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Suppose that two variables x4 and zp are drawn from independent and
identical (but otherwise arbitrary) distributions. Let this common distribution

be p(z):
x4 drawn from p(za),

xp drawn from p(zp).

Ingelby et al (2012) (Sec. 2.3) states that if two variables are drawn from iden-
tical distributions then their differences must be from a symmetric distribution.
No condition of symmetry is imposed on the identical distributions, p(z). A
number of questions arises:

1. How do we prove that this is correct?
2. What is this symmetric distribution in terms of p(z)?

Let the difference be y = x5 — x4 and let the probability of getting a particular
difference, y, for a specific set of variables 4 and zp be paig(y, x4, xp):

paig (Y, ta,2B) = p(xa)p(xp)d(ra — 2B —¥).

We want to know the probability of this difference, y, without the conditioning
on x4 and zp. To calculate this (call this pgig(y)), integrate over all values of
z4 and zp:

paig(y) = //dSCAd’Ideiﬁ(y,ﬂiA,xB),
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where we have relabelled zp as . Now let v = . —y/2 be an alternative variable
for . Then

dv = dz,
v o= vy,
-y = v-y/2,



paif(y) is then equivalent to

pain(y) = / / dv p(v + 3/2)p(v — y/2).

The important property of this last result is that paig(y) = paisr(—y), which is a
symmetric distribution. It also says what the form of the symmetric distribution
is.
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