U COVS:

(0pidpj)

(Spiou;)
(Sp:0v;)
(6u;0p;)
(o)
(u;6v;)
(v:0p;)
(vi6u)

<6U¢6Uj>

1

1

fp
1

(
(

8yj

y;

f?p?
1

(

dy; Oy,

Aop;
Spiad ) =
p 8xj>

65])15 j>:_1 0

>_

_fzpz

7
I

1

8yi 6£Cj

9opi;
_p(;pj>

(9332-

>:

1 0

f2p2

1

(9@- @yj

(95]91‘ 35pj

f2p?

(

81’2' (9:133'

>:_
>_

ng,ij (by definition),

0p; aépj> =

fooy;
1 0?
f2 2 8?/28%

1 82
f2p? 0,01

(6pidpj) =

1 9?

1 o

(0pidpj) =

fp Oy

2 4
0p 07

f2p? 0y;0y;’

2

0, 0

2 42
0, 07 pij

[2p?0x;0x;

2?00y,
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Note the following first and second derivatives of u:

Ontig
8@-
Ontig
8:13]'
O
Y
Opij
9y;
02 i,
ij
8%8%’
0*puij

(z; — ;)
s

(zi — ;)
:UJijTja

(vi — ;)
_NijTja

(yi — vj)
,uijij

Hij (1 N xj)2)
L2 I? !
ij (1 (i yj)z)
L2 L? !

(zi — ) (yi — y))

1] L4 Y
(i) (g — )
MU L4 :
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Example structure functions giving the output field (p, u or v
down the side) associated with a point in the centre of the do-
main (either of p, u or v along the top). Red is positive, blue is
negative.

p u v
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3(e) Control variable transforms and the implied B-matrix

/Sglving a variational problem using CVTs involves the following steps: \
e Assume that we know the CVT, U, and its adjoint and that they are practical to apply.

e Minimize J[dx] with respect to varying dx. The cost function is:

1
J[ox] = §5XT5X+

1

T
5 Z Oy (t) — HM,oUsx]" R, [6y (1) — HM, (Udx].
=0

e The analysis increment in control variable space that minimizes the above is dx .

e The analysis in model space is xy = xp + Udx,.

e This is equivalent to minimizing the original cost function J[0x]| with the implied background error covariance matrix

\_ By, =UUT -

Example of the CVT method to model horizontal background error covariances (e.g. for pressure, p)

See Fig. for definitions of angles and lengths in real and A A
Fourier spaces. Note the following: s >
: E
S dr e k
3 =
o
:
Az cos 6 dr : K
— — x >
Ar (Ay) AT(Sme)’
- () n ()
k, sin 0y, 0, 0,
dk = KdKdb. > >

X-position x-wavenumber k_
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What is the saving of this CVT method of modelling e No. of pieces of information needed for CVT: ~

B compared to an explicit matrix method? No. of total wavenumbers needed to know \,(K) ~
e No. of grid points: n, X n,. V2n,.
e No. of pieces of information in dx: 3 X n, X n,. If n, = 1000, then

e No. of pieces of information in dx: n, X n,.
P X T Y e No. of independent elements in explicit B: ~ 5 x 10'2.

e No. of independent elements in explicit B: ~
3 (3 X ng x ny)2 ~ In} (assuming n, ~ ny). e No. of pieces of information needed for CVT: ~ 1500.

Operational CVTs

e The Met Office use a similar approach in its operational 4D-VAR and 3DFGAT systems. Geostrophic balance (imposed
weakly) and hydrostatic balance are used. The spatial component includes a similar approach as shown above (spectral
space) for the horizontal structure of background error covariances, and vertical modes (empirical orthogonal functions) for

the vertical structure. Lorenc A.C., Ballard S.P., Bell R.S., Ingleby N.B., Andrews P.L.F., Barker D.M., Bray J.R., Clayton A.M., Dalby T., Li D., Payne T.J.,
Saunders F.W., The Met Office global 3-dimensional variational data assimilation scheme, Q.J.R.Meteor.Soc. 126 pp.2991-3012 (2000).

e The ECMWEF use similar balance relationships, but use a spatial component that makes use of wavelets. Fisher M., Andersson E.,
Developments in 4d-Var and Kalman filtering, ECMWF Research Report No. 347 pp.36 (2001).

e The diffusion operator approach is used in ocean data assimilation systems. Weaver A.T., Deltel C., Machu E., Ricci S., Daget N., A
multivariate balance operator for variational ocean data assimilation, Q.J.R.Meteor.Soc. 131 pp.3605-3626 (2005).

3(f) Conditioning of the variational problem

The rate of convergence of the variational problem is affected strongly by the conditioning of the variational problem. Consider
the case when dx is the control variable. A Taylor expansion of J(x) with respect to perturbations dx about x is:

oJ 1. 0%
J(x+0x) = J(x) Dox ) ox  + 55}( el 0X.
gradient Hessian
vector matrix

(I1x1) (Ix1) (Ixn)(nx1) (Ixn)(nxn)(nx1l)
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The Hessian matrix is an n X n matrix that describes all possible second derivatives of J with respect to the control variable
elements:

2y g
0z 02102 0x10%,
2 At Vi
072071 0z3 02207,
00x? 5 S ’
I VR
0xp,0x1 Ox,0% ox2

and describes the eccentricity and orientation of the ellipsoids that describe surfaces of constant J in phase space. In particular,
the condition number is important:

. maximum eigenvalue of the Hessian
k = condition number =

minimum eigenvalue of the Hessian

e If kK =~ 1, then the variational problem is well conditioned and it will be possible for the solution to be found to a high
accuracy.

e If x> 1, then the variational problem will converge slowly and it is hard for the solution to be found to a high accuracy.

Low condition number High condition number

V.J

=/



The following table compares weak constraint 4D-VAR with dx and dx as the control variable.

’ ‘ 0X ‘ 0x
Hessian 1+ , U™, H'R;"HM, U B+ ML HIR,THM,,
min eigenvalue X > A >0
max eigenvalue pY. 9 A ax > 1in practice
condition No. AX. /1~ XX AX /0T — oo




Operational algorithms

OBS

QUALITY
CONTROL
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-

ANALYSIS ALGORITHM

~

[ T
Vesxjo:_UTZ Mf(-()HtTRtlr(t)]
=0

A

VMJ:VMJB V ]
~ o T.=9
[ ¥V J, 0%/ B=OX [INITIALIZATION]
{ !
DESCENT ,[ g Bx]
ALGORITHM
[:_ v
e [6X')6X+A6X] RESIDUALS [ FOREC,Z\ST ]
< = r(0)=y(1
INNOVATIONS —H.M, ,Udy Xp
dy(t)=y(t) t=0,T
_htMt(-0<xB> \ /
t=0,T g

J




45

5. Measuring the B-matrix

5(a) Analysis of innovations

(a) (b)
1.0 1.0
0.8+ 200 mB 0.8 200 MB
S ™ = i
= 0.5 — P
E.ﬁ Nalh = 0.6 \
1 1 o \
Ll \55 e 1 o
e e Ko oz 0.4 5
8 \\Qm ﬁ__t s
] ] N\
b2 S i, QUE L
I s r L
0.04— Lol el 95 o2 oigh 05 62 ~ P . Car
B 3 2 mﬂ%%%“—._ reeis ) ST — 7._xq\_., e _7#‘_3:‘,,_'?@—11“&?’“'%- - ; .
1 ﬂ< "-,n_'_":_’ﬂ'““'.fw' oi06
7 -0.2 T | ST T B PRSI O
0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000
DISTANCE (KM) DISTANCE (KM)

e The H+L method was popular in the 1980s and 1990s.
e It replies on a huge number of direct (in-situ) observations.

e Not useful in practice to probe flow dependence of B, or B in unobserved regions.
® Hollingsworth A., Lonnberg P., The statistical structure of short-range forecast errors as determined from radiosonde data. Part I: The wind field, Tellus 38A pp.111-136

(1986). Lonnberg P., Hollingsworth A., The statistical structure of short-range forecast errors as determined from radiosonde data. Part Il: The covariance of height and
wind errors, Tellus 38A pp.137-161 (1986).

5(b) The NMC method

Propose a proxy for forecast error:
NMC . 48 24
n ~x; (0) —x;i7(0).



| M—24(-—48 I MO‘-—24
I 1 ;
x,(—48) Xf (0)
,nNMC:x;IB(O)_X?4(O)
| MO(——24 -
: 24
Xa(—24) x;'(0)
| | | g
time
-48 h -24 h Oh
5(c) Monte-Carlo (ensemble) method
Generate an ensemble that ideally simulates all known possible forecasts
sources of forecast error. att=0
A (output population)

possible analyses
att=-T
(input population)

state

46

time
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For the ith ensemble member (1 <1i < N): — Multi-model /multi-physics methods (these use dif-

0 0 0 ferent models, different parameterizations or differ-

Xt 4 0t) = Mo (X (t)) +e"(t), ent parameter values of the parameterizations for

integrated from ¢t = —T to t = 0. The following sources of error e?ch(i)e(zjembh methods to approximate the effect
are considered: ore )

e Initial condition error, 5XX)(—T), eg. — Stochastic kinetic energy backscatter (SKEB) meth-
ods (forecast models do not represent the energy well

X(i)(_T) =xa(=T) + 5XX)(_T): at scales close to the grid-scale - leading to signifi-

where cant model errors; SKEB injects kinetic energy into
N the model to try to make up for this).
S ox (-1 (-T) ~ PA(-T) . |
N —1 A A A ' — Stochastically perturbed tendencies (SPT) (tenden-

‘:1 - . - -
! cies from the - imperfect - parametrization schemes

All errors inherited from previous DA cycles are represented are scaled and added as possible model errors).
as initial condition errors.

e Model error, the integrated effect of e()(¢). The model

error is unknown, but can be included stochastically dur- e Other errors (e.g. boundary condition perturbations for
ing the integration of the model. Practical methods of limited area models, perturbations to the unknown forc-
implicitly approximating model error include: ings of the model).

6. Hybrid (var/ensemble) formations

6(a) Basic ideas

Let us consider the pros and cons of variational data assimilation and ensemble data assimilation (such as the ensemble Kalman
filter discussed in part Il of this course).



VARIATIONAL DATA

ENSEMBLE KALMAN

ASSIMILATION FILTER
1. Efficiency Good Good
2. Data voids Reverts to the background state, | Reverts to the background state,
XB XB
3. Processing Continuous (within assimilation Intermittent
window)

4. Scaling for parallel
computing

Limits to scaling

No limits to scaling

5. Errors in inputs

Allows for errors in xg and y

Allows for errors in xg and y

6. Errors in model

Accounted for in WC 4D-VAR

Accounted for

7. Indirect observations

Yes

Yes

8. Balance and smoothness
of analysis

Yes

No, unless N is sufficiently large

9. Flow dependent
background error
covariance matrix

No, P! is approximated by B

Yes, P! is approximated by P? N)

10. Rank of background
error covariance matrix

Full rank

rank < N

48

* These issues are related. The aim of hybrid data assimilation is to combine VAR with an ensemble to get the best bits of

each approach.
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Variational assimilation structure functlon Ensemble-derived structure function (N = 24)
' 0.0090 o : : : o ' T os750
0.0078 ] F 0.7500
0.0065 0:6250
0.0052 F
0.0039 60 4 g g.iggg
0.0026 0:2500
8 0.0013 o ] 0.1250
E 0.0000 S 50 3 0.0000
3 —0.0013 "8 ] -=0.1250
—0.0026 - ] -0.2500
-0.0039 40 -0.3750
—0.0052 1 -0.5000
—0.0065 ] —0.6250
-0.0078 304 F -0.7500
—0.0090 1 E —0.8750
—0.0103 T T T T T ! —1.0000
-0 L © >0 60 —40  -20 ) 20 40 60
Longitude Longitude
(c) v—p correlation (NAE)
e Full rank, but not flow dependent. tor —— ———
o 1 24—members
[} L
ST
RS SR Y /28R W et (| S B 15—members
O 9o T
=l
SH S SRRV E7/ S B I BN 05—members
sk ]
theoretical
—‘;O- 1 i ! "I ) 1 .’I
-40 -20 o 20 40 60
longitude

e Flow dependent, but rank deficient.

In the hybrid solution, we solve a VAR-like problem but B — PH.

PY=aB+ (1 - a)PigN), where 0 < o < 1.
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6(b) Incorporating a simple hybrid scheme in VAR

In order to use PH = aB + (1-— a)PﬁN) in variational assimilation, PY needs to be made compatible with the control variable
transform (CVT).

Recall from 3(e), B is modelled by minimizing the cost func- Now consider the following cost function and modification to the
tion with respect to a control variable dx: control variable and its CVT:

1 1
1 JUOXMT = 50X a0 Xvar T 50 XensOXens +
J[ox] = §6XT6x+ 2 2

T 1 He H1T -1
%Z Gy (t) — HyM,. qUsx] R " x 5 ZO: [0y (t) — HM,,U'ox"| R;' x
= [0y (t) — HiM:oU"ox"] |

where 6x = UMoyH,
and (ox"ox") = 1,

[0y (t) — HiMyoUdx],
where 0x = Udy,
and <5x5XT> = I

but now ox! = ( g;("ar ) : Xar € R, 0Xons € RY,

B, = UUT. and UM = ( VaU V32X > .

and the implied background error covariance matrix is:

What is the implied background error covariance matrix of this scheme?

BE = (oxoxT) = UM (5x o) UHT = UHUHT,
T
_ (vau Jimx) o VeU Y L g, Lo

The first term contains UUT, which is the implied background error covariance matrix from the pure variational scheme, and the
second term contains XXT /(N — 1), which is the ensemble-derived background error covariance matrix (we used this notation
in section 3(b), and in problem 11).
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6(c) Incorporating a localized hybrid scheme in VAR
The ensemble contribution to the hybrid covariance is noisy when N is small. How can we mitigate this noise?

e A statistical result tells us that the error in the sample correlation between two variables x and y has expectation

(1 —cor®(z,y))/vVN — 1.
e For a given N, sampling errors are expected to be largest when the correlations are close to zero.
e Correlations are expected to be smaller at larger separations.
e 'Localization’ artificially reduces covariances between variables separated by large distances.

Let = np(r;) and y = m(ra2). The raw covariance between x and y is:

N
1 i i
Pl (r1r2) = = > 71 (r)g (r2).
1=1

For the covariance actually used in the hybrid scheme, we wish to multiply this by a moderation function that decreases with
separation between r; and ro: (ry,re) = prescribed function of |r; — ryf, 0 < Q(ry, ry) < 1. The covariance used is then:

P?JIV) (I'l, 1'2) = P€N) (I’l, I'Q)Q(I‘l, 1'2).

This is for a particular matrix element. For the whole covariance matrix, introduce the Schur product of matrices:

fl pf nxn
PIl =Pl 00  QcR""

How do we incorporate this into the CVT?
This section is provided for information only. In outline:

e We know that P!y, = 71 XXT, P e R™", X € RV,

e Now suppose that we can decompose €2 in terms of M members in Y: Q2 = ﬁYYT, Qe R Y € RVM,
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e Then the localized background error covariance matrix is:

£l pf
P(N) = P(N) O Q,
1 1
= [ —XXT YY?
(=) e (=)
1
= XX o (YYT).
= =1 X e (YY)
. . . I n
e It is possible to construct a new matrix X such that P(N) = WXQXT, X € RWNM,
e This new matrix has the form:
T T T T T . T
1 1 1
X = 77](3) o y(l) 77%) o y(z) 77](3) o y(M) 77](3) o y(1) 77](3) o y(M) 77](3 )6 y(M) :
l b b 1 1 b

where ng) is the ith column of X and y@) is the jth column of Xg. There are other compact ways to write this matrix:

Buehner M., Ensemble derived stationary and flow dependent background error covariances: Evaluation in a quasi-operational NWP setting, Q.J.R.Meteor.Soc. 131

pp.1013-1043 (2005).

e The localized hybrid scheme is then the same as the unlocalized one, but with

— the N-element part of the control vector dx! relaced with an N M-element control vector, and

@/ ~v—1X in the CVT replaced with \/ }_&4 )XQ.

N.B. There are other ways of representing a hyrid system in terms of control variables: Lorenc A.C., The potential of the ensemble Kalman filter
for NWP - a comparison with 4d-Var, Q.J.R.Meteor.Soc. 129 pp.3183-3203 (2003).

7. Data assimilation diagnostics

e What can go wrong with a data assimilation scheme? For a strong constraint 4D-VAR, e.g.:
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— Incorrect error covariance matrices.

— Non-Gaissian or biased errors in the background or the observations.
— Errors in M, h, M or H.

— Strong non-linearities in M or h.

— Variational procedure not converged to the minimum.

— Background and observation errors are correlated.
e How can we assess if a given data assimilation scheme is sub-optimal? E.g. for variational data assimilation:

— Bennett-Talagrand diagnostic.

— Desrozier's diagnostics.

7(a) The Bennett-Talagrand theorem!

Twice the cost function value at the minimum (i.e. at the analysis) for an optimal assimilation system is a random variable
that obeys x? statistics and therefore has a particular expectation value?. Statistics tells us that the expectation value of a 2
distribution that results from a fit of v degrees of freedom to ¢ pieces of data is £(2Jmm) = ¢ — v. The data assimilation problem
tries to fit v = n pieces of information to ¢ = n + p pieces of information (the background state and the observations). Then,
E(2Jmin) = n+p—n = p. Therefore the expected value of Jy, is

p
g(Jmin) = 5

If a given assimilation run does not give a value of Jy;, close to this value then it is an indication that something is wrong with
the data assimilation. This can also be proved directly for the data assimilation problem (the Bennet-Talagrand theorem).

1Based on notes by T. Payne, Met Office

2For any one assimilation, there will be one value of the cost function at the minimum, so what do we mean by the “expected value of the cost function at the minimum?
Imagine doing a very large number of assimilations of the same situation, but each with slightly different backgrounds and observations (where perturbations are consistent with
the background and observations error covariance matrices). This is like doing different data assimilation runs in parallel universes. The expected value of the cost function at
the minimum is the average of these experiments.
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This section is provided for information only. Assume a data assimilation system that is optimal (e.g. all error covariance
matrices are correctly specified). Then

x, — X, = K(y — Hx;,) where K = BH' (R + HBH') . (38)

We wish to evaluate the expected value of the cost function at its minimum, x = x,. This expected value is written £[J (X, )]
and the cost function at the analysis is (given a specific background state and set of observations)

J(Xa) = {b(xa) + JO(Xa)a (39)
where Jy(x,) = o (%a xp) ' B! (%, — x31) (40)
and J, (x,) — % (y — Hx,) TR (y — Hx,). (41)

The analysis, background and observation errors are (again given a specific background state and set of observations)
Ea = Xa — Xt, Ep=Xp—Xi, & =Yy — Hx. (42)
The analysis error can be developed as follows using (38) and (42):

€a = Xu— Xp+Ep :K(y—HXb)+€b,
K (y — H(xp, — x¢) — Hxy) + &p,
= K(eo, —Hey) + e, = (I —-KH) ey, + Ke,,. (43)

Equations (40) and (41) are inner products. To evaluate them, the following identity is useful
u'Cv = Zui@jvj = tr (CvuT) . (44)
]
The background term

The expectation of the background term (40) is, using (44):

Elh(x.)] = %5 [tr (B_l(xa — Xp) (x4 — Xb)T)} = %tr (B_lg [(Xa — Xp) (x4 — Xb)T]) ,
= %tr (B™'E [(ea —eb)(ea — 1) ']) . (45)
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where (42) have been used for the last line. Part of the last line is the expression &£[(g, — €1,)(€a — €1) 1] which may be developed
using (43)

El(ea—ev)(ea—en)'] = Eleacs +evEn — Caly — EbEa | 5

= I-KH) [eey] I—KH)" + KE [eog, | K" + € [eney |
—(I—KH)E [evey] — € [evey | T - KH)',
= I-KH)BI-KH)" + KRK'+B - (I-KH)B - B(I - KH)",
— B+ KHB(KH)' - B(KH)! - KHB+ KRK' +B - B
+KHB - B+ B(KH)",
— KHB(KH)" + KRK".
These steps assume that background and observation errors are mutually uncorrelated. Using the definition of K (38) turns the
above into:

El(ea—ev)(ea—ep)'| = BH'(HBH' + R) 'HB(BH'(HBH' + R) 'H)"
+BH'(HBH' + R)'R(BH'(HBH" +R)™ "),
— BH'(HBH' + R) 'HBH'(HBH" + R) 'HB
+BH'(HBH" + R) 'R(HBH' + R) 'HB,
= BH'(HBH' + R) 'HB = KHB.

Inserting this into (45) gives
1
Elh(xl)] = étr(B_lKHB). (46)

Note the following identity, which holds for matrices E and F, where Eisr x sand Fis s x r

j=1 i=1 i=1 j=1

i.e., the order of the operators inside the trace can be reversed. Applying this to (46) gives

By (x.)] = %tr(KH). (48)
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The observation term

The expectation of the observation term (41) is, using (44):

g[JO(Xa)] = £ [tI‘ (R_l(y - Hxa) (y T HXa)Tﬂ )
TE (y — Hx,)(y — Hxa) ')

tr (R7'€ [(go — Hey) (s, — Hey) ') . (49)

I
M| — O] O]
-+
=
oy

where (42) have been used for the last line. Part of the last line is the expression &[(g, — He,)(e, — He,)t| which may be
developed using (43):

El(eo — Hey)(go — Hel)'] = HE[eael [H + Eleoel] — HE[eael] — Eleoet [HY,
= H{I-KH)E[ael ]I - KH)" + KE[e el JKT Y H?T
+&[eoel] — HKE[eoel] — EleoelJTKTHT,
= H{I-KH)BI-KH)"+KRK"'JH" + R - HKR - RK'H",
— HBH' + HKHB(KH)'H' - HB(KH)'H' - HKHBH"
+HKRK'H' + R - HKR - RK'H".
These steps assume that background and observation errors are mutually uncorrelated. Using the definition of K (38):
El(eo — Hey)(eo — He,)'] = HBH' + HBH'(HBH' + R) '"HBH'(HBH' + R) 'HBH'
~HBH'(HBH' + R) 'HBH' - HBH' (HBH"' + R) 'HBH"
+HBH"(HBH' + R)'R(HBH" + R)"'HBH' + R
~HBH'(HBH' + R) 'R - R(HBH" + R) '"HBH".
Merging the 2nd and 5th terms leads to
El(eo — Hey)(so — Hey)'] = HBH' + HBH'(HBH' + R) '"HBH'
~HBH'(HBH" + R) '"HBH' - HBH'(HBH' + R) 'HBH"
+R -HBH'(HBH' + R)"'R - R(HBH' + R) '"HBH".
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Further simplifications can be made by merging the 3rd and 6th terms and the 4th and 7th terms

El(eo — Hey) (e, — He,)'] = HBH' + HBH'(HBH' + R) 'HBH'" - HBH' - HBH' + R,
= HBH' {(HBH' + R) 'HBH' — I} +R. (50)
Consider the term inside the curly brackets in the above:
(HBH'" + R)"'HBH" -1 = (HBH' +R) 'HBH' — (HBH' + R)"'(HBH" + R),

— (HBH' +R) ![HBH' - HBH" — R],

— —(HBH'" +R)'R.
Using this to rewrite (50):

El(eo — Hey)(eo — Hey)'] = ~-HBH'(HBH' + R) 'R + R,

and then substituting this into (49) and then using (47) gives

El(x)] = tr (R™'[-HBH'(HBH' + R) 'R 1 R]),

1
= Str (-HBH'(HBH' + R)™' +1),

= %tr (-HK +1) = % (—tr(HK) +p) = 5 (~tr(KH) + p) , (51)

1
2

where p is the number of observations.

The sum of the background and observation terms
The sum of the background and observation terms is (using (39), (48) and (51)):

E(J(xa)) = E(D(xa)) +E(Jo(xa)) = %(tr(KH) — tr(KH) +p) = g-

This is a very involved derivation, but leads to the very simple result that the expectation of the minimum of the cost function
has value equal to half the number of observations. Some people have called this the Bennett-Talagrand theorem. If the value of
the cost function at the minimum does not have this value in practice then this is an indication that the error characteristics of
the data assimilation do not match those of the actual data, or other things are wrong with the set-up like the forward operator,
H. Note that this result applies to systems that are Gaussian and linear.
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Desrozier’'s Diagnostics?
Desrozier diagnostics use the following quantities calculated for a data assimilation run (all in observation space):

e Innovations (observation minus background): df =y — Hxq,.
e Analysis increment (analysis minus background):d} = Hox,.

e Residuals (observation minus analysis): dS =y — Hx,.

The covariances of these quantities reveals the consistency (or inconsistency) of the data assimilation. E.g. for 3D-VAR:

| Covariance | Actual result (sub-optimal) | Result if optimal |
{dode™ R + HBH" R + HBH"
£{d2doT} HBH'(HBH" + R) (R + HBH") HBH"
g{dodeT} (I-HBH"(HBH" + R) !)(R + HBH") R
£{dzd°"} |HBH'(HBH' + R)"'(R + HBH")(I - HBH"(HBH" + R)~)T HAH”

Here B and R are the true background and observation error covariances matrices, and B and R are the ones assumed for
the data assimilation. H is assumed perfect.

This section is provided for information only. Proofs of these results are as follows. Consider a sub-optimal variational data
assimilation scheme where the specified statistics (indicated with hats) may have been given incorrectly. Consider the following
analysis increment that result:

0Xy = Xy — X} = Kdg,
where the Kalman gain used in the assimilation is
K = BH'(HBH' +R)™, (52)

and d? is the innovation vector (observation minus background - see below). B and R are the (potentially incorrect) background
and observation error covariance matrices that are actually specified in the data assimilation (and K is the Kalman gain that

3Desroziers G., Berre L., Chapnik B., Poli P., 2005, Diagnostics of observation, background and analysis-error statistics in observation space. Q.J.R. Meteorol. Soc. 131,
3385-3396.
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follows). B and R (without the hats) are the correct background and observation error covariance matrices and K is the correct
Kalman gain (38) that follows. We now examine various 'difference statistics' in observation space.

O-B, A-B, O-A expressions
The "observation minus background’ difference in observation space is:
g =y — Hx, ~ ¢, — H&b, (53)

where &, is the observation error, and ey, is the background error as in (42). We now express other important differences in terms
of the innovations. The "analysis minus background’ difference in observation space is:

d® = Hox, = HKd?, (54)
and the "observation minus analysis’ difference in observation space is:

d; = y—Hx, =y — H(xp + x,)
— d? — HKd} = (I - HK)d{. (55)

The vector dy is otherwise known as the ‘innovation vector’ and the vector dj is otherwise known as the "residual vector’. The key
thing is that these vectors are measurable directly from an existing data assimilation system. We will now use their equivalents in
the above to see what we can learn about the system.

Measured statistics

Now we have these expressions, let us look at their covariance statistics.

O-B \ O-B statistics Assuming that background and observation errors are uncorrelated, the covariance matrix between dj
and d are*:

“The & operator performs an average over a population of realizations of the assimilation system (as though we had access to results from parallel universes). In practice
though we do not have access to parallel universes so instead the average is taken between pairs of different observations that have (say) similar separations.



E{dede™} = &{(e, — Hey) (e, — Hey) '},
Eleoel) — E{eoef YHT — HE{epel} + HE (el JHT,
= R+HBH".

A-B \ O-B statistics Using (54), (56) and (52), the covariance matrix between df and df are:

g{dideT) = HIi{g{dgdgT} = HAK(R +HBH"Y),
= HBH'(HBH' + R) (R + HBH").

If B=B and R = R then this becomes
g{didy'} = HBH'(HBH' + R) '(R + HBH') = HBH"'.
O-A \ O-B statistics Using (55), (56) and (52), the covariance matrix between d? and df, are:

E{d°d?™} = (I-HK)E{dPd?T} = (I - HK)(R + HBHY),
— (I-HBH'(HBH' +R)™)(R + HBH").

If B=B and R = R then this becomes:

R.

E{d°dT} = (I - HBHT'(HBH' + R)!)(R + HBH")

A-B \ O-A statistics Using (54), (55), (56) and (52), the covariance matrix between d} and dy are:

E{d}d°T} = HKE{dd)THI - HK)T = HK(R + HBHT)(I — HK)",

— HBH'(HBH' +R) (R +HBH")(I- HBH'(HBH' + R) )T,

If B= B and R = R then this becomes:

£{d:d°"} = HBH'(I1 - HBH'(HBH' + R)™)T.

60

(56)

(57)

(58)



61

By writing I = (HBHT + R)(HBHT + R) ™! then the above becomes:

£{d:d°"} = HBH'((HBH' + R)(HBH' + R)™! HBHT(HBHT +R) HT,
HBH'(HBH' + R — HBHT](HBHT +R)HT,

= HBH'(R(HBH' +R) )T,

= HBH'(HBH' +R) 'R.

Note that the inverse Hessian has the form A~! = B~! + H"R'H and the Sherman-Morrison-Woodbury formula in terms of
A~lis A-'BHT = H'R (R + HBH?'). This makes the above into:

£{drde'} = HAH', (59)

which is the analysis error covariance matrix in observation space.
These results are important because they allow the error statistics to be checked. If (57), (58) or (59) are not satisfied then

the assumptions that B=Band R=R may not be correct. Even in this case, these equations can help us to improve the error
statistics in the ways discussed in the Desroziers et al. paper.



