MATHEMATICAL AIDE MEMOIR FOR DATA ASSIMILATION

DAIMG MSc programme, Univ. of Reading, RNB

1. Vectors and matrices

1.1. Vector representation of information.

$$\mathbf{v} = \begin{pmatrix} v_1 \\ \vdots \\ v_i \\ \vdots \\ v_n \end{pmatrix}, \quad \mathbf{v} \in \mathbb{R}^n, \quad v_i = (\mathbf{v})_i.$$

1.2. Matrix operator.

$$\mathbf{N} = \begin{pmatrix} N_{11} & \cdots & N_{1j} & \cdots & N_{1n} \\ \vdots & \ddots & \vdots & \vdots & \vdots \\ N_{i1} & \cdots & N_{ij} & \cdots & N_{in} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ N_{m1} & \cdots & N_{mj} & \cdots & N_{mn} \end{pmatrix}, \quad \mathbf{N} \in \mathbb{R}^{m \times n}, \quad N_{ij} = (\mathbf{N})_{ij}.$$

$$\mathbf{v}^{\mathrm{b}} = \mathbf{N}\mathbf{v}^{\mathrm{a}}, \quad \mathbf{v}^{\mathrm{b}} \in \mathbb{R}^{m}, \quad \mathbf{v}^{\mathrm{a}} \in \mathbb{R}^{n}, \quad v_{i}^{\mathrm{b}} = \sum_{j=1}^{n} N_{ij}v_{j}^{\mathrm{a}}, \quad 1 \leq i \leq m.$$

1.3. Identity/unit matrix.

$$\mathbf{I}_{p} = \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{pmatrix}, \quad \mathbf{I}_{p} \in \mathbb{R}^{p \times p}, \quad (\mathbf{I}_{p})_{ij} = \delta_{ij}.$$

1.4. Matrix addition.

$$\mathbf{N} = \mathbf{N}^{\mathrm{a}} + \mathbf{N}^{\mathrm{b}}, \quad N_{ij} = N_{ij}^{\mathrm{a}} + N_{ij}^{\mathrm{b}}, \quad \mathbf{N}, \mathbf{N}^{\mathrm{a}}, \mathbf{N}^{\mathrm{b}} \in \mathbb{R}^{m \times n}.$$

1.5. Matrix multiplication.

$$\mathbf{N} = \mathbf{N}^{\mathrm{a}} \mathbf{N}^{\mathrm{b}}, \quad N_{ij} = \sum_{k=1}^{p} N_{ik}^{\mathrm{a}} N_{kj}^{\mathrm{b}}, \quad \mathbf{N} \in \mathbb{R}^{m \times n}, \quad \mathbf{N}^{\mathrm{a}} \in \mathbb{R}^{m \times p}, \quad \mathbf{N}^{\mathrm{b}} \in \mathbb{R}^{p \times n}.$$

In general, matrices are non-commutative $\mathbf{N}^{\mathbf{a}}\mathbf{N}^{\mathbf{b}} \neq \mathbf{N}^{\mathbf{b}}\mathbf{N}^{\mathbf{a}}$. Pre-multiplication by the identity matrix gives $\mathbf{I}_{p}\mathbf{N}^{\mathbf{b}} = \mathbf{N}^{\mathbf{b}}$ and post-multiplication by the identity matrix gives $\mathbf{N}^{\mathbf{a}}\mathbf{I}_{p} = \mathbf{N}^{\mathbf{a}}$. Multiplication by a scalar gives $(\alpha \mathbf{N})_{ij} = \alpha N_{ij}$.

1.6. **Matrix adjoint.** The matrix adjoint makes rows into columns (and vice-versa), and does a complex conjugate on each element.

If
$$\mathbf{N}^{\mathrm{b}} = \mathbf{N}^{\mathrm{a}\dagger}$$
, $N_{ii}^{\mathrm{b}} = N_{ii}^{\mathrm{a}*}$, $\mathbf{N}^{\mathrm{b}} \in \mathbb{C}^{m \times n}$, $\mathbf{N}^{\mathrm{a}} \in \mathbb{C}^{n \times m}$.

$$\mathbf{N}^{\mathrm{a}} = \left(\begin{array}{ccc} N_{11}^{\mathrm{a}} & N_{12}^{\mathrm{a}} & N_{13}^{\mathrm{a}} \\ N_{21}^{\mathrm{a}} & N_{22}^{\mathrm{a}} & N_{23}^{\mathrm{a}} \end{array} \right), \quad \mathbf{N}^{\mathrm{b}} = \left(\begin{array}{ccc} N_{11}^{\mathrm{a}*} & N_{21}^{\mathrm{a}*} \\ N_{12}^{\mathrm{a}*} & N_{22}^{\mathrm{a}*} \\ N_{13}^{\mathrm{a}*} & N_{23}^{\mathrm{a}*} \end{array} \right).$$

If $\mathbf{N}^{a} = \mathbf{N}^{a\dagger}$ then matrix \mathbf{N}^{a} is self-adjoint/Hermitian (only square matrices can be Hermitian). If the matrix is real then the matrix adjoint is the same as the matrix transpose.

1.7. Matrix transpose.

$$\text{If } \mathbf{N}^{\mathrm{b}} = \mathbf{N}^{\mathrm{aT}}, \quad N_{ij}^{\mathrm{b}} = N_{ji}^{\mathrm{a}}, \quad \mathbf{N}^{\mathrm{b}} \in \mathbb{R}^{m \times n}, \quad \mathbf{N}^{\mathrm{a}} \in \mathbb{R}^{n \times m}.$$

$$\mathbf{N}^{\mathrm{a}} = \left(\begin{array}{ccc} N_{11}^{\mathrm{a}} & N_{12}^{\mathrm{a}} & N_{13}^{\mathrm{a}} \\ N_{21}^{\mathrm{a}} & N_{22}^{\mathrm{a}} & N_{23}^{\mathrm{a}} \end{array} \right), \quad \mathbf{N}^{\mathrm{b}} = \left(\begin{array}{ccc} N_{11}^{\mathrm{a}} & N_{21}^{\mathrm{a}} \\ N_{12}^{\mathrm{a}} & N_{22}^{\mathrm{a}} \\ N_{13}^{\mathrm{a}} & N_{23}^{\mathrm{a}} \end{array} \right).$$

If $N^a = N^{aT}$ then matrix N^a is symmetric (only square matrices can be symmetric). Symmetric matrices are also Hermitian.

1.8. Transpose of a product of matrices.

$$(\mathbf{N}^{\mathrm{a}}\mathbf{N}^{\mathrm{b}})^{\mathrm{T}} = \mathbf{N}^{\mathrm{b}\mathrm{T}}\mathbf{N}^{\mathrm{a}\mathrm{T}}$$

1.9. Matrix inversion. Let N be a square (m = n) non-singular matrix.

If
$$\mathbf{v}^{b} = \mathbf{N}\mathbf{v}^{a}$$
, then $\mathbf{v}^{a} = \mathbf{N}^{-1}\mathbf{v}^{b}$, $\mathbf{v}^{a}, \mathbf{v}^{b} \in \mathbb{R}^{n}$, $\mathbf{N} \in \mathbb{R}^{n \times n}$.

In general
$$(\mathbf{N}^{-1})_{ij} \neq (\mathbf{N})_{ij}^{-1}$$
.

For
$$n=2$$
, $\mathbf{N}=\left(\begin{array}{cc} N_{11} & N_{12} \\ N_{21} & N_{22} \end{array}\right)$, $\mathbf{N}=\frac{1}{\det(\mathbf{N})}\left(\begin{array}{cc} N_{22} & -N_{12} \\ -N_{21} & N_{11} \end{array}\right)$, $\det(\mathbf{N})=N_{11}N_{22}-N_{12}N_{21}$.

If N is singular then it has a zero determinant and the inverse cannot be found in general.

1.10. Moore-Penrose generalized inverse.

$$\mathbf{N}^+ = \mathbf{N}^{\mathrm{T}}(\mathbf{N}\mathbf{N}^{\mathrm{T}})^{-1}, \quad \mathbf{N} \in \mathbb{R}^{m \times n}, \quad n > m.$$

1.11. **Diagonal matrix.** A matrix is diagonal if $N_{ij} = 0$ if $i \neq j$, $\mathbf{N} \in \mathbb{R}^{m \times n}$. If \mathbf{N} is square (m = n):

$$\mathbf{N} = \operatorname{diag}(\lambda_1, \lambda_2, \ldots) = \begin{pmatrix} \lambda_1 & 0 & \cdots \\ 0 & \lambda_2 & \cdots \\ \vdots & \vdots & \ddots \end{pmatrix}.$$

The inverse of a square diagonal matrix is $(\mathbf{N}^{-1})_{ii} = (\mathbf{N})_{ii}^{-1}$, $(\mathbf{N}^{-1})_{ii} = 0$ for $i \neq j$:

$$\begin{pmatrix} N_{11} & 0 & \cdots \\ 0 & N_{22} & \cdots \\ \vdots & \vdots & \ddots \end{pmatrix}^{-1} = \begin{pmatrix} 1/N_{11} & 0 & \cdots \\ 0 & 1/N_{22} & \cdots \\ \vdots & \vdots & \ddots \end{pmatrix}.$$

1.12. Gramian matrix. A Gramian matrix is symmetric and has the form N^TN :

$$\mathbf{N}^{\mathrm{T}}\mathbf{N} \in \mathbb{R}^{n \times n}, \quad \mathbf{N} \in \mathbb{R}^{m \times n}, \quad \mathbf{N}^{\mathrm{T}} \in \mathbb{R}^{n \times m}.$$

1.13. Euclidean vector inner product (scalar product/dot product).

$$a = \mathbf{v}^{\mathbf{a}} \cdot \mathbf{v}^{\mathbf{b}} = \mathbf{v}^{\mathbf{a} \mathbf{T}} \mathbf{v}^{\mathbf{b}} = \left\langle \mathbf{v}^{\mathbf{a}}, \mathbf{v}^{\mathbf{b}} \right\rangle = \sum_{i=1}^{n} v_{i}^{\mathbf{a}} v_{i}^{\mathbf{b}}, \quad \mathbf{v}^{\mathbf{a}}, \mathbf{v}^{\mathbf{b}} \in \mathbb{R}^{n}, \quad a \in \mathbb{R}.$$

$$b = \mathbf{v} \cdot \mathbf{v} = \mathbf{v}^{\mathbf{T}} \mathbf{v} = \left\langle \mathbf{v}, \mathbf{v} \right\rangle = \sum_{i=1}^{n} v_{i}^{2} = \left\| \mathbf{v} \right\|^{2}, \quad \mathbf{v} \in \mathbb{R}^{n}, \quad b \in \mathbb{R}.$$

1.14. Non-Euclidean vector inner product.

$$a = \mathbf{v}^{\mathbf{a}} \cdot (\mathbf{C}\mathbf{v}^{\mathbf{b}}) = \mathbf{v}^{\mathbf{a}\mathsf{T}} \mathbf{C}\mathbf{v}^{\mathbf{b}} = \left\langle \mathbf{v}^{\mathbf{a}}, \mathbf{v}^{\mathbf{b}} \right\rangle_{\mathbf{C}} = \sum_{i=1}^{n} v_{i}^{\mathbf{a}} \sum_{j=1}^{m} C_{ij} v_{j}^{\mathbf{b}}, \quad \mathbf{v}^{\mathbf{a}} \in \mathbb{R}^{n}, \quad \mathbf{v}^{\mathbf{b}} \in \mathbb{R}^{m}, \quad \mathbf{C} \in \mathbb{R}^{n \times m}, \quad a \in \mathbb{R}.$$

$$b = \mathbf{v} \cdot (\mathbf{C}\mathbf{v}) = \mathbf{v}^{\mathsf{T}} \mathbf{C}\mathbf{v} = \left\langle \mathbf{v}, \mathbf{v} \right\rangle_{\mathbf{C}} = \sum_{i=1}^{n} v_{i} \sum_{j=1}^{n} C_{ij} v_{j} = \left\| \mathbf{v} \right\|_{\mathbf{C}}^{2}, \quad \mathbf{v} \in \mathbb{R}^{n}, \quad \mathbf{C} \in \mathbb{R}^{n \times n}, \quad b \in \mathbb{R}.$$

1.15. Vector outer product.

$$\mathbf{N} = \mathbf{v}^{\mathbf{a}} \mathbf{v}^{\mathbf{b} \mathbf{T}}, \quad N_{ij} = v_i^{\mathbf{a}} v_i^{\mathbf{b}}, \quad \mathbf{N} \in \mathbb{R}^{m \times n}, \quad \mathbf{v}^{\mathbf{a}} \in \mathbb{R}^m, \quad \mathbf{v}^{\mathbf{b}} \in \mathbb{R}^n.$$

1.16. Schur/Hadamard product.

For matrices:
$$\mathbf{N} = \mathbf{N}^{\mathbf{a}} \circ \mathbf{N}^{\mathbf{b}}$$
, $N_{ij} = N_{ij}^{\mathbf{a}} N_{ij}^{\mathbf{b}}$, $\mathbf{N}, \mathbf{N}^{\mathbf{a}}, \mathbf{N}^{\mathbf{b}} \in \mathbb{R}^{m \times n}$.
For vectors: $\mathbf{v} = \mathbf{v}^{\mathbf{a}} \circ \mathbf{v}^{\mathbf{b}}$, $v_i = v_i^{\mathbf{a}} v_i^{\mathbf{b}}$, $\mathbf{v}, \mathbf{v}^{\mathbf{a}}, \mathbf{v}^{\mathbf{b}} \in \mathbb{R}^n$.

1.17. **Orthogonal matrix.** If **V** is orthogonal then:

$$\mathbf{V}^{\mathrm{T}}\mathbf{V} = \mathbf{I}_{n}, \quad \mathbf{V} \in \mathbb{R}^{m \times n}, \quad n \leq m.$$
If $n = m$ then $\mathbf{V}^{\mathrm{T}} = \mathbf{V}^{-1}$.

1.18. The trace of a matrix. The trace of a square matrix N, tr(N), is:

$$\operatorname{tr}(\mathbf{N}) = \sum_{i=1}^{n} N_{ii}, \quad \mathbf{N} \in \mathbb{R}^{n \times n}.$$

1.19. The Sherman-Morrison-Woodbury formula.

$$\left(\mathbf{A} + \mathbf{C}\mathbf{D}^{\mathrm{T}}\right)^{-1} = \mathbf{A}^{-1} - \mathbf{A}^{-1}\mathbf{C}\left(\mathbf{I} + \mathbf{D}^{\mathrm{T}}\mathbf{A}^{-1}\mathbf{C}\right)^{-1}\mathbf{D}^{\mathrm{T}}\mathbf{A}^{-1}.$$

Replacing $\mathbf{C} \to \mathbf{CB}$ and then setting $\mathbf{C} = \mathbf{D} = \mathbf{H}$ and $\mathbf{A} = \mathbf{R}$, the following useful formula results:

$$\left(\mathbf{B}^{-1} + \mathbf{H}^{\mathrm{T}}\mathbf{R}^{-1}\mathbf{H}\right)\mathbf{B}\mathbf{H}^{\mathrm{T}} = \mathbf{H}^{\mathrm{T}}\mathbf{R}^{-1}\left(\mathbf{R} + \mathbf{H}\mathbf{B}\mathbf{H}^{\mathrm{T}}\right).$$

2. Functions

2.1. Scalar valued function of a vector and its derivative.

$$f(\mathbf{v}), \quad f \in \mathbb{R}, \quad \nabla_{\mathbf{v}} f(\mathbf{v}) = \left(\frac{\partial f}{\partial \mathbf{v}}\right)^{\mathrm{T}} = \begin{pmatrix} \frac{\partial f}{\partial v_1} \\ \frac{\partial f}{\partial v_2} \\ \vdots \\ \frac{\partial f}{\partial v_n} \end{pmatrix}, \quad \mathbf{v}, \nabla_{\mathbf{v}} f(\mathbf{v}) \in \mathbb{R}^n.$$

2.2. Generalised chain rule.

Consider
$$f(\mathbf{v}^{\mathrm{b}})$$
, where $\nabla_{\mathbf{v}^{\mathrm{b}}} f(\mathbf{v}^{\mathrm{b}})$ is known, $f \in \mathbb{R}$, $\mathbf{v}^{\mathrm{b}}, \nabla_{\mathbf{v}^{\mathrm{b}}} f(\mathbf{v}^{\mathrm{b}}) \in \mathbb{R}^{m}$.
If $\mathbf{v}^{\mathrm{b}} = \mathbf{N}\mathbf{v}^{\mathrm{a}}$, then $\nabla_{\mathbf{v}^{\mathrm{a}}} f(\mathbf{v}^{\mathrm{a}}) = \mathbf{N}^{\mathrm{T}} \nabla_{\mathbf{v}^{\mathrm{b}}} f(\mathbf{v}^{\mathrm{b}})$, $\mathbf{v}^{\mathrm{a}}, \nabla_{\mathbf{v}^{\mathrm{a}}} f(\mathbf{v}^{\mathrm{a}}) \in \mathbb{R}^{n}$, $\mathbf{N} \in \mathbb{R}^{m \times n}$

2.3. Generalised Taylor series for f. Let $f(\mathbf{v})$ be a linear or non-linear function. The Taylor series of $f(\mathbf{v})$ about \mathbf{v} is:

$$f(\mathbf{v} + \delta \mathbf{v}) = f(\mathbf{v}) + \frac{\partial f}{\partial \mathbf{v}} \delta \mathbf{v} + \frac{1}{2} \delta \mathbf{v}^{\mathrm{T}} \frac{\partial^2 f}{\partial \mathbf{v}^2} \delta \mathbf{v} + \text{higher order terms},$$

$$f \in \mathbb{R}, \quad \mathbf{v}, \frac{\partial f}{\partial \mathbf{v}} \in \mathbb{R}^n, \quad \frac{\partial^2 f}{\partial \mathbf{v}^2} \in \mathbb{R}^{n \times n} \text{ is the Hessian matrix, } \left(\frac{\partial^2 f}{\partial \mathbf{v}^2}\right)_{ij} = \frac{\partial^2 f}{\partial v_i \partial v_j}.$$

2.4. Vector valued function of a vector.

$$\mathbf{f}(\mathbf{v}), \quad \mathbf{f} \in \mathbb{R}^m, \quad \mathbf{v} \in \mathbb{R}^n.$$

2.5. Generalised Taylor series for f. Let f(v) be a linear or non-linear function. The Taylor series of f(v) about v is:

$$\mathbf{f}(\mathbf{v} + \delta \mathbf{v}) = \mathbf{f}(\mathbf{v}) + \mathbf{F}\delta \mathbf{v} + \text{higher order terms},$$

$$\mathbf{F} = \frac{\partial \mathbf{f}}{\partial \mathbf{v}} \bigg|_{\mathbf{v}}, \quad F_{ij} = \frac{\partial f_i}{\partial v_j} \bigg|_{\mathbf{v}}, \quad \mathbf{f} \in \mathbb{R}^m, \quad \mathbf{v} \in \mathbb{R}^n, \quad \mathbf{F} \in \mathbb{R}^{m \times n}.$$

F is the Jacobian of $\mathbf{f}(\mathbf{v})$ about \mathbf{v} and $\partial f_i/\partial v_i$ are called Fréchet derivatives.

3. Matrix decompositions

3.1. **Eigenvectors and eigenvalues.** The kth eigenvector (\mathbf{v}_k) and eigenvalue (λ_k) of matrix **N** satisfies:

$$\mathbf{N}\mathbf{v}_k = \lambda_k, \quad \mathbf{N} \in \mathbb{R}^{n \times n}, \quad \mathbf{v}_k \in \mathbb{R}^n, \quad \lambda_k \in \mathbb{R}, \quad 1 \le k \le n.$$
Let $\mathbf{V} = (\mathbf{v}_1, \mathbf{v}_2, \cdots \mathbf{v}_n) = \begin{pmatrix} \mathbf{v}_1 \end{pmatrix} \begin{pmatrix} \mathbf{v}_2 \end{pmatrix} \cdots \begin{pmatrix} \mathbf{v}_n \end{pmatrix}, \quad \Lambda = \operatorname{diag}(\lambda_1, \lambda_2, \cdots \lambda_n),$

$$\mathbf{N}\mathbf{V} = \mathbf{V}\Lambda, \quad \mathbf{N}, \mathbf{V}, \Lambda \in \mathbb{R}^{n \times n}.$$

If **N** is Hermitian (if a real matrix then this is equivalent to **N** being symmetric) then **V** (the matrix of eigenvectors) is orthogonal (see below), and Λ (the matrix of eigenvalues) is real.

For a general 2×2 matrix:

$$\mathbf{N} = \begin{pmatrix} N_{11} & N_{12} \\ N_{21} & N_{22} \end{pmatrix}, \quad \mathbf{V} = \begin{pmatrix} \alpha_1 \gamma_1 & \alpha_2 \gamma_2 \\ \alpha_1 & \alpha_2 \end{pmatrix}, \quad \Lambda = \begin{pmatrix} \frac{N_{11} + N_{22} - \beta}{2} & 0 \\ 0 & \frac{N_{11} + N_{22} + \beta}{2} \end{pmatrix},$$

$$\beta = \sqrt{N_{11}^2 - 2N_{11}N_{22} + 4N_{12}N_{21} + N_{22}^2},$$

$$\gamma_1 = \frac{N_{11} - N_{22} - \beta}{2N_{21}}, \quad \gamma_2 = \frac{N_{11} - N_{22} + \beta}{2N_{21}}, \quad \alpha_1 = \frac{1}{\sqrt{\gamma_1^2 + 1}}, \quad \alpha_2 = \frac{1}{\sqrt{\gamma_2^2 + 1}}.$$

3.2. Singular vectors and singular values.

$$\mathbf{N}\mathbf{V} = \mathbf{U}\Lambda, \quad \mathbf{N}^{\mathrm{T}}\mathbf{U} = \mathbf{V}\Lambda, \quad \mathbf{U}^{\mathrm{T}}\mathbf{U} = \mathbf{I}_{p}, \quad \mathbf{V}^{\mathrm{T}}\mathbf{V} = \mathbf{I}_{p}.$$

$$\mathbf{N} \in \mathbb{R}^{m \times n}, \quad \mathbf{V} \in \mathbb{R}^{n \times p}, \quad \mathbf{U} \in \mathbb{R}^{m \times p}, \quad \Lambda \in \mathbb{R}^{p \times p}, \quad , p = \text{rank of } \mathbf{N}.$$

V is the matrix of right singular vectors of N, U is the matrix of left singular vectors of N, and Λ is the matrix of singular values of N. The following eigenvalue equations exist for V and U:

$$\mathbf{N}^{\mathrm{T}}\mathbf{N}\mathbf{V} = \mathbf{V}\boldsymbol{\Lambda}, \quad \mathbf{N}\mathbf{N}^{\mathrm{T}}\mathbf{U} = \mathbf{U}\boldsymbol{\Lambda}.$$

- 3.3. The rank of a matrix. The rank of N is the number of independent rows or columns of N (consider, e.g. the *i*th column of N as vector n_i). A column (or row) is dependent if it can be written as a linear combination of the other columns (or rows). The rank of a matrix is also the number of non-zero singular values of N. The rank of a square matrix is also the number of non-zero eigenvalues.
 - 4. MEAN, (CO) VARIANCE, CORRELATION AND GAUSSIAN STATISTICS
- 4.1. The variance, standard deviation and mean of a scalar. Consider a population of N scalars, s^l , $1 \le l \le N$. The following are for the variance, var(s), standard deviation, σ_s , and mean, $\langle s \rangle$ (common notations are given)¹:

$$\operatorname{var}(s) = \left\langle (s - \langle s \rangle)^2 \right\rangle = \overline{(s - \bar{s})^2} = \mathcal{E}\left((s - \mathcal{E}(s))^2 \right) \approx \frac{1}{\tilde{N}} \sum_{l=1}^{N} (s^l - \langle s \rangle)^2, \quad \sigma_s = \sqrt{\operatorname{var}(s)},$$
$$\langle s \rangle = \bar{s} = \mathcal{E}(s) \approx \frac{1}{N} \sum_{l=1}^{N} s^l.$$

4.2. The covariance between two scalars. Consider two populations, each of N scalars, s^l , t^l , $1 \le l \le N$. The following is for the covariance, cov(s,t) (common notations are given)²:

$$\operatorname{cov}(s,t) = \langle (s - \langle s \rangle)(t - \langle t \rangle) \rangle = \overline{(s - \overline{s})(t - \overline{t})} = \mathcal{E}\left((s - \mathcal{E}(s))(t - \mathcal{E}(t))\right) \approx \frac{1}{\tilde{N}} \sum_{l=1}^{N} (s^{l} - \langle s \rangle)(t^{l} - \langle t \rangle).$$

The covariance between two scalars can be negative, zero or positive.

4.3. The correlation between two scalars.

$$cor(s,t) = \frac{cov(s,t)}{\sigma_s \sigma_t}, \quad -1 \le cor(s,t) \le 1, \quad cor(s,s) = 1.$$

¹Sample variance and sample mean are those (approximate expressions) given in terms of a finite population (a sample). In the expression for the sample variance, $\tilde{N}=N$ if $\langle s \rangle$ is the exact mean, but $\tilde{N}=N-1$ if $\langle s \rangle$ is the sample mean.

²Sample covariance and sample mean are those (approximate expressions) given in terms of a finite population (a sample). In the expression for the sample covariance, $\tilde{N}=N$ if $\langle s \rangle$ and $\langle t \rangle$ is the exact means, but $\tilde{N}=N-1$ if $\langle s \rangle$ and $\langle t \rangle$ are the sample means.

4.4. The covariance matrix between two vectors. Consider two populations, each of N scalars, \mathbf{u}^l , \mathbf{v}^l , $1 \leq l \leq N$. The following is for the covariance matrix, $cov(\mathbf{u}, \mathbf{v})$ (common notations are given):

$$\operatorname{cov}(\mathbf{u}, \mathbf{v}) = \langle (\mathbf{u} - \langle \mathbf{u} \rangle)(\mathbf{v} - \langle \mathbf{v} \rangle)^{\mathrm{T}} \rangle = \overline{(\mathbf{u} - \overline{\mathbf{u}})(\mathbf{v} - \overline{\mathbf{v}})} = \mathcal{E}\left((\mathbf{u} - \mathcal{E}(\mathbf{u}))(\mathbf{v} - \mathcal{E}(\mathbf{v}))\right),$$

$$\approx \frac{1}{N-1} \sum_{l=1}^{N} (\mathbf{u}^{l} - \langle \mathbf{u} \rangle) (\mathbf{v}^{l} - \langle \mathbf{v} \rangle)^{\mathrm{T}},$$

$$(\operatorname{cov}(\mathbf{u}, \mathbf{v}))_{ij} \approx \frac{1}{N-1} \sum_{l=1}^{N} (u_{i}^{l} - \langle u_{i} \rangle) (v_{j}^{l} - \langle v_{j} \rangle),$$

 $\mathbf{u} \in \mathbb{R}^m, \quad \mathbf{v} \in \mathbb{R}^n, \quad \operatorname{cov}(\mathbf{u}, \mathbf{v}) \in \mathbb{R}^{m \times n}.$ If $\mathbf{u} = \mathbf{v}$, then $\operatorname{cov}(\mathbf{v}, \mathbf{v})$ is the auto-covariance matrix of \mathbf{v} , where $\mathbf{v} \in \mathbb{R}^n$, $\operatorname{cov}(\mathbf{v}, \mathbf{v}) \in \mathbb{R}^{n \times n}$. Diagonal elements are variances of each element of \mathbf{v} , i.e. $(\operatorname{cov}(\mathbf{v}, \mathbf{v}))_{ii} = \operatorname{var}(v_i)$.

4.5. The correlation matrix between two vectors.

$$\operatorname{cor}(\mathbf{u}, \mathbf{v}) = \Sigma_{\mathbf{u}}^{-1} \operatorname{cov}(\mathbf{u}, \mathbf{v}) \Sigma_{\mathbf{v}}^{-1}, \quad \Sigma_{\mathbf{u}} = \operatorname{diag}(\sigma_{u_1}, \sigma_{u_2}, \cdots \sigma_{u_m}), \quad \Sigma_{\mathbf{v}} = \operatorname{diag}(\sigma_{v_1}, \sigma_{v_2}, \cdots \sigma_{v_n}),$$

$$\left(\operatorname{cor}(\mathbf{u}, \mathbf{v})\right)_{ij} = \frac{\left(\operatorname{cov}(\mathbf{u}, \mathbf{v})\right)_{ij}}{\sigma_{u_i} \sigma_{v_i}}, \quad \mathbf{u} \in \mathbb{R}^m, \quad \mathbf{v} \in \mathbb{R}^n, \quad \operatorname{cor}(\mathbf{u}, \mathbf{v}), \operatorname{cov}(\mathbf{u}, \mathbf{v}) \in \mathbb{R}^{m \times n}.$$

4.6. Gaussian/normal probability density function.

$$p(\mathbf{x}) = \frac{1}{\sqrt{(2\pi)^n \det(\mathbf{P})}} \exp\left[-\frac{1}{2} \left(\mathbf{x} - \langle \mathbf{x} \rangle\right)^{\mathrm{T}} \mathbf{P}^{-1} \left(\mathbf{x} - \langle \mathbf{x} \rangle\right)\right], \quad \mathbf{P} = \operatorname{cov}(\mathbf{x}, \mathbf{x}).$$

5. Fourier analysis

5.1. **The Fourier transform.** The real-to-spectral space transform in 1-D (1-D Fourier transform):

$$\bar{f}(k) = \frac{1}{\sqrt{2\pi}} \int f(x) \exp(-ikx) dx, \quad i = \sqrt{-1}.$$

The spectral-to-real transform in 1-D (1-D inverse Fourier transform):

$$f(x) = \frac{1}{\sqrt{2\pi}} \int \bar{f}(k) \exp(ikx) dk.$$

The real-to-spectral space transform in d dimensions:

$$\bar{f}(\mathbf{k}) = \frac{1}{(2\pi)^{d/2}} \int \int \int f(\mathbf{x}) \exp(-i\mathbf{k} \cdot \mathbf{x}) d\mathbf{x}.$$

The spectral-to-real transform in d dimensions:

$$f(\mathbf{x}) = \frac{1}{(2\pi)^{d/2}} \int \int \int \bar{f}(\mathbf{k}) \exp(i\mathbf{k} \cdot \mathbf{x}) d\mathbf{k}.$$

The Fourier transforms rely on the orthogonality relationships:

$$\int \int \int \exp(i\mathbf{k} \cdot \mathbf{x}) \exp(-i\mathbf{k}' \cdot \mathbf{x}) d\mathbf{x} = (2\pi)^d \delta(\mathbf{k} - \mathbf{k}'),$$
$$\int \int \int \exp(i\mathbf{k} \cdot \mathbf{x}) \exp(-i\mathbf{k} \cdot \mathbf{x}') d\mathbf{k} = (2\pi)^d \delta(\mathbf{x} - \mathbf{x}'),$$

and satisfies the convolution theorem:

$$\int g(x-x')f(x')dx' \text{ has Fourier transform } 2\pi \bar{g}(k)\bar{f}(k).$$

5.2. Fourier series. Fourier series are the discrete versions of the Fourier transforms (real and spectral spaces comprising N discrete points). In 1-D:

$$\bar{f}(k_i) = \frac{1}{\sqrt{N}} \sum_{i=1}^{N} f(x_j) \exp(-ik_i x_j), \quad f(x_j) = \frac{1}{\sqrt{N}} \sum_{i=0}^{N-1} \bar{f}(k_i) \exp(ik_i x_j),$$

$$\sum_{j=1}^{N} \exp(ik_i x_j) \exp(ik_{i'} x_j) = N\delta_{ii'}, \quad \sum_{i=0}^{N-1} \exp(ik_i x_j) \exp(ik_i x_{j'}) = N\delta_{jj'}.$$

Representing $f(x_j)$ as the vector \mathbf{f} and $f(k_i)$ as the vector \mathbf{f} allows the discrete Fourier series, its inverse, and the orthogonality relations to be written compactly via an orthogonal matrix transform:

$$\bar{\mathbf{f}} = \mathbf{F}\mathbf{f}, \quad \mathbf{f} = \mathbf{F}^{\dagger}\bar{\mathbf{f}}, \quad \mathbf{F}^{\dagger}\mathbf{F} = \mathbf{I}_{N}, \quad \mathbf{F}\mathbf{F}^{\dagger} = \mathbf{I}_{N}, \quad \text{where matrix elements } F_{ij} = \frac{1}{\sqrt{N}}\exp(-ik_{i}x_{j}).$$

6. Variational calculus

6.1. Lagrange multipliers. Problem: find the stationary point of $f(x_1, x_2, \dots x_N)$ subject to the constraint $g_m(x_1, x_2, \dots x_N)$, $1 \le m \le M$. This problem has N degrees of freedom and M constraints. The constrained variational problem can be written as $(f \text{ and } g_m \text{ are implied functions of } x_1, x_2, \dots x_N)$:

$$\frac{\partial}{\partial x_n} \left(f + \sum_{m=1}^M g_m \lambda_m \right) = 0, \quad 1 \le n \le N,$$

where λ_m is the Lagrange multiplier associated with the mth constraint. This can be written in the following matrix form:

$$\nabla_{\mathbf{x}} f + \mathbf{G}^{\mathrm{T}} \lambda = 0, \quad \mathbf{x} \in \mathbb{R}^{N}, \quad \lambda \in \mathbb{R}^{M}, \quad \mathbf{G} \in \mathbb{R}^{M \times N},$$

where $\mathbf{x} = (x_1, x_2, \dots x_N)^{\mathrm{T}}$ and $G_{mn} = \partial g_m / \partial x_n$.