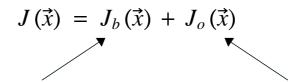


THEORETICAL ASPECTS OF VARIATIONAL DATA ASSIMILATION


ROSS BANNISTER, 2L49

- Forward modelling of satellite radiances.
- Chemical data assimilation.
- Earth observation.
- Constructing research datasets.
- Theory.
- Training.
- &c &c &c

VARIABLE TRANSFORMS

The cost function,

'background' term (fit to previous forecast) 'observation' term (fit to new observations)

$$J_{b}(\vec{x}) = \frac{1}{2} (\vec{x}_{b} - \vec{x})^{T} \mathbf{B}^{-1} (\vec{x}_{b} - \vec{x})$$

$$J_{o}(\vec{x}) = \frac{1}{2} (\vec{y}_{o} - \vec{H}(\vec{x}))^{T} (\mathbf{E} + \mathbf{F})^{-1} (\vec{y}_{o} - \vec{H}(\vec{x}))$$

Need the analysed state. This is the \vec{x} which minimizes J.

The background error correlation matrix, **B** is important:

- It specifies the spacial impact of observations.
- It is multivariate.
- It allows different quantities to be compared.
- It gives the accuracy of the background state.
- It provides the relative weight of background errors.

... but it is too large to construct, store and use (typically 10^{12} elements!). (We also don't know the 'truth', \vec{x}_t)

$$\mathbf{B} = (\vec{x} - \vec{x}_t)(\vec{x} - \vec{x}_t)^T$$

Use theory to help 'compress' the information using the parameter transforms, T_p , U_p , U_p^T .

CURRENT SCHEME Met. vars. Parameters

PROPOSED SCHEME

Met. vars. New parameters

$$\begin{vmatrix}
\vec{u} \\
\vec{v} \\
\vec{\theta} \\
\vec{p} \\
\vec{q}
\end{vmatrix} \rightarrow \begin{vmatrix}
PV \\
PV \\
\chi \\
\mu
\end{vmatrix}$$

$$\begin{vmatrix}
E \\
PV \\
B_{PVPV}
\end{vmatrix}$$

$$\begin{vmatrix}
B_{PVPV} \\
X \\
\mu
\end{vmatrix}$$

$$\begin{vmatrix}
B_{\mu\mu}
\end{vmatrix}$$

$$\vec{v}_p = T_p \vec{x}$$

Another important benefit:

This transform separates the minimization increments to balanced and unbalanced states which can help constrain the minimization.

http://darc.nerc.ac.uk/

http://www.met.rdg.ac.uk/~ross/DataAssim/