TRANSFORMS AND PRECONDITIONING IN THE MET OFFICE 3D VAR SCHEME

Ross Bannister D.A.R.C.

Cost Function in w-space (reduced resolution, real space):

$$J(\vec{w}') = J_b(\vec{w}') + J_o(\vec{w}')$$

$$J_b(\vec{w}') = \frac{1}{2} (\vec{w}'^b - \vec{w}')^T \mathbf{B}^{-1} (\vec{w}'^b - \vec{w}')$$

$$J_o(\vec{w}') = \frac{1}{2} (\vec{y}^o - H(\vec{w}', \vec{w}^g))^T (\mathbf{E} + \mathbf{F})^{-1} (\vec{y}^o - H(\vec{w}', \vec{w}^g))$$

Gradients w.r.t. w':

$$\frac{\mathrm{d}J_b}{\mathrm{d}\vec{w}'} = -\mathbf{B}^{-1}(\vec{w}'^b - \vec{w}')$$

$$\frac{\mathrm{d}J_o}{\mathrm{d}\vec{w}'} = -\mathbf{H}^T(\mathbf{E} + \mathbf{F})^{-1}(\vec{y}^o - H(\vec{w}', \vec{w}^g))$$

Hessian,

$$\frac{\mathrm{d}^2 J_b}{\mathrm{d}\vec{w}'^2} = \mathbf{B}^{-1}$$

$$\frac{\mathrm{d}^2 J_o}{\mathrm{d}\vec{w}'^2} = \mathbf{H}^T (\mathbf{E} + \mathbf{F})^{-1} \mathbf{H}$$

Contruct a control variable, \vec{v} :

Transform
$$\vec{w}' = U(\vec{v})$$
 $\frac{d^2J_b}{d\vec{v}^2} = \mathbf{I}$
Inverse $\vec{v} = T(\vec{w}')$

Such that

What is the basis of a \vec{w}' vector?

Perturbations are from a guess state:

$$\vec{w}' = \vec{w} - \vec{w}_g$$

$$\vec{w'}^b = \vec{w}^b - \vec{w}_g$$

Why do we want to make a transformation to \vec{v} -space?

- Makes the problem manageable.
- Preconditioning makes the minimization process more efficient and accurate.
- No preconditioning: (Largest e.v.)/(smallest e.v.) $\sim 10^{10}$!
- Makes the scheme more complicated to understand.
- Balance problems?

What is the principle of the preconditioning transform?

To make the 'weight' of each control variable equal.

$$\vec{w'} = \mathbf{U}\vec{v} \qquad \vec{v} = \mathbf{T}\vec{w'}$$

$$\mathbf{U} = \mathbf{T}^{-1}$$

$$J_b = \frac{1}{2} (\mathbf{U}\vec{v}^b - \mathbf{U}\vec{v})^T \mathbf{B}^{-1} (\mathbf{U}\vec{v}^b - \mathbf{U}\vec{v})$$

$$= \frac{1}{2} (\vec{v}^b - \vec{v})^T \mathbf{U}^T \mathbf{B}^{-1} \mathbf{U} (\vec{v}^b - \vec{v})$$

Choose U such that $U^TB^{-1}U = I$

$$\mathbf{U}^{-1}\mathbf{B}(\mathbf{U}^{T})^{-1} = \mathbf{I} \qquad \Rightarrow \qquad \mathbf{B} = \mathbf{U}\mathbf{U}^{T}$$

$$\mathbf{T}\mathbf{B}\mathbf{T}^{T} = \mathbf{I}$$

U is not a unitary or orthogonal transform, instead it is like the square-root of **B**.

The information regarding the covariances is transferred into the transformation itself (and inverts **B**!).

This is done in two steps:

Let
$$\mathbf{U} = \mathbf{U}_2 \mathbf{U}_1$$

 $\mathbf{U}_1^{-1} \mathbf{U}_2^{-1} \mathbf{B} (\mathbf{U}_2^T)^{-1} (\mathbf{U}_1^T)^{-1} = \mathbf{I}$

Consider **B** afresh. Diagonalize with a transform \mathbf{Y}^T :

$$\mathbf{Y}^T \mathbf{B} \mathbf{Y} = \mathbf{\Lambda}$$

eigenfunctions, rows of \mathbf{Y}^T

eigenvalues, diagonal matrix Λ

There are, by definition, no co-variances between the eigenmodes. Can now 'remove' the variance by:

$$\Lambda^{-1/2} \mathbf{Y}^T \mathbf{B} \mathbf{Y} \Lambda^{-1/2} = \mathbf{I}$$

c.f. (*) to show that:

$$\mathbf{U}_1 \; = \; \boldsymbol{\Lambda}^{1/2} \qquad \implies \qquad \mathbf{T}_1 \; = \; \boldsymbol{\Lambda}^{-1/2}$$

$$\mathbf{U}_2 = \mathbf{Y} \qquad \Rightarrow \qquad \mathbf{T}_2 = \mathbf{Y}^T$$

Problem: **B** is too large to work with (even at half resolution).

fields # long. points # lat. points # levels # elements **B**5 216 163 30 $> 10^{13}$ 5 48 37 42 $> 10^{11}$

The solution in three easy stages ...

Assume that:

- We can choose an alternative set of physical parameters which are only weakly correlated,
- The covariances within each parameter can be 'removed' separately (e.g. vertical and horizontal parts normalized independently).
- We can use the last section as a guide.
- (i) The first stage of the **T**-transform (parameter transform).
- (ii) The second stage is a vertical transformation.
- (iii) The third stage is a horizontal transformation.

$$\mathbf{T} = \mathbf{T}_h \mathbf{T}_v \mathbf{T}_p$$

(i) The parameter transform

Parameter	Eqs.
$\overline{\psi}$	$\nabla^2 \psi = \vec{k} \cdot \nabla \times \vec{u}$
χ	$\nabla^2 \chi = \nabla \cdot \vec{u}$
^{A}p	$p = {}^{G}p + {}^{A}p$
μ	q / q_{sat}

	ψ	χ	^{A}p	μ
ψ	\mathbf{B}_{ψ}	0	0	0
χ	0	\mathbf{B}_{χ}	0	0
^{A}p	0	0	\mathbf{B}_{A_p}	0
μ	0	0	0	\mathbf{B}_{μ}

 \mathbf{B}^{-1} has a similar structure

Background term is written (in terms of parameter perturbations),

$$J_{B}(v_{p}) = \frac{1}{2} (\vec{v}_{p}^{b} - \vec{v}_{p})^{T} \mathbf{B}^{-1} (\vec{v}_{p}^{b} - \vec{v}_{p})$$

$$= \frac{1}{2} (\vec{\psi}^{b} - \vec{\psi})^{T} \mathbf{B}_{\psi}^{-1} (\vec{\psi}^{b} - \vec{\psi})$$

$$+ \frac{1}{2} (\vec{\chi}^{b} - \vec{\chi})^{T} \mathbf{B}_{\chi}^{-1} (\vec{\chi}^{b} - \vec{\chi}) + \dots$$

$$\vec{v}_{p} = \mathbf{T}_{p} \vec{w}' = \begin{pmatrix} \vec{\psi} \\ \vec{\chi} \\ A\vec{p} \\ \vec{u} \end{pmatrix}$$

Cov. matrices for each parameter (e.g. ψ) - *outer* or *tensor* product:

$$Cov = \overline{(\vec{\psi} - \vec{\psi}_t)(\vec{\psi} - \vec{\psi}_t)^T}$$

The size of these covariance matrices is still too large.

Do remaining transformations for each parameter separately.

(ii) Vertical transform

Aim (each parameter):

Reformulate (i) the <u>state variable</u> and (ii) the <u>cov. matrix</u> in terms of modes which are **uncorrelated** in the vertical, each of which having **unit variance**.

We <u>can</u> calculate the vertical covariances for each column:

$$\operatorname{Cov}(\lambda, \, \phi; \, \ell, \, \ell') = \overline{\left(\psi(\lambda, \, \phi, \, t; \, \ell) - \psi_t(\lambda, \, \phi, \, t; \, \ell)\right) \times}$$
$$\overline{\left(\psi(\lambda, \, \phi, \, t; \, \ell') - \psi_t(\lambda, \, \phi, \, t; \, \ell')\right)}$$

Average over all (λ, ϕ) to form global covariance matrix:

Let
$$\mathbf{B}_{\psi}^{vert}(\ell, \ell') = \langle \operatorname{Cov}(\lambda, \phi; \ell, \ell') \rangle$$

Decompose this such that $\mathbf{B}_{\psi}^{vert} = \mathbf{I}$, as before (with weighting).

$$\Lambda_{v}^{-1/2}\mathbf{F}_{v}^{T}\mathbf{P}\mathbf{B}_{\psi}^{vert}\mathbf{P}\mathbf{F}_{v}\Lambda_{v}^{-1/2} = \mathbf{I}$$

$$\mathbf{T}_{v}^{vert}(global\ av.) = \boldsymbol{\Lambda}_{v}^{-1/2}\mathbf{F}_{v}^{T}\mathbf{P}$$

How can we make this into a transform acting on $\vec{\psi}$?

Transforming the state vector $(\vec{\psi})$:

$ec{\psi}_{EO}$	$_{F}$ =	$\mathbf{T}_{\!\scriptscriptstyle\mathcal{V}}$					$ec{\psi}$		
(λ_1, ϕ_1)	EOF1 EOF2 EOFL	$\Lambda_{v}^{-1/2}\mathbf{F}_{v}^{T}\mathbf{P}$	0	0	0	0	0	(λ_1, ϕ_1)	$\begin{bmatrix} \ell_1 \\ \ell_2 \\ \ell_L \end{bmatrix}$
(λ_2, ϕ_2)	EOF1 EOF2 EOFL	0	$\mathbf{\Lambda}_{v}^{-1/2}\mathbf{F}_{v}^{T}\mathbf{P}$	0	0	0	0	(λ_2, ϕ_2)	$\begin{bmatrix} \ell_1 \\ \ell_2 \\ \ell_L \end{bmatrix}$
(λ_3, ϕ_3)	_	0	0	$\boldsymbol{\Lambda}_{\boldsymbol{\nu}}^{-1/2} \mathbf{F}_{\boldsymbol{\nu}}^T \mathbf{P}$	0	0	0	(λ_3, ϕ_3)	
	_	0	0	0	$\Lambda_{v}^{-1/2}\mathbf{F}_{v}^{T}\mathbf{P}$	0	0		
		0	0	0	0	$\Lambda_{\nu}^{-1/2}\mathbf{F}_{\nu}^{T}\mathbf{P}$	0		
		0	0	0	0	0	$oldsymbol{\Lambda}_{ u}^{-1/2} oldsymbol{F}_{ u}^T oldsymbol{P}$		
 	- 						 		_

Transforming the error covariance matrix: $\mathbf{T}_{\nu}\mathbf{B}_{\psi}\mathbf{T}_{\nu}^{T}$

Include lat. variation

$$\Lambda_{\nu} \to \Lambda_{\nu}(\phi)$$

$$\Lambda_{\nu}(\phi) = \mathbf{F}_{\nu}^{T} \mathbf{P} \mathbf{B}_{\psi}^{vert}(\phi) \mathbf{P} \mathbf{F}_{\nu}$$

Transforming the state vector: $\vec{v_v} = \mathbf{T}_v \vec{v_v}$

Think of surfaces of constant vertical EOF index.

This is the result of the vertical transform.

Horizontal transform

(iii) Horizontal Transform

Aim (each parameter):

Reformulate (i) the <u>state variable</u> and (ii) the <u>cov. matrix</u> in terms of modes which are **uncorrelated** in the horizontal, each of which having **unit variance**.

Decompose into modes which we assume are uncorrelated. Effectively (for one ψ -EOF suface):

$$\Lambda_h^{-1/2} \mathbf{F}_h^T \mathbf{P} \mathbf{B}_{\psi}^{hor} \mathbf{P} \mathbf{F}_h \Lambda_h^{-1/2} = \mathbf{I}$$

$$\mathbf{T}_h^{hor} = \mathbf{\Lambda}_h^{-1/2} \mathbf{F}_h^T \mathbf{P}$$

 \mathbf{B}_{ψ}^{hor} is not explicitly calculated. Choose:

P as a weight matrix, different from before, \mathbf{F}_{v}^{T} as a horizontal spectral transform, and $\Lambda_{h}^{1/2}$ as the correlation spectrum of the modes.

What does the horizontal transform look like (acts on $\vec{\psi}_{EOF}$)?

Transforming the state vector $(\vec{\psi})$:

- \mathbf{T}_h^{hor} Transform associated with surface EOF1
- \mathbf{T}_h^{hor} Transform associated with surface EOF2
- \mathbf{T}_h^{hor} Transform associated with surface EOF3, etc

Transforming the error covariance matrix:

$$\mathbf{T}_h \mathbf{T}_v \mathbf{B}_{\psi} \mathbf{T}_v^T \mathbf{T}_h^T \approx \mathbf{I}$$

The transformed state vector: $\vec{v} = \mathbf{T}_h \vec{v}_v$

This is the result of all three transforms

Perform descent algorithm in this space

Summary of Equations

1. \vec{w} -space formulation

$$J(\vec{w}') = \frac{1}{2} (\vec{w}'^b - \vec{w}')^T \mathbf{B}^{-1} (\vec{w}'^b - \vec{w}') +$$

$$\frac{1}{2} (\vec{y}^o - H(\vec{w}', \vec{w}^g)))^T (\mathbf{E} + \mathbf{F})^{-1} (\vec{y}^o - H(\vec{w}', \vec{w}^g))$$

$$\frac{dJ}{d\vec{w}'} = -\mathbf{B}^{-1} (\vec{w}'^b - \vec{w}') - \mathbf{H}^T (\mathbf{E} + \mathbf{F})^{-1} (\vec{y}^o - H(\vec{w}', \vec{w}^g))$$

$$\frac{d^2J_b}{d\vec{w}'^2} = \mathbf{B}^{-1} + \mathbf{H}^T (\mathbf{E} + \mathbf{F})^{-1} \mathbf{H}$$

 \vec{w} = model state ('pertbtn, b backgrnd, g guess)

$$H(\vec{w}', \vec{w}^g) \approx H(\vec{w}^g) + \mathbf{H}\vec{w}'$$

2. \vec{v} -space formulation

$$\vec{v} = \mathbf{T}\vec{w}' \qquad \vec{w}' = \mathbf{U}\vec{v} \qquad \mathbf{U}^T \mathbf{B}^{-1} \mathbf{U} = \mathbf{I}$$

$$J(\vec{v}) = \frac{1}{2} (\vec{v}^b - \vec{v})^T \mathbf{U}^T \mathbf{B}^{-1} \mathbf{U} (\vec{v}^b - \vec{v}) + \frac{1}{2} (\vec{y}^o - H(\mathbf{U}\vec{v}, \vec{w}^g)))^T (\mathbf{E} + \mathbf{F})^{-1} (\vec{y}^o - H(\mathbf{U}\vec{v}, \vec{w}^g))$$

$$\frac{dJ}{d\vec{v}} = -\mathbf{U}^T \mathbf{B}^{-1} \mathbf{U} (\vec{v}^b - \vec{v}) - \mathbf{U}^T \mathbf{H}^T (\mathbf{E} + \mathbf{F})^{-1} (\vec{y}^o - H(\mathbf{U}\vec{v}, \vec{w}^g))$$

$$\frac{d^2 J_b}{d\vec{v}^2} = \mathbf{U}^T \mathbf{B}^{-1} \mathbf{U} + \mathbf{U}^T \mathbf{H}^T (\mathbf{E} + \mathbf{F})^{-1} \mathbf{H} \mathbf{U}$$