THEORETICAL ASPECTS OF VARIATIONAL DATA ASSIMILATION

Ross Bannister Data Assimilation Research Centre

Collaborators: Theory Applications Group, Met Office (JCMM)
Mathematics Dept., Reading Univ.

The Cost Function

$$J(\vec{w}') = J_b(\vec{w}') + J_o(\vec{w}')$$

'background' term (fit to previous forecast) 'observation' term
(fit to new observations)

$$J_{b}(\vec{w}') = \frac{1}{2} (\vec{w}'^{b} - \vec{w}')^{T} B^{-1} (\vec{w}'^{b} - \vec{w}')$$

$$J_{o}(\vec{w}') = \frac{1}{2} (\vec{y}^{o} - H(\vec{w}', \vec{w}^{g}))^{T} (E + F)^{-1} (\vec{y}^{o} - H(\vec{w}', \vec{w}^{g}))$$

Need the analysed state. This is the \vec{w}' which minimizes J.

The background error covariance matrix

It is crucial to know B (and its inverse).

Most basically ...

			ū	⊽	$ec{ heta}$	₽	₫
В =		t	B _{uu}	B _{uv}	$B_{u heta}$	B_{up}	B _{uq}
		↑⊳	B_{uv}	B _w	$B_{\forall \theta}$	B _{vp}	B_{vq}
	=	$\uparrow heta$	$B_{u heta}$	$B_{ ext{v} heta}$	${\sf B}_{\theta\theta}$	$\mathtt{B}_{\theta\mathtt{p}}$	${\tt B}_{\theta{\tt q}}$
		ţΩı	B_{up}	B _{vp}	${\sf B}_{\theta {\tt p}}$	B_{pp}	B_{pq}
		tρl	B_{uq}	B_{vq}	${\sf B}_{\theta{\tt q}}$	B_{pq}	B _{qq}

Too big to store

Too big to calculate

Too big to use ...

... (and we need to know its inverse!)

Problem: B is too large to work with (even at half resolution).									
# fields	# long. points	# lat. points	# levels	# elements B					
5	216	163	30	> 10 ¹³					
5	48	37	42	> 10 ¹¹					

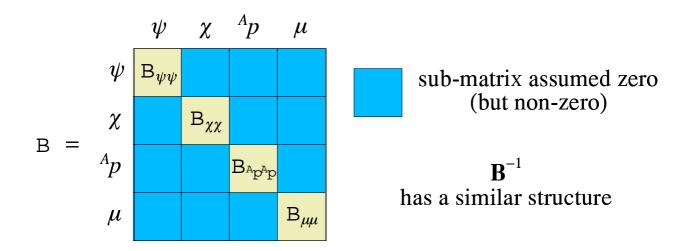
Presently ...

Make assumptions about the nature of the error correlations (ie compact the information needed to approximate B and B^{-1}).

One important stage in completing this process is the $parameter\ transform$, U p.

Meteorological variables Parameters

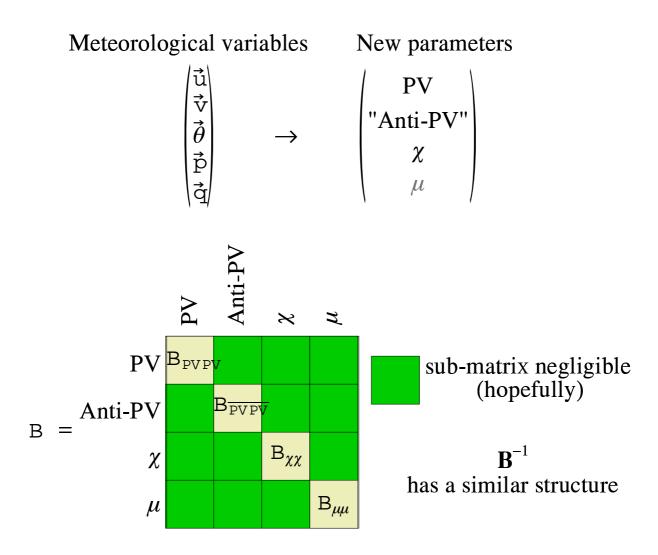
Parameters are assumed to be uncorrelated ...



There are no good theoretical reasons to suppose that these variables are uncorrelated (and they are not uncorrelated).

New parameters ...

There are better reasons to suppose that a new set of (PV based) parameters are more uncorrelated.



To implement this new scheme in the Met Office 3d Var system, we need to know:

the transformation, U_p (new parameters to met. variables), the inverse transformation, U_p^{-1} , the adjoint transformation, U_p^{T} , and vertical statistics for each parameter.