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The well known inverse-square law of gravitational attraction between masses, ant
ton's laws of classical mechanics, together provide a basis to calculate positional
of any body in the solar system. Although the concepts of such a calculation are, i
ciple, simple, the three dimensional nature of the problem often leads to difficulties
application of the associated geometry. In a one (or two) body orbital problem, e.
of a planet and the Sun, the problem reduces to Kepler's equation. In these noi
pler's equation is reviewed and how its 'elliptical-orbit' solution, typically a good ap
imation for most planets in our solar system, is described by six orbital parameter
purposes of observing major bodies of the solar system, including the planets, wi
practically how it is possible to calculate time dependent positions for such bodie:
an Earth observer's perspective. The final part of this solution involves a transfori
from celestial ("right ascension" and "declination") co-ordinates to local ("altitude'
"azimuth") co-ordinates. This is useful in its own right also for the observation of
nebulae and galaxies. The inverse to the Kepler problem is the determination of
parameters from a set of planetary observations. The method of least squares is
this purpose and is presented in the final section.

Keywords. Astronomy, Kepler's equation, Orbital parameters, Co-ordinate transfc
tion, Inverse Kepler problem.
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1. The
Elliptical orbit
in aplane

Gravity is a central force. Consequently, the gravitational orbit of one

about another is constrained to planar georheffjis provides a major simplifi
cation to the analysis of orbital motion since the problem can be (for now
pressed in two dimensions. Consider a system of two bodies, of nsard

m, (e.g. the Sun and a planet respectively). Assuming that the orbital mot
each is bound, then the orbits of each about their common centre of mass f
lipses. We will assume thits >> m,, so that the centre of mass can be assu
to lie at the position of madd; (representative of the Sun) and magga plan-
et) would trace the elliptical orbit (fig. 1). Any elliptical orbit is specified by \
ious attributes which are now defined. Let the centre of the ellipse be at p¢
F, and k; are special points arranged symmetrically about C and describe tF
of the ellipse. Masb is positioned, not at C, but at one of the foci. We chc
F, to be theoccupied focus. P on the ellipse is the point of closest approach

and is called theerihelion. Let Q and R be two points on the ellipse. Q is a
trary and R is positioned such that line CR is perpendicular to line CP.
length CR, called thsemi-minor axis, is of lengthp and CP, theemi-major axis,

has lengtta. These lengths are related via the eccentricity of the elépse,

b=a/l-¢€ (@h)
which, in the special case of a circular orbit is zéve=-a). The distance
between the centre of the orbit and a focuSHs= ea.

Fig. 1. An ellipse described by its centre, C, two fociaRd F, the latter being oc-
cupied, and semi-axes of lengthandb. P is the perihelion, Q is an arbitrary poin
on the ellipse (a distancefrom F,) and R is the point where the semi-minor axjs
meets the ellipseE andw are two possible angles describing Q. The co-ordina!
system is defined by the three unit vecl)qrsyp andzp (p = planetary co-ordinates).

—

In order to determine the position of magson the ellipse at a given tinteone
should solve Kepler's equation [1], expressed as,

M = E - esinE (2)

1 For the many (more than two) -body problem, the planar constraint does not gt
hold. In the configuration of our solar system, where interaction between eac
and the Sun dominates, the system can be approximated as a collection of ind
pairs of bodies.



2. The

transfor mation
to ecliptic co-
ordinates

In eq. (2) there are two new parametdfsandE. M, called themean anomaly,
is defined as,

M=n@-T), 3)
wheren is themean motion, n= 2x/P (P is the period of the orbit) and-T is
the time elapsed since perihelion. The argle theeccentric anomaly. This is
illustrated in fig. 1 for point Q on the ellipse (angle PCQ). Eq. (2) is non-li
in the unknowrE and cannot be solved analytically. It is possible howeve
gain an approximate solution. One way of achieving this to arbitrary precis
by numerical means with the Newton-Raphson iterative method [2].

Once the eccentric anomaly has been determined, it is necessary to comg
other angle associated with Thetrue anomaly, w, is the angle between the pe
ihelion and the point Q about the occupied focus. This angle is the one
interests us and is relatedEwia the trigonometric identity [1],

tan—, (4

w (1+e)”2 E
2

and the distance, of Q from k is,

r = a(l - ecosk). 6]
Together, the time dependent variableandr allow the position vector of th:
body to be determined with respect to the occupied focus. Declagiag,the
position vector in the planetary co-ordinate system defined in fig. 1, it is
pressed,

I COsSw
rp = |rsinw|. (6)
0
We introduce the notation that a vector expressed in plane parentheses (a
(6)) shall be expressed in the planetary co-ordinate system. Three of the
rameters which fully describe the orbét, € andT) have now been introduce:
Although other parameters arise in the above, they are not independent ai
be inferred from relations (e..may be found from eq. (1) arRican be calcu-
lated fromP = 27,/a3/GMq [1]). The remaining three parameters are descr
in section 2 and specify how the ellipse is orientated in space. Numerical '
of six quantities for most planets of our solar system are listed in section 7.

Observations of the planets are made from Earth and so we must move t
ordinate system which is convenient to an Earth-bound perspegtoeeritric

co-ordinates). This is the combined aim of sections 2 and 3 of these notes.
information known from the last section consists of the position vector o
body at a given time expressed in the planetary co-ordinate system (fig. 1,



planetary co-ordinate system is specific to a particular planet and so we
transfer to a representation which is common to all objects. There are
stages in the transformation. The first one which we shall do is to conv
ecliptic co-ordinates. The ecliptic is the plane of the Earth's orbit and cont
the x-y plane of the ecliptic co-ordinate system. With the centre of the syst
the Sun, the Jaxis points in the direction of theernal equinox, and the z-axis
points perpendicular to the orbital plane (looking along z, the Earth's or
clockwise) and the y-axis is perpendicular to the other two axes in a right-h
sense (fig. 2).

Three angles denote the orientation of the orbit with respect to the edliptic
andw (thelongitude of the ascending node, theinclination and theargument of
the perihelion respectively). In addition to the three orbital parameters defint
section 1, these angles complete the orbital definition. All six parameters
now been mentioned. When finding numerical values for the planets, not
some references list an alternative set of parameters. For example, inskge
the time of perihelion (in eq. (3)), it is usual to quote riwan longitude, ¢ (or
more formally called thenean longitude at the epoch). To find the mean anome
ly, the following formula,

M=n{t-1t) —@ + ¢, (7)
should be used, wheme= w + Q. @ is called thdongitude of the perihelion. In
eg. (7),to specifies the moment in time (epoch) associated with the given
of ¢. It is the alternative orbital parametewhich is listed with the other paran
eters in section 7 for most planets of the solar system.

Fig. 2: The orbit of a planet (ellipse) relative to the Earth (the Earth's orbit is in
ecliptic plane). Shown are the unit vectors of the ecliptic co-ordinate system
scripte) and the planetary co-ordinate systgmn Points P and Q are on the pla
net's orbit and are the same positions shown in fig. 1. The orientation of the of
described by the three angl@si andw and the orbital plane intersects the eclipt
along the dashed line.

OT ' 0 ~+

Converting to ecliptic co-ordinates consists of three stages, each requiring
tion. For the first rotation, we wish to choose neandy axes, which are still ir



the orbital plane. Instead of choosing the perihelion as the direction ehttie
(as in planetary co-ordinates), we choose the direction of the ascending no:
3). The dashed line in fig. 3 is the same as that in fig. 2.

Fig. 3: The modified planetary co-ordinates. The plane of the paper is the plan
the orbit of the planet. The modifiegaxis points from the Sun in the direction a
the ascending node (primed unit vectors) instead of the direction of perihelion
primed vectors). Note: P is the perihelion and A.N. is the ascending node.

=0
~

~~

The angle between the old and new axe,ishe argument of the periheliol
The conversion to the modified planetary co-ordinates (a vector expressed
co-ordinate system is denoted by primed parentheses) requires simply ar
ment of the true anomaly. From eq. (6),

rcogw+ o)\
rp = [rsin(w+w)| . (8)
0

The second intermediate co-ordinate system is a formed by a rotation (of)a
of the modified planetary axes aboﬁ,gt Let the new unit vectors be denoted
double primes (fig. 4). The vectarin fig. 4 has lengtly and points within the
Yv'-Z,/ plane and in a direction an anglércomy,’. Althoughaitself is not impor-
tant, it is useful is deriving the transformation. In the modified planetary
ordinate systeng s,
o\’
a = |pcod 9

’

psing

and is used to find the double primed ayésand?” by differentiating with re-
spect tqp ando (respectively), choosing = —i and normalizing,

1 R o\’ . 0\’
R = )2p’ =|o|, S\// — @‘ —| CoS , and ¥’ = @' — [ SIni
0 Ip —sini 90 cos
=i O=i
(10a) (10b) (10c)

The position in the double primed co-ordinate system is thus expressed as



sition in the modified planetary co-ordinate system projected onto each of
unit vectors. This is most succinctly expressed as the matrix transformatior

1 0 0
r” = | 0 cog —sini My (11

0 sini cod
Fig. 4: The double-primed co- Fig. 5: The ecliptic co-ordinate
ordinate system expressed in the system expressed in the double-
modified planetary co-ordinate primed co-ordinate system. The
system. a is a vector used only vector a serves an analogous
for the transformation. purpose to that in fig. 4.

The final part of the transformation takes us to the ecliptic co-ordinate sy
and requires a rotation of the co-ordinate axes of an &ngleout?” (fig. 5). In
the double-primed co-ordinate system, the veztsry

”

pcosd
a=1psing| - (12
0

As before, the ecliptic unit vectors in the double-primed system are found t
ferentiation,

” ” ”

. a cos2 . da sinQ . 0

Xeza_p “|-sinQ| - YeT oo | Tlcox| - and z=2"= (1)
6=—Q 0 6=—Q 0

(13a) (130) (13¢)
Again, the transformation can be written as a matrix,
cox) —sinQ 0
re=1{sinQ cox2 0 |r” (14

0 0o 1

The effective transformation from modified planetary co-ordinates to ecliptit
ordinates is then (combining egs. (11) and (14) whgres the vector given a

eqg. (8)),
co) —sinQcos sinQsini
re = | sSiNQ cosQ2cos —co2sini |r (15
0 sini cos



3. The

transfor mation
to celestial co-
ordinates

While the aim is to move to geocentric co-ordinates, all systems of co-ord
used so far remain centred on the Sun (heliocentric). Once the planetar
tion, r, has been computed for the chosen time, all that is required is a ¢
shift of origin to the Earth's position. This obviously requires us to know thi
sition of the Earth at the same moment in im&his is the subject of this se
tion. Knowledge of the position of the Earth relative to the Sun is useful foi
er reasons too, enabling the position of the Sun in the sky, in addition to the
ets, to be determined.

The vector marking the position of the Earth is calculated in the same way
any of the planets. Since the Earth orbits in the ecliptic plane, few compli
axis rotations are required. For the Earth0, in which case the anglesand
Q are ill defined. For a given orbit, they are measured from the point whe
orbit crosses the ecliptic plane (fig. 2) - this is 'everywhere' if the orbit is al
within the ecliptic. Their sump = w + Q (called thelongitude of the perihe-

lion), can be defined in this case, and indicates the angle between the
equinox and perihelion. To see this formally, apply the transformation m
eg. (15) withi = 0, to the vector, eq. (8). After application of some simple tri
nometric identities, the position vector of the Earth in ecliptic co-ordinatés i
Earth),

r cosw+ o)
s = {rsinw+m);, (16
0
where the curly parentheses indicate that the ecliptic co-ordinate system it
The position vector of the planet relative to the Earth is the difference,

rg = re — re. (17
The celestial co-ordinates which we wish to adopt are the usual right asc
(RA) and declination (Dec.) parameters. These are akin to longitude and I
familiar from our globe (both have the same equator).

The plane of the celestial equator is not coincident with that of the ecliptic.
is merely a statement that the Earth's axis of rotation (which defines the o
tion of the RA/Dec. system of co-ordinates) is not normal to the ecliptic p
Instead it is orientated at an angeéheobliquity of the ecliptic (fig. 6), making a
further rotation of the axes is necessary. Proceeding in a similar way to th
tions made in section 2, the three new equatorial unit vectors (sulesprite
written in the Earth-centred ecliptic system as,

2 Strictly, the position of the planet is needed at a slightly earlier time, owing to the
speed of light. The further away the planet, the longer the delay. Since the mi
delay would be- 5 hours, and the distance travelled by the Earth and the planet
time would be immeasurable at accuracies assumed for this work, we ignore this



1 - 0 ~ 0
0, dp —sine de cose|
(18a) (180) (18¢c)

with a= {0, pcose, —psine}y and the{}4 notation implies that vectors are e
pressed in the ecliptic co-ordinate system centred on the Earth. This cha
co-ordinates, which transforms the veatg(geocentric ecliptic co-ordinates) -
rg (geocentric equatorial co-ordinates) is summarized by the matrix,

1 0 0
rg = | 0 cose —sine |r, (19)
0 sine cose

'PLAN' VIEW 'FRONT' VIEW Fig. 6: The orientation of the Earth's
axis with respect to the ecliptic plane.
Earth Egarth Two perspectives are shown. The

view looking down on the Earth
along the line which intersects the
ecliptic at right angles is the ‘plan
view'. Looking along the line which
joins the vernal equinox (in thg di-
rection) and the Earth is the 'front
view'. Shown are the geocentri¢
(subscriptg) and the equatorial (sub-
script eq) co-ordinate systems. The
latter is formed by a rotation of the
former by an angle aboutX, and
the equatorial axiszq, points north
along the Earth's axis.

The equatorial parameters RA and Dec. are derived from eq. (19) by ¢
trigonometry (the Earth-planet distance is also given),

rg - ¥
RA = tan’l,g'—yeq ly - Xeg > 0
rg - Xeg
rg - ¥
7+ tant = L Mg« %eq < O, (20)
Mg - Xeg
rg - 2
Dec. = tan" ——— 0 - > (21
V(g - Se)’ + (1 - Ye)
and  distance= 1/(ry - Reg)® + (rg - Yeo)® + (g - 2q)?- (22

It is usual to convert RA into hours, minutes and seconds, and Dec. into de
minutes and seconds (the above are currently in radians). Note that for th
vation of eq. (20), it is essential to know the conventions related to the 'c
and 'sense' of RA. At the vernal equinox (the Sun is directly ‘above' the E:
the plan view of fig. 6), the Sun hBA = 0. The RA becomes positive immec
ately thereafter (the Earth orbits the Sun in an anti-clockwise sense in the fi



4 The

transfor mation
to local
horizontal co-
ordinates

The celestial co-ordinate system is the standard framework in which most '
stationary' astronomical objects are catalogued. The celestial position of a
(egs. (20) and (21)) can be compared directly to the positions of stars in the
ity. With the aid of a star chart, it can be located in the sky for a particular |
For an observer with a good degree of familiarity with the night sky, this 'n
od' of location is easy and practical for planets which are distinguished wi
unaided eye. Otherwise, a more systematic technique is needed. In this
we present a more general means of location through a further transfort
from celestial to local 'altitude-azimuth' co-ordinates (see below).

Each observer on Earth sees the sky from a different perspective dependin
time and on their location. The plane of the observer's horizon is tangen
the surface of the sphere of the Earth (fig. 7a), and rotates with the Eartl
every sidereal day (1436.06817 minutes - about four minutes less than 24
The transformation described below, which takes the celestial co-ordinates
put and yields the local alitude-azimuth angles specific to a given time and
can be applied equally as well to planets as stars, galaxies and nebulae.
specific time and place on Earth in mind, the altitude-azimuth (or alt-azi) a
specify the position of an object relative to the horizon. Conventionally, the
tude,h, is the angle between the object and the horizon, and the azinislihe
horizontal angle measured from north (fig. 7b).

N.P. Object
)
- 4 Horizon
¢
h
A ~
A
Observer,
S.P. *.¢)

Fig. 7: (a) For an observer at a particular longitude and latitude, and at a speci
time, three unit vectorg, 4, andp (corresponding to northerly, easterly and zenitt
directions respectively) can be defined (see text for their derivation). (b) By
jecting the position vector of a star of planet onto these co-ordinates, trigonon
allows the altitudeh) and azimuth4) angles to be computed for the local horizg

S5 20

of the observer.

In the context of the geocentric equatorial co-ordinate system defined in f
the position of the distant object with specified R.A. and Dec. parameters is



pcoDec. coR.A.
ry = |pcosDec.sinR.A. | (23
psinDec.

Note that although an arbitrary distance parampidras been used, our restit
andA) will be independent gb. In practice then it can be set to unity. (N.B
the object in question is a planet computed using the formulae in section
three position components of eq. (23) can be taken directly from eq. (19)
than first converting to, and then back from R.A. and Dec. parameters.)

In order to make the transformation into the relevant local co-ordinates, the
unit vectors of fig. 7a need to be specified in the same co-ordinate system
planet (geocentric equatorial co-ordinates). Let the location of the observe
longitude,, and latitudeg (each expressed in radians). We defineetfeetive
longitude of the observet), relevant for timd,

A=A+ M (mod2n). (24
At
Conceptually,A” may be regarded as the longitude of an observer on a
rotating Earth. Since the real Earth is rotating, the real observer is effectiv
motion with respect to the non-rotating Earth. The paramgteendAts in eq.
(24) are respectively, a reference time where an obserdet @twould see ar
object ofR.A. = 0 appear due north, and the length of the sidereal day. The
an infinite number of reference times to choose from, but possibly the simp
to take the time of midnight on the day of the vernal equinox. The unit ve

will be derived from the position vector of the observgg, (fig. 8),

—Rcosp cost’
rops = |—Rcosp sind’ |, (25
Rsing
Fig. 8: The relation between Xeq
theR.A. =0 half-plane and that
of ’=0. The geocentric equa-
torial co-ordinates are also
shown. 5
Ve Zeq
Rotation
of Earth
'=0

-10-



5. Determining
orbital
parameters
from
observations

(Ris the radius of the Earth). The northerly, easterly and zenith direction vi
can be be derived easily by partial differentiation followed by normalization,

P> sing cost/ 5, sinA’ , —Cosp cost’
b= ar"bsz singsini’ |, 1= ;;bs: _cosV |, [)=ar—°F:S= —cosp sind’ |.
¢ Ccosp 0 sing
(26a) (260) (26c)

The transformation which gives the 'directional position' of the object in the
co-ordinatesr | IS represented by the matrix consisting of egs. (26) as it
spective rows,

singcost” singsinA’ cosp
MNocal = sinA’ —cost’ 0 |rg (27
—cosp cost’ —cosp sind” sing

The altitude and azimuth angles can be derived from this projection by s
trigonometry,

h = tan (29
’ 2\2 ’ a
\/(rg'l) +(rg- o)
ry- A .
A= tan' 21— re-¢ >0
ry -
rg - 4 .
=g+tan'—— r15-9<0
rg - ¢
=7l2 rg-¢ =0andrg -4 >0
= -7/2 rp-¢ =0andrg-1<0 (29)

As discussed in the earlier sections, the future positions of a planet can t
dicted if its six orbital parameters (commoraye, i, Q, @ ande) are known.
Given also those parameters of the observer (the Earth), then we can infer
cation of the planet in the sky at any future time for which the two-body ap
imation holds. In this section we will discuss how the inverse problem is sc
that is, the determination of a planet's orbital parameters from a set of si
observations.

In this section we will introduce a simple notation that is convenient to th
verse problem. The six orbital parameters (as above) are assembled intc
element vectok (known also as thgate). It is this vector that we wish to d«
termine. This will be done by first guessing this state and then refining the

-11-



iteratively, by fitting to the observations, using Gauss' method of least sq
Let there beN observations consisting of alt/azi or RA/dec pairs, each pair
taining to a given time (we require a minimumNbE 3 for the problem to be
well-posed). The observations are contained in the veab2N elements. All
observations have uncertainties. Let these be specified as variances and
corresponding diagonal elements of the diagonal mBtrix

The actual observations are distinguished from the so-called 'model ob
tions'. These are represented as a similar vectgritot are those 'observatior
that are predicted from the orbital parameters by the prescription in the pre
ceding sections. The idea is to varyntil the sum of weighted-mean-square ¢
ference between the observations and the model observations is minimized

For clarity, all of the details of the previous sections will be labelled by the
linear vector operatoi[x]. H[x] is the model observation operat@N(ele-
ments - ag/) which takes as its primary argument the set of orbital param
(other inputs, including the time that each actual observation is made ai
type of observation (alt/azi or RA/dec), are implicib).[x] is also known as th
forward model, which we know how to solve. The inverse problem actually
volves multiple use of the forward model and is posed in the context of
mizing thecost function, J,

1
J=5w—+ﬂnfwﬂy—HwD. (30

The remainder of this section will deal with hawan be varied in such a way
to minimizeJ.

SinceH [x] is non-linear, we need to linearize it,

H[x] = H[X] + H(X — Xp). 3)
H is the linearization oH about a guess statg. Note thatH (in roman rather
than italic typeface) is aN x 6 matrix which we denote bgiH/dx. In matrix
notation { denotes the adjoint or transpose) this is,

T
dldxy (Hi[X] Ha[x] ... HonIXD)

T A" |[[a19x
H:d—Hz((i) HT) - ’ (32
dx dx
dl dxg
We linearize the whole cost function abapby substituting Eq. (31) into (30),
1 _
3= S0 = HDol —Hx =) Ry —HXol —H(x = x0). (33

Jis now purely quadratic ix. To simplify the appearance of this expression,

-12-



identify two residuals. Let—H[Xp] = dy andx —xq=0X. Then,

J= %(6y — Hox)' R (dy — HOX). (34)
The gradient of with respect t@x is a vector,
dJ\' To-1
Vod = (==| = -H'R"(dy - Hox), (39
dox
and the second derivative (known as the Hessian) is,
T
Hessian= (i) 4 yR, 36)
dox/ dox

Preconditioning the problem

Variational problems are quite difficult to solve and often some mathe-
matical preparation of the system has to be made. This is paded
conditioning.

It is desirable for the Hessian to resemble the identity mat(tke rea-

son for this is explained in the next subsection). Of course, in general
the Hessian will not be the identity matrix, nor will it be either diagonal
or have unit determinant. We would like to make a transformation to a
new vector space in which the Hessian is the identity matrix. This is a
stage of the preconditioning process. Although this complicates the
problem at this stage, it simplifies the minimization later on. U7tbe

the transformation which moves frad® to a newdu space (we wish to

do the minimization iMu space).U™ is represented as a matrix (as is its
inverse U, which we are more concerned with),

Su = Uox (37)
ox = Udu (38
= U2U1(§u. (39)

In the last line the transformation has been split into parts 1 and 2,
U = U,U,, which shall be exploited soon. Insertidgnto the cost func-
tion (Eqg. (34)) gives,

- %(6y — HUSU)" R (8y — HUGU), (40)

in ou-space. Expressions for the first and second derivatives of the cost
function with respect tou can be derived from those with respectxo
(Egs. (35) and (36)) using the transformation (Eq. (38)) and the general-
ised chain rule result [6],

) = V(G @

dou dox
The gradient and Hessiandn space are then,

-13-



.
v = (2]
dou

T dJ
dou
We would like to find the transformatidh that will, indu space, yield a
Hessian that is the identity matrix. A transformed Hessian with such a
property is well conditioned and is thus simple to deal with when we
come to minimize the cost function. In order to flddwe exploit what
is already known about transformations that diagonalize a symmetric ma-
trix. Given the Hessian ifix space, we know that it can be diagonalized
with the special matri¥X/,

= —UH'R™(dy — HUSU) (42

Hessian= (i) = U'H'RHU. (43
ddu

Y(H'RMH)YT = A. (44
Here, the matrix within brackets is the Hessian indkeepresentation
and the rows of matri¥ are formed by the eigenvectors of the Hessian
(in ox space), and\ is a diagonal representation of the Hessian (the di-
agonal elements are the eigenvalues). We can complete the transforma-
tion (to make the transformed Hessian unitary) by pre and post multi-
plying each side of Eq. (44) by ™2,

A Y2y (HTR—lH)YT AV2 _ ATV2p A2
\ = |
T
A—JJZY (HTR—lH) (A—]JZY) |, (45)
e = - . e wish to find out how transformatiorsan e -
AY2 = (A2)T). We wish to find out h f ioWsand A~Y/2

which we can find by diagonalizing the Hessian - are related.to
Equate the above to the form of the Hessiaduispace, Eq. (43),

UT(H'RMH)U = A2y (HTRH) (A ¥2y), (46)
and it becomes obvious (by comparison of each side) that we may

choose,

U = (A %2y
V=
UU; = Y'A™Y?
ie. Uy =Y' (47)
and U; = A2 (48)

Figure 9 shows cross sections through the non-linear fundtig.

(30)) centred on the orbital parameters for Jupiter using 11 synthetic ob-
servations spanning 40 years. The respective variation with respect to
each parameter is featured in panels "a" - "f*". The structurépzfrticu-

larly asx; = a is varied) is complicated. This presents a number of diffi-
culties. The state that we wish to converge towards (the global mini-

-14-



mum) is labelled "A" in each panel. There are however other minima
(e.g. "B" in Fig. 9a) that the procedure may find, which are erroneous.
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Fig. 9: Structure of the cost functiod, Each parametex; to X, is varied
separately in panels "a" to "f' respectively. The parameters centre on

those relevant to Jupiter (see section 7), and 11 synthetic observations (of
the alt/azi variety) have been used spanning a 40-year period. The global
minimum is shown as "A" in each panel. The ska## this point inverts
the problem. "B" and "C" are erroneous stationary points discussed in the
text.

Furthermore, the 'minimization' procedure outlined in the next subsec-
tion actually searches for stationary points and left freely will not neces-
sarily go 'downhill'. Convergence may occur towards a local maximum
(e.g. "C"in Fig. 9a).

Whether the wrong minimum or a maximum is approached depends
upon the initial guessx,. The linearization process fits a six-
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dimensional paraboloid to the local shape of the true cost function. If a
maximum is 'captured' by the linearization then one or more of the di-
agonal elements of the Hessian, Eq. (36), will be negative. Consequent-
ly, one or more of the eigenvalues (il will be negative and part of the
U-transformation ¢, in Eq. (48)) will become imaginary (we require
that the square-root of the eigenvalue matrix is real).

These problems are overcome by ensuring (prior to findingUthe
transformation) thaxo will capture the global minimum. The guess,

is adjusted by first performing two one-dimensional searches for the
smallest value od with respect only to parametet 'and then only to
parameter d". All other parameters are angular (and hence periodic)
and if the Hessian contains a negative diagonal element then the parame-
ter is shifted byr radians. This is actually the initial part of the pre-
conditioning process.

Minimization
The minimization is done idu space. Expanding as a Taylor series
aboutou = 0,

J(O)+£

J(du) o0

;
ou + léuT((i) ﬂ)
0 2 dou/ ddu

0

dJ 1 -
J0+—‘6u+—6u6u, 4
© doulo 2 “49

where the valuel(du =0)=J(0x =0) =J(Xe). The third (quadratic)
term has been simplified in the last line as the Hessian is the identity ma-
trix in ou-space (it is for the purpose of this simplification that we intro-
duced theJ-transform in the previous subsection). Now differentiating
Eq. (49) with respect to the deviatidn, and setting to zero for the sta-

+ ou = 0, (50)

tionary point,

(d_J)T _ (E)T

dou/ leu dou/ lo
allows one to find the displacemedu which minimizes the cost func-
tion,

su = -( aJ )T (51)

dou/ lo
Recall the form of the gradient term Eq. (42), which makes this dis-

placement,

su = U'H'Roy. (52)
This is known and closes the expressiondior This procedure, which
searches for minima, would have been more difficult than it is if the
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Hessian had not been preconditioned beforehand. The minimum (in the
linearization) thus occurs at a deviation, from the linearization point.
This can be transformed indx space via Eq. (38). We then gain a bet-
ter estimate for the set of orbital parameters,

X = Xg + Udu. (53
Although the linearized inverse problem has been solved, the true cost
function, Eq. (30) is not quadratic. It is assumed that the non-linear
problem is inverted by replacing with x from Eg. (53) and repeating
the whole process in an iterative fashion. The solution is found when
some convergence criterion is satisfied (wbhan- 0e.g.).

Uncertainties

An important by-product of this variational procedure is that the un-
certainties of the analysed parameters can also be found. A further com-
putation ofH at the solution point allows a final calculation of the Hes-
sian,H'R™H. The diagonal elements of the Hessian are the variances of
the solution. The smaller the variances, the more accurate the result, and
can be improved by repeating the inverse problem with a greater number
of observations.

Algorithm
The algorithm for solving this inverse problem is contained in the fol-
lowing flow chart.

Read-in observationyg, the observation times and types
(RA/dec or alt/azi), and the diagonal elementR of

)

Setn =0 (n it the iteration number) and guess the solu-
tion, X;.
\!
{*1} Incrementn.

\!
{*2} Do a partial minimization overi* parameter and
updatex.

\)

Do a partial minimization over' parameter and update
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Xn-

\!
Calculate the predicted observatioHg x,] .
\!
Calculate the full cost function as a diagnostic.
\!
Definedy =y—H[X,].
\!
Linearize the forward model in physical space abgut
\!

Calculate the Hessian in physical space at the lineariza-
tion state X,,).

)

Check for negative diagonal elements of the Hessian.
The partial minimization with respect td''and 'a" will
guarantee that diagonal element corresponding to these
will be positive. If a negative diagonal element is found
for another element, adjust its valuesbyadians and re-
turn to {*2} above.

\)

Diagonalize the Hessian and determine the co-ordinate
transformslJ; andU, to give a unitary Hessian.

U = UyU;
ox = Udu
= U,U0u
\!
Calculate the gradient ibu spaceV,,J (du is initially zero).
\!
Updatedu that minimizes) in the linearization.
\!
Calculate the new state vectgy, 1 = X, + Udu.
\!

< Go back to {*1} if the solution has not sufficiently converged.
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6. Solar System Data

Mass of the Suryl; = 1.989x 10*° kg [4].
Obliquity of the ecliptice = 23° 26" 21”7 (2000 Jan 1) [3].

Table 1: Orbital constants[5]

Planet a (AU) € io (°) Qo (°) @o (°) €0 (°)

Mercury 0.38709893 0.20563069 7.00487 48.33167 77.45645 252.25084
Venus 0.72333199 0.00677323 3.39471 76.68069 131.53298 181.97973
Earth 1.00000011 0.01671022 0.00005 -11.26064 102.94719 100.46435
Mars 1.52366231 0.09341233 1.85061 49.57854 336.04084 355.45332
Jupiter 5.20336301 0.04839266 1.30530 100.55615 14.75385 34.40438
Saturn 9.53707032 0.05415060 2.48446 113.71504 92.43194 49.94432
Uranus 19.19126393 0.04716771 0.76986 74.22988 170.96424 313.23218
Neptune  30.06896348 0.00858587 1.76917 131.72169 4497135 304.88003
Pluto 39.48168677 0.24880766 17.14175 110.30347 224.06676 238.92881
Table 2: Corrections (linear in time) [5]

Planet a (AUlcy) e(/cy) i ("Icy) Q ("lcy) w ("cy) & ("lcy)

Mercury 0.00000066 0.00002527 -23.51 -446.30 573.57 538101628.29
Venus 0.00000092 -0.00004938 -2.86 -996.89 -108.80 210664136.06
Earth -0.00000005 -0.00003804 -46.94 -18228.25 1198.28 129597740.63
Mars -0.00007221 0.00011902 -25.47 -1020.19 1560.78 68905103.78
Jupiter 0.00060737 -0.00012880 -4.15 1217.17 839.93 10925078.35
Saturn -0.00301530 -0.00036762 6.11 -1591.05 -1948.89 4401052.95
Uranus 0.00152025 -0.00019150 -2.09 -1681.40 1312.56 1542547.79
Neptune  -0.00125196 0.0000251 -3.64 -151.25 -844.43 786449.21
Pluto -0.00076912 0.00006465 11.07 -37.33 -132.25 522747.90

Elements are referenced to mean ecliptic and equinox of J2000 at the J2000 epoch (2451545.0 J

The tables give the six orbital parameters:

a, length of the semi-major axis, €, eccentricity,

i, inclination, Q, longitude of the ascending node,

m, longitude of the perihelion, and &, mean longitude,

(table 1) and linear corrections of each due to perturbations (table 2). To estimate the time de
value of a parametey, the initial value yo, and the rate of changg,taken from the table give,

t - to

3652
whereyg = x(to) (to is the epoch)t andty are in days, and 36525 is the number of days in a century.

parametel is just a conversion factor, je= 1/3600for angular quantities, and= 1 otherwise. Note
that in the case of the mean longitude, the regwé(t — ty)/36525includes the effect of the mean m
tion, n in eq. (7). The mean anomaM, (in degrees) is then calculated from the table as (use th
stead of eq. (7)),

x(M®) = xo +vx

t— to

M = eg — @ + (¢ — 07) ———0
fo = Wo+ (E = ) oo 3600
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7. Glossary
(seealso [3])

Aphelion

The point of an elliptical orbit which is furthest aw:
from the occupied focus.

Argument of perihelion The angle, measured in the orbit of the planet al

Ascending node

Celestial co-ordinates

Cost function

Eccentric anomaly

Eccentricity

Ecliptic co-ordinates

Ellipse

the occupied focus, between the ascending node an
perihelion ( in fig. 2).

This is the point in the planetary orbit which crosses
ecliptic from below (fig. 2).

A system of co-ordinates which maps objects onto
surface of the celestial sphere as viewed from the E
(at its centre) The usual celestial co-ordinates is of e
torial type. This is a system of spherical polar g
centric co-ordinates. The two co-ordinates are right
cension (RA, which is analogous to longitude) and c
lination (Dec.., analogous to latitude). The celes
equator is a projection of the Earth's equator on to the
lestial sphere. The zero of RA is the direction of
vernal equinox.

A scalar measure of the misfit between a set of obse
tions and a corresponding set that has been calcu
according to a model (forward model). The cost fu
tion is a tool used generally in variational inverse mot
ling. The inverse model is solved when the model
rameters (in the astronomical example, Eq. (30), the
orbital parameters) minimize the cost function.

The angle E in fig. 1) formed between perihelion and
given point on the elliptical orbit in question, measu
about the centre of the ellipse.

The parameter which describes how far an ellipse
deviated from a circle (see eq. (1)). The eccentri
multiplied by the length of the semi-major axis yiel
the separation between the centre of the ellipse anc
of the foci. A circle has the eccentricity of zero.

A set of co-ordinates for which the x-y plane lies in-
plane of the Earth's orbit. The centre of the system
the position of the Sun. The x-axis points in the dir
tion of the vernal equinox, and the z-axis points [
pendicular to the orbital plane (looking along z,
Earth's orbit is clockwise) and the y-axis is p
pendicular to the other two axes in a right-handed se
See fig. 2.

One of the possible paths traced-out by gravitationa
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bital motion between two bodies. The other possible
bits are parabolas and hyperbolas, the ellipse being
bound (closed) orbit.

Equatorial co-ordinates See e.g. under 'celestial co-ordinates'.

Focus An ellipse has two foci (fig. 1). The orbit of a min
mass about a major body is an ellipse and the i
mass would be positioned at one of the foci (called
occupied focus).

Forward model A forward model is a set of solvable mathematical rt
that acts on one set of parameters to give another s
is to be distinguished from the inverse model, whicl
often insolvable or difficult to solve. In any case, the
lution to the inverse model can be estimated in a v
tional way by minimizing a cost function which is aci
ally defined in terms of the forward model. The asi
nomical forward model developed in these notes te
the six orbital parameters of a planet and predicts its
sition at a specified time.

Geocentric co-ordinates A system of co-ordinates centred on the Earth.
Heliocentric co-ordinates A system of co-ordinates centred on the Sun.

Inclination The angle,i, between the planes (and normals to
planes) of a planet and the ecliptic (fig. 2).

L ongitude of the ascending node The angle between the vernal equinox and
ascending node of a planets orbit centred on the Qu
in fig. 2).

Longitude of the perihelion The sum of the argument of the perihelionand
the longitude of the ascending node,(symbol@). o
and Q each have little meaning for orbits which hs
i =0° (such as the Earth) o= 180°, but in which case:
their sum is meaningful. This is the angle between
vernal equinox and the perihelion.

Mean anomaly The angleM (egs. (2) and (3)), between perihelion an
point on a fictitious orbit, measured about the centrt
the real elliptical orbit (of the planet). The fictitious ¢
bit is the circular orbit which has the same orbital pel
as the planet, and the point is that of the fictitious b
(travelling at uniform speed) after a given amount
time since perihelion.

Mean longitude The mean longitudd, is defined as the sum of the lon¢
tude of the perihelion and the mean anomily, M is
time dependent, but if the mean longitude is to be qu
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M ean motion

as an alternative parameter to the longitude of the pe
lion, then its value should be chosen at a speci
epoch. In this case, the mean longitude adopts the
bol ¢ and should be quoted together with the chosen
of epoch.

The angular frequency, (eq. (3)), of a fictitious body ir
a circular orbit which has the same orbital period as
real planet.

Obliquity of theecliptic This is the angle between the axis of the Earth anc

Perihelion

normal to the ecliptic plane (symbe). It is the same
angle between the planes of the celestial equator an
ecliptic.

The point of an elliptical orbit which is closest to the «
cupied focus (fig. 1).

Planetary co-ordinatesA convenient co-ordinate system used to describe

Semi-major axis

Semi-minor axis

Trueanomaly

Vernal Equinox

position of a planet in its plane. This system of

ordinates is centred on the Suhhe x-axis points in the
direction of the perihelion, and the z-axis points [
pendicular to the orbital plane (looking along z, the g
net's orbit is clockwise) and the y-axis is perpendici
to the other two axes in a right-handed sense.

The line between the centre of an ellipse and the poi
perihelion (fig. 1).

The line between the centre of an ellipse and the
touching the ellipse by moving in a direction pi
pendicular to the semi-major axis (fig. 1).

The anglew (eq. 4), formed between perihelion anc
given point on the elliptical orbit in question, measu
about the occupied focus.

(or first point of Aries) A point on the Earth's orbi
which is defined according to the orientation of the
of the Earth's axis. The point is marked by the posi
of the Earth at that time when the Earth's axis lies in
tangent plane of the orbit, and the Sun (to an Earthbc
observer) appears to move northwards. For the cu
epoch, the vernal equinox occurs on March 21st ¢
year (fig. 2). The vernal equinox defines the zero of
celestial co-ordinate system.
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