THEORETICAL ASPECTS OF VARIATIONAL DATA ASSIMILATION # Ross Bannister Data Assimilation Research Centre Collaborators: Theory Applications Group, Met Office (JCMM) Mathematics Dept., Reading Univ. #### **The Cost Function** $$J(\vec{w}') = J_b(\vec{w}') + J_o(\vec{w}')$$ 'background' term (fit to previous forecast) 'observation' term (fit to new observations) $$J_{b}(\vec{w}') = \frac{1}{2} (\vec{w}'^{b} - \vec{w}')^{T} B^{-1} (\vec{w}'^{b} - \vec{w}')$$ $$J_{o}(\vec{w}') = \frac{1}{2} (\vec{y}^{o} - H(\vec{w}', \vec{w}^{g}))^{T} (E + F)^{-1} (\vec{y}^{o} - H(\vec{w}', \vec{w}^{g}))$$ Need the analysed state. This is the \vec{w}' which minimizes J. # The background error covariance matrix It is crucial to know B (and its inverse). Most basically ... | | | | ū | ⊽ | $ec{ heta}$ | ₽ | ₫ | |-----|---|------------------|----------------------------|--------------------|----------------------------|---------------------------------|---------------------------| | В = | | t | B _{uu} | B _{uv} | $B_{u heta}$ | B_{up} | B _{uq} | | | | ↑⊳ | B_{uv} | B _w | $B_{\forall \theta}$ | B _{vp} | B_{vq} | | | = | $\uparrow heta$ | $B_{u heta}$ | $B_{ ext{v} heta}$ | ${\sf B}_{\theta\theta}$ | $\mathtt{B}_{\theta\mathtt{p}}$ | ${\tt B}_{\theta{\tt q}}$ | | | | ţΩı | B_{up} | B _{vp} | ${\sf B}_{\theta {\tt p}}$ | B_{pp} | B_{pq} | | | | tρl | B_{uq} | B_{vq} | ${\sf B}_{\theta{\tt q}}$ | B_{pq} | B _{qq} | Too big to store Too big to calculate Too big to use (and we need to know its inverse!) | Problem: B is too large to work with (even at half resolution). | | | | | | | | | | |--|----------------|---------------|----------|---------------------|--|--|--|--|--| | # fields | # long. points | # lat. points | # levels | # elements B | | | | | | | 5 | 216 | 163 | 30 | > 10 ¹³ | | | | | | | 5 | 48 | 37 | 42 | > 10 ¹¹ | | | | | | ## Presently ... Make assumptions about the nature of the error correlations (ie compact the information needed to approximate B and B^{-1}). One important stage in completing this process is the $parameter\ transform$, U p. Meteorological variables Parameters Parameters are assumed to be uncorrelated ... There are no good theoretical reasons to suppose that these variables are uncorrelated (and they are not uncorrelated). ### New parameters ... There are better reasons to suppose that a new set of (PV based) parameters are more uncorrelated. To implement this new scheme in the Met Office 3d Var system, we need to know: the transformation, U_p (new parameters to met. variables), the inverse transformation, U_p^{-1} , the adjoint transformation, U_p^{T} , and vertical statistics for each parameter.