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The well known inverse-square law of gravitational attraction between masses, and New-

ton's laws of classical mechanics, together provide a basis to calculate positional aspects

of any body in the solar system.  Although the concepts of such a calculation are, in prin-

ciple, simple, the three dimensional nature of the problem often leads to difficulties in the

application of the associated geometry.  In a one (or two) body orbital problem, e.g. that

of a planet and the Sun, the problem reduces to Kepler's equation.  In these notes, Ke-

pler's equation is reviewed and how its 'elliptical-orbit' solution, typically a good approx-

imation for most planets in our solar system, is described by six orbital parameters.  For

purposes of observing major bodies of the solar system, including the planets, we show

practically how it is possible to calculate time dependent positions for such bodies from

an Earth observer's perspective.  The final part of this solution involves a transformation

from celestial ("right ascension" and "declination") co-ordinates to local ("altitude" and

"azimuth") co-ordinates.  This is useful in its own right also for the observation of stars,

nebulae and galaxies.  The inverse to the Kepler problem is the determination of orbital

parameters from a set of planetary observations.  The method of least squares is used for

this purpose and is presented in the final section.

Keywords: Astronomy, Kepler's equation, Orbital parameters, Co-ordinate transforma-

tion, Inverse Kepler problem.
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1. The
Elliptical orbit

in a plane

Gravity is a central force.  Consequently, the gravitational orbit of one body

about another is constrained to planar geometry1.  This provides a major simplifi-

cation to the analysis of orbital motion since the problem can be (for now) ex-

pressed in two dimensions.  Consider a system of two bodies, of masses and

 (e.g. the Sun and a planet respectively).  Assuming that the orbital motion of

each is bound, then the orbits of each about their common centre of mass form el-

lipses.  We will assume that , so that the centre of mass can be assumed

to lie at the position of mass  (representative of the Sun) and mass (a plan-

et) would trace the elliptical orbit (fig. 1).  Any elliptical orbit is specified by var-

ious attributes which are now defined.  Let the centre of the ellipse be at point C.

F  and F are special points arranged symmetrically about C and describe the foci

of the ellipse.  Mass  is positioned, not at C, but at one of the foci.  We choose

F  to be theoccupied focus.  P on the ellipse is the point of closest approach to F

and is called theperihelion.  Let Q and R be two points on the ellipse.  Q is arbi-

trary and R is positioned such that line CR is perpendicular to line CP.  The

length CR, called thesemi-minor axis, is of length  and CP, thesemi-major axis,

has length .  These lengths are related via the eccentricity of the ellipse,,

Ms

mp

Ms >> mp

Ms mp
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b

a e

b = a 1 − e2, (1)
which, in the special case of a circular orbit is zero .  The distance

between the centre of the orbit and a focus is .
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Fig. 1: An ellipse described by its centre, C, two foci F and F, the latter being oc-
cupied, and semi-axes of lengths and .  P is the perihelion, Q is an arbitrary point
on the ellipse (a distance from F ) and R is the point where the semi-minor axis
meets the ellipse.  and  are two possible angles describing Q.  The co-ordinate
system is defined by the three unit vectors,  and  (  planetary co-ordinates).
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In order to determine the position of mass on the ellipse at a given time, one

should solve Kepler's equation [1], expressed as,

mp t

M = E − e sinE. (2)

1 For the many (more than two) -body problem, the planar constraint does not generally
hold.  In the  configuration of our solar system, where interaction between each body
and the Sun dominates, the system can be approximated as a collection of independent
pairs of bodies.
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In eq. (2) there are two new parameters, and . , called themean anomaly,

is defined as,

M E M

M = n (t − T) , (3)
where  is themean motion,  (  is the period of the orbit) and  is

the time elapsed since perihelion.  The angle is theeccentric anomaly.  This is

illustrated in fig. 1 for point Q on the ellipse (angle PCQ).  Eq. (2) is non-linear

in the unknown  and cannot be solved analytically.  It is possible however  to

gain an approximate solution.  One way of achieving this to arbitrary precision is

by numerical means with the Newton-Raphson iterative method [2].

n n = 2π /P P t − T

E

E

Once the eccentric anomaly has been determined, it is necessary to compute an-

other angle associated with.  Thetrue anomaly, , is the angle between the per-

ihelion and the point Q about the occupied focus.  This angle is the one which

interests us and is related to via the trigonometric identity [1],

E w

E

tan
w

2
= (1 + e

1 − e )1/2

tan
E

2
, (4)

and the distance,, of Q from F is,r 2

r = a (1 − e cosE) . (5)
Together, the time dependent variables and  allow the position vector of the

body to be determined with respect to the occupied focus.  Declaring, as the

position vector in the planetary co-ordinate system defined in fig. 1, it is ex-

pressed,

w r

rp

rp = ( ) . (6)
r cosw

r sinw

0

We introduce the notation that a vector expressed in plane parentheses (as in eq.

(6)) shall be expressed in the planetary co-ordinate system.  Three of the six pa-

rameters which fully describe the orbit (,  and ) have now been introduced.

Although other parameters arise in the above, they are not independent and may

be inferred from relations (e.g. may be found from eq. (1) and can be calcu-

lated from  [1]).  The remaining three parameters are described

in section 2 and specify how the ellipse is orientated in space.  Numerical values

of six quantities for most planets of our solar system are listed in section 7.  

a e T

b P

P = 2π a3/GMs

2. The
transformation

to ecliptic co-
ordinates

Observations of the planets are made from Earth and so we must move to a co-

ordinate system which is convenient to an Earth-bound perspective (geocentric

co-ordinates).  This is the combined aim of sections 2 and 3 of these notes.  The

information known from the last section consists of the position vector of the

body at a given time expressed in the planetary co-ordinate system (fig. 1).  The
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planetary co-ordinate system is specific to a particular planet and so we should

transfer to a representation which is common to all objects.  There are many

stages in the transformation.  The first one which we shall do is to convert to

ecliptic co-ordinates.  The ecliptic is the plane of the Earth's orbit and contains

the x-y plane of the ecliptic co-ordinate system.  With the centre of the system on

the Sun, the x-axis points in the direction of thevernal equinox, and the z-axis

points perpendicular to the orbital plane (looking along z, the Earth's orbit is

clockwise) and the y-axis is perpendicular to the other two axes in a right-handed

sense (fig. 2).

Three angles denote the orientation of the orbit with respect to the ecliptic,,

and  (the longitude of the ascending node, the inclination and theargument of

the perihelion respectively).  In addition to the three orbital parameters defined in

section 1, these angles complete the orbital definition.  All six parameters have

now been mentioned.  When finding numerical values for the planets, note that

some references list an alternative set of parameters.  For example, instead of,

the time of perihelion (in eq. (3)), it is usual to quote themean longitude,  (or

more formally called themean longitude at the epoch).  To find the mean anoma-

ly, the following formula,

Ω i

ω

T

ε

M = n (t − t0) − ϖ + ε, (7)
should be used, where .  is called thelongitude of the perihelion.  In

eq. (7),  specifies the moment in time (epoch) associated with the given value

of .  It is the alternative orbital parameter which is listed with the other param-

eters in section 7 for most planets of the solar system.

ϖ = ω + Ω ϖ
t0

ε ε
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Fig. 2: The orbit of a planet (ellipse) relative to the Earth (the Earth's orbit is in the
ecliptic plane).  Shown are the unit vectors of the ecliptic co-ordinate system (sub-
script ) and the planetary co-ordinate system.  Points P and Q are on the pla-
net's orbit and are the same positions shown in fig. 1.  The orientation of the orbit is
described by the three angles,  and  and the orbital plane intersects the ecliptic
along the dashed line.

e (p)

Ω i ω

Converting to ecliptic co-ordinates consists of three stages, each requiring a rota-

tion.  For the first rotation, we wish to choose new and  axes, which are still inx y
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the orbital plane.  Instead of choosing the perihelion as the direction of the-axis

(as in planetary co-ordinates), we choose the direction of the ascending node (fig.

3).  The dashed line in fig. 3 is the same as that in fig. 2.

x

C P xp
ˆ

yp
ˆ

zp
ˆ

F1 F2

x′pˆ

y′pˆ

ω

A.N.

ω

Q

Fig. 3: The modified planetary co-ordinates.  The plane of the paper is the plane of
the orbit of the planet.  The modified-axis points from the Sun in the direction of
the ascending node (primed unit vectors) instead of the direction of perihelion (un-
primed vectors).  Note: P is the perihelion and A.N. is the ascending node.

x

The angle between the old and new axes is, the argument of the perihelion.

The conversion to the modified planetary co-ordinates (a vector expressed in this

co-ordinate system is denoted by primed parentheses) requires simply an incre-

ment of the true anomaly.  From eq. (6),

ω

r′p = ( ) . (8)
r cos(w + ω)
r sin(w + ω)

0

′

The second intermediate co-ordinate system is a formed by a rotation (of angle)

of the modified planetary axes about.  Let the new unit vectors be denoted by

double primes (fig. 4).  The vector in fig. 4 has length  and points within the

-  plane and in a direction an angle from .  Although  itself is not impor-

tant, it is useful is deriving the transformation.  In the modified planetary co-

ordinate system, is,

i

xp
ˆ ′

a ρ
yp
ˆ ′ zp

ˆ ′ θ yp
ˆ ′ a

a

a = ( ) , (9)

0
ρcosθ

ρsinθ

′

and is used to find the double primed axes and  by differentiating with re-

spect to  and  (respectively), choosing  and normalizing,

yˆ ″ zˆ ″
ρ θ θ = −i

x̂″ = xp
ˆ ′ = ( ) ,        yˆ ″ =

∂ a

∂ ρ

ˆ |
θ=−i

= ( ) ,        zˆ ″ =
∂ a

∂ θ

ˆ |
θ=−i

= ( ) .
1
0
0

′ 0
cosi

− sini

′

and  

0
sini

cosi

′

(10a)     (10b)      (10c)
The position in the double primed co-ordinate system is thus expressed as the po-
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sition in the modified planetary co-ordinate system projected onto each of these

unit vectors.  This is most succinctly expressed as the matrix transformation,

r″ = ( ) rp′. (11)
1 0 0
0 cosi − sini

0 sini cosi

x′pˆ y′pˆ

z′pˆ

yˆ ″

zˆ ″
aρ

θ
i

Fig. 4: The double-primed co-
ordinate system expressed in the
modified planetary co-ordinate
system.  is a vector used only
for the transformation.
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θ

x̂″

xe
ˆ

ye
ˆ

Ω

Fig. 5: The ecliptic co-ordinate
system expressed in the double-
primed co-ordinate system.  The
vector  serves an analogous
purpose to that in fig. 4.

a

The final part of the transformation takes us to the ecliptic co-ordinate system,

and requires a rotation of the co-ordinate axes of an angle about  (fig. 5).  In

the double-primed co-ordinate system, the vector is,

Ω zˆ ″
a

a = ( ) . (12)
ρcosθ

ρsinθ
0

″

As before, the ecliptic unit vectors in the double-primed system are found by dif-

ferentiation,

xe
ˆ =

∂ a

∂ ρ

ˆ |
θ=−Ω

= ( ) ,         ye
ˆ =

∂ a

∂ θ

ˆ |
θ=−Ω

= ( ) ,         ze
ˆ = zˆ ″ = ( ) .

cosΩ

− sinΩ
0

″ sinΩ

cosΩ
0

″

and  
0
0
1

″

(13a)      (13b)      (13c)
Again, the transformation can be written as a matrix,

re = ( ) r″ (14)
cosΩ − sinΩ 0

sinΩ cosΩ 0

0 0 1

The effective transformation from modified planetary co-ordinates to ecliptic co-

ordinates is then (combining eqs. (11) and (14) where is the vector given as

eq. (8)),

rp′

re = ( ) rp′ (15)
cosΩ − sinΩ cosi sinΩ sini

sinΩ cosΩ cosi − cosΩ sini

0 sini cosi
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3. The
transformation

to celestial co-
ordinates

While the aim is to move to geocentric co-ordinates, all systems of co-ordinates

used so far remain centred on the Sun (heliocentric).  Once the planetary posi-

tion, , has been computed for the chosen time, all that is required is a simple

shift of origin to the Earth's position.  This obviously requires us to know the po-

sition of the Earth at the same moment in time2.  This is the subject of this sec-

tion.  Knowledge of the position of the Earth relative to the Sun is useful for oth-

er reasons too, enabling the position of the Sun in the sky, in addition to the plan-

ets, to be determined.

re

The vector marking the position of the Earth is calculated in the same way as for

any of the planets.  Since the Earth orbits in the ecliptic plane, few complicated

axis rotations are required.  For the Earth, , in which case the angles and

 are ill defined.  For a given orbit, they are measured from the point where the

orbit crosses the ecliptic plane (fig. 2) - this is 'everywhere' if the orbit is always

within the ecliptic.  Their sum,  (called thelongitude of the perihe-

lion), can be defined in this case, and indicates the angle between the vernal

equinox and perihelion.  To see this formally, apply the transformation matrix,

eq. (15) with , to the vector, eq. (8).  After application of some simple trigo-

nometric identities, the position vector of the Earth in ecliptic co-ordinates is (=

Earth),

i = 0 ω
Ω

ϖ = ω + Ω

i = 0

E

rE
e =
















, (16)

r cos(w + ϖ)
r sin(w + ϖ)

0

where the curly parentheses indicate that the ecliptic co-ordinate system is used.

The position vector of the planet relative to the Earth is the difference,

rg = re − rE
e . (17)

The celestial co-ordinates which we wish to adopt are the usual right ascension

(RA) and declination (Dec.) parameters.  These are akin to longitude and latitude

familiar from our globe (both have the same equator).

The plane of the celestial equator is not coincident with that of the ecliptic.  This

is merely a statement that the Earth's axis of rotation (which defines the orienta-

tion of the RA/Dec. system of co-ordinates) is not normal to the ecliptic plane.

Instead it is orientated at an angle, theobliquity of the ecliptic (fig. 6), making a

further rotation of the axes is necessary.  Proceeding in a similar way to the rota-

tions made in section 2, the three new equatorial unit vectors (subscript) are

written in the Earth-centred ecliptic system as,

ε

eq

2 Strictly, the position of the planet is needed at a slightly earlier time, owing to the finite
speed of light.  The further away the planet, the longer the delay.  Since the maximum
delay would be  hours, and the distance travelled by the Earth and the planet in this
time would be immeasurable at accuracies assumed for this work, we ignore this effect.

∼ 5
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x̂eq =














g

,      yˆ eq =
∂ a

∂ ρ

ˆ
=
















g

     zˆ eq = −
∂ a

∂ ε

ˆ
=
















g

,
1
0
0

0
cosε

− sinε
and

0
sinε
cosε

(18a)      (18b)      (18c)
with  and the  notation implies that vectors are ex-

pressed in the ecliptic co-ordinate system centred on the Earth.  This change of

co-ordinates, which transforms the vector (geocentric ecliptic co-ordinates) to

 (geocentric equatorial co-ordinates) is summarized by the matrix,

a = {0, ρcosε,  − ρsinε}g {}g

rg

r′g

r′g = ( ) rg. (19)
1 0 0
0 cosε − sinε
0 sinε cosε

zˆ eq

xˆ eq

yˆ eq

'FRONT' VIEW'PLAN' VIEW

ε

ε

zˆ eq

yˆ eq

Earth Earth

x̂g

zˆ gyˆ g

zˆ g

x̂gyˆ g

Fig. 6: The orientation of the Earth's
axis with respect to the ecliptic plane.
Two perspectives are shown.  The
view looking down on the Earth
along the line which intersects the
ecliptic at right angles is the 'plan
view'.  Looking along the line which
joins the vernal equinox (in the di-
rection) and the Earth is the 'front
view'.  Shown are the geocentric
(subscript ) and the equatorial (sub-
script ) co-ordinate systems.  The
latter is formed by a rotation of the
former by an angle  about , and
the equatorial axis, , points north
along the Earth's axis.

x̂g

g
eq

ε x̂g

zˆ eq

The equatorial parameters RA and Dec. are derived from eq. (19) by simple

trigonometry (the Earth-planet distance is also given),

= tan−1 r′g ⋅ yˆ eq

r′g ⋅ xˆ eq

    r′g ⋅ xˆ eq > 0RA

π + tan−1 r′g ⋅ yˆ eq

r′g ⋅ x̂eq

 r′g ⋅ xˆ eq < 0, (20)

= tan−1 r′g ⋅ zˆ eq

(r′g ⋅ xˆ eq)2 + (r′g ⋅ yˆ eq)2
, (21)Dec.

 = (r′g ⋅ x̂eq)2 + (r′g ⋅ yˆ eq)2 + (r′g ⋅ zˆ eq)2 . (22)and distance

It is usual to convert RA into hours, minutes and seconds, and Dec. into degrees,

minutes and seconds (the above are currently in radians).  Note that for the deri-

vation of eq. (20), it is essential to know the conventions related to the 'origin'

and 'sense' of RA.  At the vernal equinox (the Sun is directly 'above' the Earth in

the plan view of fig. 6), the Sun has .  The RA becomes positive immedi-

ately thereafter (the Earth orbits the Sun in an anti-clockwise sense in the fig.).

= 0RA
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4.The
transformation

to local
horizontal co-

ordinates

The celestial co-ordinate system is the standard framework in which most 'quasi-

stationary' astronomical objects are catalogued.  The celestial position of a planet

(eqs. (20) and (21)) can be compared directly to the positions of stars in the vicin-

ity.  With the aid of a star chart, it can be located in the sky for a particular night.

For an observer with a good degree of familiarity with the night sky, this 'meth-

od' of location is easy and practical for planets which are distinguished with the

unaided eye.  Otherwise, a more systematic technique is needed.  In this section

we present a more general means of location through a further transformation

from celestial to local 'altitude-azimuth' co-ordinates (see below).

Each observer on Earth sees the sky from a different perspective depending upon

time and on their location.  The plane of the observer's horizon is tangential to

the surface of the sphere of the Earth (fig. 7a), and rotates with the Earth once

every sidereal day (1436.06817 minutes - about four minutes less than 24 hours).

The transformation described below, which takes the celestial co-ordinates as in-

put and yields the local alitude-azimuth angles specific to a given time and place

can be applied equally as well to planets as stars, galaxies and nebulae.  For a

specific time and place on Earth in mind, the altitude-azimuth (or alt-azi) angles

specify the position of an object relative to the horizon.  Conventionally, the alti-

tude, , is the angle between the object and the horizon, and the azimuth,, is the

horizontal angle measured from north (fig. 7b).

h A

(λ,φ)

φ̂North, 

N.P.

S.P.

λˆEast, 

ρˆZenith, 

φ̂

ρˆ

A

(λ′,φ)
Observer, 

Horizon

Object

λˆ

h

Fig. 7: (a) For an observer at a particular longitude and latitude, and at a specified
time, three unit vectors, , and  (corresponding to northerly, easterly and zenith
directions respectively) can be defined (see text for their derivation).  (b) By pro-
jecting the position vector of a star of planet onto these co-ordinates, trigonometry
allows the altitude () and azimuth () angles to be computed for the local horizon
of the observer.

φ̂ λˆ ρˆ

h A

In the context of the geocentric equatorial co-ordinate system defined in fig. 6,

the position of the distant object with specified R.A. and Dec. parameters is,
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r′g = ( ) . (23)

ρcos cosDec. R.A.

ρcos sinDec. R.A.

ρsinDec.

Note that although an arbitrary distance parameter,, has been used, our result (

and ) will be independent of.  In practice then it can be set to unity.  (N.B. if

the object in question is a planet computed using the formulae in section 3, its

three position components of eq. (23) can be taken directly from eq. (19) rather

than first converting to, and then back from R.A. and Dec. parameters.)

ρ h

A ρ

In order to make the transformation into the relevant local co-ordinates, the three

unit vectors of fig. 7a need to be specified in the same co-ordinate system as the

planet (geocentric equatorial co-ordinates).  Let the location of the observer be at

longitude, , and latitude,  (each expressed in radians).  We define theeffective

longitude of the observer,, relevant for time,

λ φ
λ′ t

λ′ = λ +
2π (t − tref )

∆ts

  (mod 2π) . (24)

Conceptually,  may be regarded as the longitude of an observer on a non-

rotating Earth.  Since the real Earth is rotating, the real observer is effectively in

motion with respect to the non-rotating Earth.  The parameters and  in eq.

(24) are respectively, a reference time where an observer at would see an

object of  appear due north, and the length of the sidereal day.  There are

an infinite number of reference times to choose from, but possibly the simplest is

to take the time of midnight on the day of the vernal equinox.  The unit vectors

will be derived from the position vector of the observer, (fig. 8),

λ′

tref ∆ts

λ = 0

= 0R.A.

r′obs

r′obs = ( ) , (25)
−Rcosφcosλ′
−R cosφ sinλ′

Rsinφ

Fig. 8: The relation between
the  half-plane and that
of .  The geocentric equa-
torial co-ordinates are also
shown.

R.A. = 0
λ′ = 0

N.P.

(λ′ = 0)

λ′

R.A.

Object

Rotation
of Earth

yˆ eq

x̂eq

zˆ eq
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(  is the radius of the Earth).  The northerly, easterly and zenith direction vectors

can be be derived easily by partial differentiation followed by normalization,

R

φ̂ =
∂ r′obs

∂φ

ˆ
= ( ),   λˆ =

∂ r′obs

∂ λ

ˆ
= ( ),   ρ̂ =

∂ r′obs

∂R
= ( ).

sinφ cosλ′
sinφsinλ′

cosφ

sinλ′
− cosλ′

0

− cosφcosλ′
− cosφ sinλ′

sinφ

(26a)     (26b)     (26c)
The transformation which gives the 'directional position' of the object in the local

co-ordinates,  is represented by the matrix consisting of eqs. (26) as its re-

spective rows,

rlocal

rlocal = ( ) r′g. (27)

sinφcosλ′ sinφ sinλ′ cosφ

sinλ′ −cosλ′ 0

−cosφcosλ′ −cosφ sinλ′ sinφ

The altitude and azimuth angles can be derived from this projection by simple

trigonometry,

h = tan−1 r′g ⋅ ρˆ

(r′g ⋅ λˆ )2 + (r′g ⋅ φ̂)2
(28)

A = tan−1 r′g ⋅ λˆ

r′g ⋅ φ̂
    r′g ⋅ φ̂ > 0

= π + tan−1 r′g ⋅ λˆ

r′g ⋅ φ̂
 r′g ⋅ φ̂ < 0

= π / 2          r′g ⋅ φ̂ = 0 r′g ⋅ λˆ > 0  and  

= −π / 2        r′g ⋅ φ̂ = 0 r′g ⋅ λˆ < 0 (29)  and  

5. Determining
orbital

parameters
from

observations

As discussed in the earlier sections, the future positions of a planet can be pre-

dicted if its six orbital parameters (commonly, , , ,  and ) are known.

Given also those parameters of the observer (the Earth), then we can infer the lo-

cation of the planet in the sky at any future time for which the two-body approx-

imation holds.  In this section we will discuss how the inverse problem is solved,

that is, the determination of a planet's orbital parameters from a set of suitable

observations.

a e i Ω ϖ ε

In this section we will introduce a simple notation that is convenient to the in-

verse problem.  The six orbital parameters (as above) are assembled into a six-

element vector  (known also as thestate).  It is this vector that we wish to de-

termine.  This will be done by first guessing this state and then refining the guess

x

- 11 -



iteratively, by fitting to the observations, using Gauss' method of least squares.

Let there be  observations consisting of alt/azi or RA/dec pairs, each pair per-

taining to a given time (we require a minimum of  for the problem to be

well-posed).  The observations are contained in the vector of  elements.  All

observations have uncertainties.  Let these be specified as variances and occupy

corresponding diagonal elements of the diagonal matrix.

N

N = 3

y 2N

R

The actual observations are distinguished from the so-called 'model observa-

tions'.  These are represented as a similar vector to, but are those 'observations'

that are predicted from the orbital parameters in by the prescription in the pre-

ceding sections.  The idea is to vary until the sum of weighted-mean-square dif-

ference between the observations and the model observations is minimized.

y

x

x

For clarity, all of the details of the previous sections will be labelled by the non-

linear vector operator, [x].  is the model observation operator ( ele-

ments - as ) which takes as its primary argument the set of orbital parameters

(other inputs, including the time that each actual observation is made and the

type of observation (alt/azi or RA/dec), are implicit).  is also known as the

forward model, which we know how to solve.  The inverse problem actually in-

volves multiple use of the forward model and is posed in the context of mini-

mizing thecost function, ,

H H[x] 2N

y

H[x]

J

J =
1

2
(y − H [x])T R−1 (y − H [x]) . (30)

The remainder of this section will deal with how can be varied in such a way as

to minimize .

x

J

Since  is non-linear, we need to linearize it,H[x]

H [x] = H [x0] + H (x − x0) . (31)
 is the linearization of  about a guess state.  Note that  (in roman rather

than italic typeface) is a  matrix which we denote by .  In matrix

notation ( denotes the adjoint or transpose) this is,

H H x0 H

2N × 6 dH / dx
T

H =
dH

dx
= (( d

dx)T

HT)T

= (( )   )
T

. (32)

∂ /∂ x1

∂ /∂ x2

...
∂ /∂ x6

(H1[x]   H2[x]   ...  H2N [x])

We linearize the whole cost function about by substituting Eq. (31) into (30),x0

J =
1

2
(y − H [x0] − H (x − x0))T R−1 (y − H [x0] − H (x − x0)) . (33)

 is now purely quadratic in.  To simplify the appearance of this expression, weJ x
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identify two residuals.  Let  and .  Then,y − H[x0] = δy x − x0 = δx

J =
1

2
(δy − Hδx)T R−1 (δy − Hδx) . (34)

The gradient of  with respect to  is a vector,J δx

∇δxJ = ( dJ

dδx)T

= −HTR−1 (δy − Hδx) , (35)

and the second derivative (known as the Hessian) is,

= ( d

dδx)T dJ

dδx
= HTR−1H. (36)Hessian

Preconditioning the problem

Variational problems are quite difficult to solve and often some mathe-

matical preparation of the system has to be made.  This is calledpre-

conditioning.

It is desirable for the Hessian to resemble the identity matrix, (the rea-

son for this is explained in the next subsection).  Of course, in general

the Hessian will not be the identity matrix, nor will it be either diagonal

or have unit determinant.  We would like to make a transformation to a

new vector space in which the Hessian is the identity matrix.  This is a

stage of the preconditioning process.  Although this complicates the

problem at this stage, it simplifies the minimization later on.  Let be

the transformation which moves from to a new  space (we wish to

do the minimization in  space).  is represented as a matrix (as is its

inverse, , which we are more concerned with),

I

U−1

δx δu

δu U−1

U

δu = U−1δx (37)

δx = Uδu (38)

= U2U1δu. (39)
In the last line the transformation has been split into parts 1 and 2,

, which shall be exploited soon.  Inserting into the cost func-

tion (Eq. (34)) gives,

U = U2U1 U

J =
1

2
(δy − HUδu)T R−1 (δy − HUδu) , (40)

in -space.  Expressions for the first and second derivatives of the cost

function with respect to  can be derived from those with respect to

(Eqs. (35) and (36)) using the transformation (Eq. (38)) and the general-

ised chain rule result [6],

δu

δu δx

( dJ

dδu)T

= UT ( dJ

dδx)T

(41)

The gradient and Hessian in space are then,δu
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∇δuJ = ( dJ

dδu)T

= − UTHTR−1 (δy − HUδu) (42)

= ( d

dδu)T dJ

dδu
= UTHTR−1HU. (43)Hessian

We would like to find the transformation that will, in  space, yield a

Hessian that is the identity matrix.  A transformed Hessian with such a

property is well conditioned and is thus simple to deal with when we

come to minimize the cost function.  In order to find, we exploit what

is already known about transformations that diagonalize a symmetric ma-

trix.  Given the Hessian in  space, we know that it can be diagonalized

with the special matrix ,

U δu

U

δx

Y

Y (HTR−1H) YT = Λ. (44)
Here, the matrix within brackets is the Hessian in the representation

and the rows of matrix  are formed by the eigenvectors of the Hessian

(in  space), and  is a diagonal representation of the Hessian (the di-

agonal elements are the eigenvalues).  We can complete the transforma-

tion (to make the transformed Hessian unitary) by pre and post multi-

plying each side of Eq. (44) by ,

δx

Y

δx Λ

Λ−1/2

Λ−1/2Y (HTR−1H) YTΛ−1/2 = Λ−1/2ΛΛ−1/2

↓   =      ↓

Λ−1/2Y (HTR−1H) (Λ−1/2Y)T
=         I, (45)

( ).  We wish to find out how transformations and  -

which we can find by diagonalizing the Hessian - are related to.

Equate the above to the form of the Hessian in space, Eq. (43),

Λ−1/2 = (Λ−1/2)T
Y Λ−1/2

U

δu

UT (HTR−1H) U = Λ−1/2Y (HTR−1H) (Λ−1/2Y)T
, (46)

and it becomes obvious (by comparison of each side) that we may

choose,

U  = (Λ−1/2Y)T

↓  =    ↓
U2U1 = YTΛ−1/2

U2 = YT (47)i.e.   

U1 = Λ−1/2. (48)and   

Figure 9 shows cross sections through the non-linear function (Eq.

(30)) centred on the orbital parameters for Jupiter using 11 synthetic ob-

servations spanning 40 years.  The respective variation with respect to

each parameter is featured in panels "a" - "f".  The structure of (particu-

larly as  is varied) is complicated.  This presents a number of diffi-

culties.  The state that we wish to converge towards (the global mini-

J

J

x1 = a
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mum) is labelled "A" in each panel.  There are however other minima

(e.g. "B" in Fig. 9a) that the procedure may find, which are erroneous.

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

200000

3 4 5 6 7 8

Parameter 1: x1 = a

A

B

C

J

x1

a

0

2000

4000

6000

8000

10000

12000

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

Parameter 2: x2 = e

A

J

x2

b

30

40

50

60

70

80

90

100

110

120

0 1 2 3 4 5

Parameter 3: x3 = i

A

J

x3

c

x4

20

30

40

50

60

70

80

-100 -50 0 50 100 150 200 250 300

Parameter 4: x4 = Ω

A

J

d

0

200

400

600

800

1000

1200

1400

1600

-200 -150 -100 -50 0 50 100 150 200

Parameter 5: x5 = ϖ

A

x5

e

J

0

50000

100000

150000

200000

250000

300000

350000

-150 -100 -50 0 50 100 150 200 250

Parameter 6: x6 = ε

A

x6

f

J

Fig. 9: Structure of the cost function,.  Each parameter,  to , is varied
separately in panels "a" to "f" respectively.  The parameters centre on
those relevant to Jupiter (see section 7), and 11 synthetic observations (of
the alt/azi variety) have been used spanning a 40-year period.  The global
minimum is shown as "A" in each panel.  The state at this point inverts
the problem.  "B" and "C" are erroneous stationary points discussed in the
text.

J x1 x6

x

Furthermore, the 'minimization' procedure outlined in the next subsec-

tion actually searches for stationary points and left freely will not neces-

sarily go 'downhill'.  Convergence may occur towards a local maximum

(e.g. "C" in Fig. 9a).

Whether the wrong minimum or a maximum is approached depends

upon the initial guess, .  The linearization process fits a six-x0
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dimensional paraboloid to the local shape of the true cost function.  If a

maximum is 'captured' by the linearization then one or more of the di-

agonal elements of the Hessian, Eq. (36), will be negative.  Consequent-

ly, one or more of the eigenvalues (in) will be negative and part of the

-transformation (  in Eq. (48)) will become imaginary (we require

that the square-root of the eigenvalue matrix is real).

Λ
U U1

These problems are overcome by ensuring (prior to finding the-

transformation) that  will capture the global minimum.  The guess,

is adjusted by first performing two one-dimensional searches for the

smallest value of  with respect only to parameter "" and then only to

parameter "".  All other parameters are angular (and hence periodic)

and if the Hessian contains a negative diagonal element then the parame-

ter is shifted by  radians.  This is actually the initial part of the pre-

conditioning process.

U

x0 x0

J i

a

π

Minimization

The minimization is done in  space.  Expanding as a Taylor series

about ,

δu J

δu = 0

J (δu) = J (0) +
dJ

dδu |
0
δu +

1

2
δuT (( d

dδu)T dJ

dδu) |
0
δu

= J (0) +
dJ

dδu |
0
δu +

1

2
δuTδu, (49)

where the value .  The third (quadratic)

term has been simplified in the last line as the Hessian is the identity ma-

trix in -space (it is for the purpose of this simplification that we intro-

duced the -transform in the previous subsection).  Now differentiating

Eq. (49) with respect to the deviation, and setting to zero for the sta-

tionary point,

J (δu = 0) = J (δx = 0) = J (x0)

δu

U

δu

( dJ

dδu)T |
δu

= ( dJ

dδu)T |
0

+ δu = 0 (50),

allows one to find the displacement which minimizes the cost func-

tion,

δu

δu = − ( dJ

dδu)T |
0
. (51)

Recall the form of the gradient term Eq. (42), which makes this dis-

placement,

δu = UTHTR−1δy. (52)
This is known and closes the expression for.  This procedure, which

searches for minima, would have been more difficult than it is if the

δu
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Hessian had not been preconditioned beforehand.  The minimum (in the

linearization) thus occurs at a deviation,, from the linearization point.

This can be transformed into  space via Eq. (38).  We then gain a bet-

ter estimate for the set of orbital parameters,

δu

δx

x = x0 + Uδu. (53)
Although the linearized inverse problem has been solved, the true cost

function, Eq. (30) is not quadratic.  It is assumed that the non-linear

problem is inverted by replacing with  from Eq. (53) and repeating

the whole process in an iterative fashion.  The solution is found when

some convergence criterion is satisfied (when  e.g.).

x0 x

δu → 0

Uncertainties

An important by-product of this variational procedure is that the un-

certainties of the analysed parameters can also be found.  A further com-

putation of  at the solution point allows a final calculation of the Hes-

sian, .  The diagonal elements of the Hessian are the variances of

the solution.  The smaller the variances, the more accurate the result, and

can be improved by repeating the inverse problem with a greater number

of observations.

H

HTR−1H

Algorithm

The algorithm for solving this inverse problem is contained in the fol-

lowing flow chart.

Read-in observations,, the observation times and types

(RA/dec or alt/azi), and the diagonal elements of.

y

R

↓

Set  (  it the iteration number) and guess the solu-

tion, .

n = 0 n

x1

↓

{*1} Increment .n

↓

{*2} Do a partial minimization over "" parameter and

update .

i

xn

↓

Do a partial minimization over "" parameter and updatea
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.xn

↓

Calculate the predicted observations, .H[xn]

↓

Calculate the full cost function as a diagnostic.

↓

Define .δy = y − H[xn]

↓

Linearize the forward model in physical space about.xn

↓

Calculate the Hessian in physical space at the lineariza-

tion state ( ).xn

↓

Check for negative diagonal elements of the Hessian.

The partial minimization with respect to "" and " " will

guarantee that diagonal element corresponding to these

will be positive.  If a negative diagonal element is found

for another element, adjust its value by radians and re-

turn to {*2} above.

i a

π

↓

Diagonalize the Hessian and determine the co-ordinate

transforms,  and  to give a unitary Hessian.U1 U2

U = U2U1

δx = Uδu

= U2U1δu

↓

Calculate the gradient in  space,  (  is initially zero).δu ∇δuJ δu

↓

Update  that minimizes  in the linearization.δu J

↓

Calculate the new state vector .xn + 1 = xn + Uδu

↓

← Go back to {*1} if the solution has not sufficiently converged.
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6. Solar System Data

Mass of the Sun,  kg [4].Ms = 1.989× 1030

Obliquity of the ecliptic,  (2000 Jan 1) [3].ε = 23° 26′ 21″

Table 1: Orbital constants [5]

Planet  (AU)a0 e0  i0 (°) Ω0 (°) ϖ0 (°) ε0 (°)
Mercury 0.38709893 0.20563069 7.00487 48.33167 77.45645 252.25084
Venus 0.72333199 0.00677323 3.39471 76.68069 131.53298 181.97973
Earth 1.00000011 0.01671022 0.00005 -11.26064 102.94719 100.46435
Mars 1.52366231 0.09341233 1.85061 49.57854 336.04084 355.45332
Jupiter 5.20336301 0.04839266 1.30530 100.55615 14.75385 34.40438
Saturn 9.53707032 0.05415060 2.48446 113.71504 92.43194 49.94432
Uranus 19.19126393 0.04716771 0.76986 74.22988 170.96424 313.23218
Neptune 30.06896348 0.00858587 1.76917 131.72169 44.97135 304.88003
Pluto 39.48168677 0.24880766 17.14175 110.30347 224.06676 238.92881

Table 2: Corrections (linear in time) [5]

Planet  (AU/cy)ȧ  (/cy)e˙  ("/cy)i˙  ("/cy)Ω̇  ("/cy)ϖ̇  ("/cy)ε˙
Mercury 0.00000066 0.00002527 -23.51 -446.30 573.57 538101628.29
Venus 0.00000092 -0.00004938 -2.86 -996.89 -108.80 210664136.06
Earth -0.00000005 -0.00003804 -46.94 -18228.25 1198.28 129597740.63
Mars -0.00007221 0.00011902 -25.47 -1020.19 1560.78 68905103.78
Jupiter 0.00060737 -0.00012880 -4.15 1217.17 839.93 10925078.35
Saturn -0.00301530 -0.00036762 6.11 -1591.05 -1948.89 4401052.95
Uranus 0.00152025 -0.00019150 -2.09 -1681.40 1312.56 1542547.79
Neptune -0.00125196 0.0000251 -3.64 -151.25 -844.43 786449.21
Pluto -0.00076912 0.00006465 11.07 -37.33 -132.25 522747.90

Elements are referenced to mean ecliptic and equinox of J2000 at the J2000 epoch (2451545.0 JD).

The tables give the six orbital parameters:

, length of the semi-major axis, , eccentricity,a e

, inclination, , longitude of the ascending node,i Ω

, longitude of the perihelion, and , mean longitude,ϖ ε

(table 1) and linear corrections of each due to perturbations (table 2).  To estimate the time dependent

value of a parameter,, the initial value , , and the rate of change,, taken from the table give,χ χ0 χ˙

χ (t) = χ0 + γχ̇ 
t − t0

36525
,

where  (  is the epoch), and  are in days, and 36525 is the number of days in a century.  The

parameter  is just a conversion factor, ie  for angular quantities, and  otherwise.  Note

that in the case of the mean longitude, the result  includes the effect of the mean mo-

tion,  in eq. (7).  The mean anomaly,,  (in degrees) is then calculated from the table as (use this in-

stead of eq. (7)),

χ0 ≡ χ(t0) t0 t t0

γ γ = 1/3600 γ = 1

ε0 + γε˙ (t − t0)/36525

n M

M = ε0 − ϖ0 + (ε˙ − ϖ̇)  
t − t0

36525× 3600
.
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7. Glossary
(see also [3])

Aphelion The point of an elliptical orbit which is furthest away

from the occupied focus.

Argument of perihelion The angle, measured in the orbit of the planet about

the occupied focus, between the ascending node and the

perihelion (  in fig. 2).ω

Ascending node This is the point in the planetary orbit which crosses the

ecliptic from below (fig. 2).

Celestial co-ordinates A system of co-ordinates which maps objects onto the

surface of the celestial sphere as viewed from the Earth

(at its centre)  The usual celestial co-ordinates is of equa-

torial type.  This is a system of spherical polar geo-

centric co-ordinates.  The two co-ordinates are right as-

cension (RA, which is analogous to longitude) and dec-

lination (Dec.., analogous to latitude).  The celestial

equator is a projection of the Earth's equator on to the ce-

lestial sphere.  The zero of RA is the direction of the

vernal equinox.

Cost function A scalar measure of the misfit between a set of observa-

tions and a corresponding set that has been calculated

according to a model (forward model).  The cost func-

tion is a tool used generally in variational inverse model-

ling.  The inverse model is solved when the model pa-

rameters (in the astronomical example, Eq. (30), the six

orbital parameters) minimize the cost function.

Eccentric anomaly The angle (  in fig. 1) formed between perihelion and a

given point on the elliptical orbit in question, measured

about the centre of the ellipse.

E

Eccentricity The parameter which describes how far an ellipse has

deviated from a circle (see eq. (1)).  The eccentricity

multiplied by the length of the semi-major axis yields

the separation between the centre of the ellipse and one

of the foci.  A circle has the eccentricity of zero.

Ecliptic co-ordinates A set of co-ordinates for which the x-y plane lies in the

plane of the Earth's orbit.  The centre of the system is at

the position of the Sun.  The x-axis points in the direc-

tion of the vernal equinox, and the z-axis points per-

pendicular to the orbital plane (looking along z, the

Earth's orbit is clockwise) and the y-axis is per-

pendicular to the other two axes in a right-handed sense.

See fig. 2.

Ellipse One of the possible paths traced-out by gravitational or-
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bital motion between two bodies.  The other possible or-

bits are parabolas and hyperbolas, the ellipse being the

bound (closed) orbit.

Equatorial co-ordinates See e.g. under 'celestial co-ordinates'.

Focus An ellipse has two foci (fig. 1).  The orbit of a minor

mass about a major body is an ellipse and the major

mass would be positioned at one of the foci (called the

occupied focus).

Forward model A forward model is a set of solvable mathematical rules

that acts on one set of parameters to give another set.  It

is to be distinguished from the inverse model, which is

often insolvable or difficult to solve.  In any case, the so-

lution to the inverse model can be estimated in a varia-

tional way by minimizing a cost function which is actu-

ally defined in terms of the forward model.  The astro-

nomical forward model developed in these notes takes

the six orbital parameters of a planet and predicts its po-

sition at a specified time.

Geocentric co-ordinates A system of co-ordinates centred on the Earth.

Heliocentric co-ordinates A system of co-ordinates centred on the Sun.

Inclination The angle, , between the planes (and normals to the

planes) of a planet and the ecliptic (fig. 2).

i

Longitude of the ascending node The angle between the vernal equinox and the

ascending node of a planets orbit centred on the Sun (

in fig. 2).

Ω

Longitude of the perihelion The sum of the argument of the perihelion,, and

the longitude of the ascending node, (symbol ).

and  each have little meaning for orbits which have

 (such as the Earth) or , but in which cases

their sum is meaningful.  This is the angle between the

vernal equinox and the perihelion.

 ω
Ω ϖ ω

Ω
i = 0° i = 180°

Mean anomaly The angle,  (eqs. (2) and (3)), between perihelion and a

point on a fictitious orbit, measured about the centre of

the real elliptical orbit (of the planet).  The fictitious or-

bit is the circular orbit which has the same orbital period

as the planet, and the point is that of the fictitious body

(travelling at uniform speed) after a given amount of

time since perihelion.

M

Mean longitude The mean longitude, is defined as the sum of the longi-

tude of the perihelion and the mean anomaly,.  is

time dependent, but if the mean longitude is to be quoted

L

M M
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as an alternative parameter to the longitude of the perihe-

lion, then its value should be chosen at a specified

epoch.  In this case, the mean longitude adopts the sym-

bol  and should be quoted together with the chosen date

of epoch.

ε

Mean motion The angular frequency, (eq. (3)), of a fictitious body in

a circular orbit which has the same orbital period as the

real planet.

n

Obliquity of the ecliptic This is the angle between the axis of the Earth and the

normal to the ecliptic plane (symbol).  It is the same

angle between the planes of the celestial equator and the

ecliptic.

ε

Perihelion The point of an elliptical orbit which is closest to the oc-

cupied focus (fig. 1).

Planetary co-ordinates A convenient co-ordinate system used to describe the

position of a planet in its plane.  This system of co-

ordinates is centred on the Sun.The x-axis points in the

direction of the perihelion, and the z-axis points per-

pendicular to the orbital plane (looking along z, the pla-

net's orbit is clockwise) and the y-axis is perpendicular

to the other two axes in a right-handed sense.

Semi-major axis The line between the centre of an ellipse and the point of

perihelion (fig. 1).

Semi-minor axis The line between the centre of an ellipse and the point

touching the ellipse by moving in a direction per-

pendicular to the semi-major axis (fig. 1).

True anomaly The angle,  (eq. 4), formed between perihelion and a

given point on the elliptical orbit in question, measured

about the occupied focus.

w

Vernal Equinox (or first point of Aries)  A point on the Earth's orbit

which is defined according to the orientation of the tilt

of the Earth's axis.  The point is marked by the position

of the Earth at that time when the Earth's axis lies in the

tangent plane of the orbit, and the Sun (to an Earthbound

observer) appears to move northwards.  For the current

epoch, the vernal equinox occurs on March 21st each

year (fig. 2).  The vernal equinox defines the zero of the

celestial co-ordinate system.
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