MATHEMATICAL AIDE MEMOIR FOR DATA ASSIMILATION
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1. VECTORS AND MATRICES

1.1. Vector representation of information.

U1
v = v; , VER" v, =(v),.
Un,
1.2. Matrix operator.
Ny -+ Ny -+ Ny,
N = Niy Nij N, s N e Rmxn, N;; = (N)Z]

j=1
1.3. Identity /unit matrix.
10 0
0 1 0
I, = . , I, e R (1) = 6y
00 1

1.4. Matrix addition.
N=N*+N N;;=N3+N},

179

N, N?® NP e R™*",

1.5. Matrix multiplication.
P
N =N"N’, N;; =Y NiNp, NeR™" NeR™P N°eR>™
k=1

In general, matrices are non-commutative N®NP % NPN?. Pre-multiplication by the identity
matrix gives I, N® = NP and post-multiplication by the identity matrix gives NI, = N*. Multi-
plication by a scalar gives (aIN),;; = aN;;.
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1.6. Matrix adjoint. The matrix adjoint makes rows into columns (and vice-versa), and does a
complex conjugate on each element.

IfN" =N NP =NZ NreC™" N'eC™m
el (NhONE MR\ el [ e
N :< N2 N2 N2 )7 N° = N12 N22
21 22 23 N?; NQ&;
If N* = N*! then matrix N® is self-adjoint/Hermitian (only square matrices can be Hermitian). If
the matrix is real then the matrix adjoint is the same as the matrix transpose.

1.7. Matrix transpose.

IfN°=N*T, Np=N5, N°eR™" N*eR"™
a a a Na Na
v (R ) =
21 22 23 ny, N§3

If N* = N*T then matrix N? is symmetric (only square matrices can be symmetric). Symmetric
matrices are also Hermitian.
1.8. Transpose of a product of matrices.
(NaNb)T _ NbTNaT.

1.9. Matrix inversion. Let N be a square (m = n) non-singular matrix.

If vP = Nv?, then v* = N~ 'vP, v* vP e R", N e R™*".
In general (N7 1);; # (N)Z_j1
Ni1 Nio _ 1 Nz —Nig
Na1 Naz )’ det(N) \ —Na1  Nug
If N is singular then it has a zero determinant and the inverse cannot be found in general.

For n = 2, N = ( > 5 det(N) = N11N22—N12N21.

1.10. Moore-Penrose generalized inverse.
N+ — I\IT(NNT)—l7 N € Rmxn7 n>m.

1.11. Diagonal matrix. A matrix is diagonal if N;; = 0if ¢ # j, N € R™*". If N is square
(m =n):

N = diag(A1, Ag,...) = | 0 A2

The inverse of a square diagonal matrix is (N~1);; = (N);-*, (N~1);; = 0 for i # j:

i )
-1

Ny 0 - 1/Niy 0
0 Ny - _ 0  1/Na

1.12. Gramian matrix. A Gramian matrix is symmetric and has the form NTN:
NTN c R7X7 N ¢ R™MXn NT c RPX™

) )
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1.13. Euclidean vector inner product (scalar product/dot product).

a=v* vP=v2TyP = <Va,Vb> = Zv?v?, vivPeR?, aeR.
i=1
n
v =(v,Vv) :Zv? =|v|*, veR", beR.
i=1

b=v-v=vT

1.14. Non-Euclidean vector inner product.
n m
= v (CvP) = v*TCvP = <v"“”,vb>C = ZU?ZCM’U;), v eR" vPeR™, CeR™™,
i=1  j=1

n

M:

b=v-(Cv)=vICv=(v,v)

A

1 j=1
1.15. Vector outer product.

N=v>"" Ny=uv), NeR™" ~v*eR” v’eR"
1.16. Schur/Hadamard product.

For matrices: N = N® o NP, Ni; —N‘lNb

137

N,N? NP e R™*",
For vectors: v =v®ovP, v = = U}), v,v® vP e R".
1.17. Orthogonal matrix. If V is orthogonal then:
VIv=I, VeR™" n<m.
If n = m then VI = V1

1.18. The trace of a matrix. The trace of a square matrix N, tr(N), is:
tr(N) = > Nii, NeR™",
i=1
1.19. The Sherman-Morrison-Woodbury formula.
(A+CDT) ' =A'—A'C(I+D"A'C) ' DTA L,

v; » Cijv; = |VHC, veR" CeR"™™ bekR

a € R.

Replacing C — CB and then setting C = D = H and A = R, the following useful formula results:

(B'+HTR'H)BH" =H'R ' (R + HBH").

2. FUNCTIONS

2.1. Scalar valued function of a vector and its derivative.
8f/<%1
3f)T Of /0va

, v,Vyf(v) e R".

f). fek Vs = (4

of /o,
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2.2. Generalised chain rule.
Consider f(vb), where vaf(vb) is known, feR, vP, vaf(vb) cR™.
If vb = Nv?, then Vyaf(v®) = NIV f(vP), v* Vyaf(v®) €R™, N eR™*",

2.3. Generalised Taylor series for f. Let f(v) be a linear or non-linear function. The Taylor
series of f(v) about v is:

B of 1. 1 0%f )
fv+dov)=f(v)+ aév + §5V W(Sv + higher order terms,
2 2 2
f c R, v, % c Rn, % c R™ "™ is the Hessian matrix, (g\/JQC)Z] = 828{)3 .

2.4. Vector valued function of a vector.
f(v), feR™ veR™
2.5. Generalised Taylor series for f. Let f(v) be a linear or non-linear function. The Taylor
series of f(v) about v is:
f(v +v) =f(v) + Fov + higher order terms,
_of - _ Ofi
T Ov E dvj |,

F is the Jacobian of f(v) about v and 9f;/0v; are called Fréchet derivatives.

F , feR™ veR" FeR™"

7
v

3. MATRIX DECOMPOSITIONS

3.1. Eigenvectors and eigenvalues. The kth eigenvector (v;) and eigenvalue (A;) of matrix N
satisfies:
Nvp=MX;, NcR"™" v, cR" McR, 1<k<n.

Let V = (vi,va,---vy) = | w1 vo || v |, A=diag(A1, Ae, - M),

NV =VA, N,V,AecR™",

If N is Hermitian (if a real matrix then this is equivalent to N being symmetric) then V (the matrix
of eigenvectors) is orthogonal (see below), and A (the matrix of eigenvalues) is real.
For a general 2 x 2 matrix:

_( Nun N2 a1 ey 7 W 0
N_<N21 Nagy )7 V= ar as )’ A= 0 NutNeatp )

B= \/N121 — 2N11Nap + 4N12Noy + N3y,

_Nu—-Nyp-p _Nu—-Npnp+p o — 1 _ 1
2Ny, 2Ny, !

Y1 Y2

, Oy = ———.
v +1 3 +1
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3.2. Singular vectors and singular values.
NV =UA, N'U=VA, U'U=1, V'V=IL,
NeR™" VeR™, UeR™P AecRPP  p=rank of N.

V is the matrix of right singular vectors of N, U is the matrix of left singular vectors of N, and A
is the matrix of singular values of N. The following eigenvalue equations exist for V and U:

NTNV = VA, NNTU=UA.

3.3. The rank of a matrix. The rank of N is the number of independent rows or columns of
N (consider, e.g. the ith column of N as vector n;). A column (or row) is dependent if it can
be written as a linear combination of the other columns (or rows). The rank of a matrix is also
the number of non-zero singular values of N. The rank of a square matrix is also the number of
non-zero eigenvalues.

4. MEAN, (CO)VARIANCE, CORRELATION AND GAUSSIAN STATISTICS

4.1. The variance, standard deviation and mean of a scalar. Consider a population of N
scalars, s', 1 <1 < N. The following are for the variance, var(s), standard deviation, o,, and mean,

(s) (common notations are given)!:

var(s) = (s — ()%) = (s — 52 = & (s — E())?) = = S (s' — ()%, 0y = v/var(s),

4.2. The covariance between two scalars. Consider two populations, each of N scalars, s, ¢,
1 <1< N. The following is for the covariance, cov(s,t) (common notations are given)?:

1

cov(s,t) = {(s = (Nt — 1)) = (s —5)(t —1) =€ ((s —E)(E - €MD) ~ = D (s = ()t = (1)).

=1

The covariance between two scalars can be negative, zero or positive.

4.3. The correlation between two scalars.

cov(s,t)

cor(s,t) = —1 <cor(s,t) <1, cor(s,s)=1.

050t

lgample variance and sample mean are those (approximate expressions) given in terms of a finite population (a
sample). In the expression for the sample variance, N = N if (s) is the exact mean, but N = N — 1 if (s) is the
sample mean.

2Sample covariance and sample mean are those (approximate expressions) given in terms of a finite population
(a sample). Tn the expression for the sample covariance, N = N if (s) and (t) is the exact means, but N = N — 1 if
(s) and (t) are the sample means.
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4.4. The covariance matrix between two vectors. Consider two populations, each of N
scalars, u', v!, 1 <1 < N. The following is for the covariance matrix, cov(u,v) (common no-

tations are given):

cov(u,v) = ((u—()(v—(v)")=m-0)(v-v)=E((u-Em)(v-~EV),

2
_
WE

(u = (ui)) (v = (v3)

ueR™ veR" cov(uv)eR™*"
If u = v, then cov(v,v) is the auto-covariance matrix of v, where v € R", cov(v,v) € R®*".
Diagonal elements are variances of each element of v, i.e. (cov(v,Vv)),, = var(v;).

(cov(u,v)),; N1

4.5. The correlation matrix between two vectors.

cor(u,v) = E;lcov(u, V)Z;l, Y =diag(oy,,0uy,  0u,,), Xy =diag(oy,,0u,, 04, ),

(COV(u,v))ij
(cor(u,v)),, = ———*, ueR™, veR" cor(u,v),cov(uv)eRm™*"

J Ou; Ou,
4.6. Gaussian/normal probability density function.
1

= —F———¢X flexT “Hx - (x = cov(X,X
) = s e | (- (00) P (e (x| P = covle).

5. FOURIER ANALYSIS

5.1. The Fourier transform. The real-to-spectral space transform in 1-D (1-D Fourier trans-
form):

k) = V%Tr / F(2) exp(—ika)dz, i= T,

The spectral-to-real transform in 1-D (1-D inverse Fourier transform):

1 = .
flx) = \/—Q?/f(k)exp(zkx)dk.

The real-to-spectral space transform in d dimensions:

flk) = (27T1)d/2///f(x) exp(—ik - x)dx.

The spectral-to-real transform in d dimensions:

ﬂ@mémf//RMka@&-

The Fourier transforms rely on the orthogonality relationships:
///exp(ik -x)exp(—ik’ - x)dx = (2m)%5(k — k'),
///exp(ik -x)exp(—ik -x)dk = (2m)%(x —x'),
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and satisfies the convolution theorem:

/g(x —2')f(«')dz’ has Fourier transform 27g(k)f(k).

5.2. Fourier series. Fourier series are the discrete versions of the Fourier transforms (real and
spectral spaces comprising N discrete points). In 1-D:

N N-1
_ 1 1 _
Flli) = ==Y f(z)) exp(—ikix;), flx;) = —= > (ki) exp(ikiz;),
VN = VN =
N N-1
Z exp(tk;z;) exp(ikyxj) = N, Z exp(ikx;) exp(ikiz; ) = NG
j=1 i=0

Representing f(x;) as the vector f and f(k;) as the vector f allows the discrete Fourier series, its
inverse, and the orthogonality relations to be written compactly via an orthogonal matrix transform:

_ 1
, f=F'f, F'F=1Iy, FF'=1Iy, where matrix elements Fi; = ——= exp(—ik;x;).

f=Ff
VN

6. VARIATIONAL CALCULUS

6.1. Lagrange multipliers. Problem: find the stationary point of f(z1,z2,---an) subject to
the constraint g,,(z1,z2,---xn), 1 < m < M. This problem has N degrees of freedom and M
constraints. The constrained variational problem can be written as (f and g,, are implied functions
of 1‘1,1‘2,...1‘1\[):

8 M
- — 1< <
o (f + mz_lgmxm> 0, 1<n<N,

where )\, is the Lagrange multiplier associated with the mth constraint. This can be written in
the following matrix form:

Vuf+GTA=0, xeRY, XeRM G ecRM*N,

where x = (11, 22,...2x5)T and Gp = 0gm /0Ty.



