
ITERATIVE SOLVERS AND MINIMIZATION
ALGORITHMS
Ross Bannister, DARC

August 2003/March 2004

CONTENTS

1. The Conjugate Gradient Method for Hermitian Problems 2

Iterative Solvers . 2

The Conjugate Gradient Method . 2

'Gradients', 'Residuals' and 'Search Directions' 3

The Search Directions . 4

Minimizing Quadratic Surfaces when is Unknown 6A

In summary . 7

2. Preconditioning . 7

Left Preconditioning . 7

Right preconditioning . 8

Choosing the operator . 8

3. The Conjugate Gradient Method for Non-Hermitian Problems 8

4. The Generalized Conjugate Residual Method 9

Similarities with the Analysis Used for the Conjugate Gradient Method . . 9

Conditions Imposed . 10

Imposing These Conditions . 10

Line Minimization . 11

5. Example of the Generalized Conjugate residual Method With and Without

 Preconditioning . 12

The GCR Algorithm With no Preconditioning 12

The GCR Algorithm With Right Preconditioning 13

The ADI Preconditioner . 14

5. Further Information . 14

- 1 -

1. THE CONJUGATE GRADIENT METHOD FOR HERMITIAN PROBLEMS

Iterative solvers

We wish to find the solution of the linear system,

Ax � b � �
1 � 1�

where the matrix is Hermitian,A

A � A† � �
1 � 2�

 is a known vector (akin to a source term) and is the as yet unknown vector, which is the

solution of Eq. (1.1). If the number of elements in the vector,, is small, then Eq. (1.1) can be

solved by matrix inversion,

b x

n

x � A� 1b � �
1 � 3�

assuming that is non-singular (in the following, we also assume that is positive definite).

Matrix inversion is not possible when is large. A more efficient method is the conjugate

gradient (CG) method, which works by minimizing a function associated with Eq. (1.1).

Consider the following quadratic function,

A A

n

J � 1
2

x†Ax � b†x � �
1 � 4�

where the matrix and vectors are the same as in Eq. (1.1). The quadratic exists in the-

dimensional space that is the representation of .

n

x

Solving the variational problem of finding the in the -dimensional space that minimizes is

the same as the solution to Eq. (1.1). How does this work? At the minimum, the gradient

vanishes. The gradient, which is the vector , is, for Hermitian ,

x n J

�
xJ A

�
xJ

� Ax � b � �
1 � 5�

By setting Eq. (1.5) to zero Eq. (1.1) is recovered - Q.E.D.

The CG method is a numerical method used to estimate the position of the minimum of

accurately and efficiently, thus solving Eq. (1.1). It can also be used to minimize functions in

their own right, which have no associated linear equation akin in Eq. (1.1), such as the cost

function which arises in variational data assimilation.

J

The conjugate gradient method

The CG method is a method of searching systematically for the minimum of in an iterativeJ

- 2 -

fashion. It is not the only method available. In fact it is one in a family of related methods

called "iterative solvers" or "minimization methods". The simplest method in this family is

called the steepest descent algorithm. The CG method is more sophisticated, and more efficient

than the steepest descent method.

'Gradients', 'residuals' and 'search directions'

The algorithm is iterative in nature and is now developed. Throughout it is assumed that all

variables, vectors and operators are real-valued. At the th iteration, we are at position . The

value of is,

i xi

J

J � 1
2

x†
i Axi

� b†xi � �
1 � 6 �

and the gradient is,

�
xi
J � Axi

� b � � ri � �
1 � 7�

It is customary to relate the gradient vector to the residual, . These are defined here to be

negatives of each other, as defined on the right hand side of Eq. (1.7). The residual is the

difference between and , which is a measure of how far we are away from the solution. The

solution is where the residual vanishes, , as Eq. (1.1). We would like to be as small

in value as possible.

ri

b Axi

b � Ax � 0 ri

In step , we move from to along the search direction to lower the value of . The

direction , and the distance to move along it has yet to be determined. Mathematically this step

is,

i xi xi � 1 pi J

pi

xi 	 1 � xi
�� ipi � �
1 � 8 �

where is a scalar pertaining to the th iteration. Acting on each side with and subtracting

yields,

� i i A b

Axi 	 1
� b � Axi

� b
�� iApi � �
1 � 9 �

� ri 	 1 � � ri
�� iApi � �
1 � 10 �

First, given (see below), how do we choose ? Two approaches are presented here, which

later are shown to be equivalent in the CG method.

pi � i

(a) Orthogonal residuals

We first choose such as to make the new residual (ie the negative of the local gradient)

orthogonal to the current residual. Mathematically this is,

� i

r†
i 	 1ri � 0 � �

1 � 11 �

- 3 -

which when imposed on Eq. (1.10) yields,�
ri ��� iApi � † ri � 0 � � 1 � 12 	

� i � r†
i ri

r†
i Api

� � 1 � 13	
Thus as long as we can act on with , is relatively easily found.pi A � i

(b) Line minimization

Another approach is to choose to minimize along the search direction. By varying , the

constrained minimum position is where . This can be written in an alternative form

using the chain rule,

� i J � i

dJ / d � i � 0

d J

d � i
��

j

�

J
 � x 	 j ��� xi � 1 � d � x 	 jd � i ��� xi � 1

� 0 � � 1 � 14 	
��

j

J
 � xi � 1 	 j d � xi � 1 	 j

d � i
� 0 � � 1 � 15	

where is the th component of the position at the start of the th iteration. The last

equation can be written in the more compact form,

� xi � 1 	 j j � i � 1 	
d J

d � i
�

J

xi � 1

d xi � 1

d � i
� 0 � � 1 � 16 	

which is implicitly the inner product between a row and a column vector. The first vector is

the gradient of at , which, by definition, is minus the residual, , and the second

vector can be found trivially from Eq. (1.8). Putting this together yields,

J xi � 1 � r†
i � 1

d J

d � i
��� r†

i � 1pi � 0 � � 1 � 17	
which says that the new residual is orthogonal to the search direction. Substituting from

Eq. (1.10) gives,

ri � 1

� r†
i pi � � ip

†
i Api � 0 �
� i � r†

i pi

p†
i Api

� � 1 � 18 	
This equation shall be returned to later.

The search directions

What is the 'search direction' ? Further information is needed to find this. In the CG

algorithm, the search direction takes the following form,

pi

pi � 1 � ri � 1 ��
 i
k � 0 � kipk � � 1 � 19 	

- 4 -

This equation says that search direction (actually found during iteration in advance of the next

iteration) is the residual modified by a linear combination of previous search directions. The

coefficients, , in the linear combination are chosen to satisfy the following conjugacy

condition,

i

�
ki

p†
i Apj � 0 i � j � 0 i � j � � 1 � 20 � for and for

(The form of Eqs. (1.19) and (1.20) are then akin to the Gram-Schmidt procedure.)

Imposing Eq. (1.20) on Eq. (1.19) yields,�
ri �	�i
 1

k � 0

�
k � i
 1pk
 † Apj � 0 i � j � for

r†
i Apj �	�i
 1

k � 0

�
k � i
 1p

†
kApj � 0 i � j � � 1 � 21 � for

Note that by choosing in Eq. (1.21) leads to no contribution from the summation as the

index never equals . Equation (1.21) is then more suitably written as,

j � i

k i

r†
i Apj � � j � i
 1p

†
j Apj � 0 j � i � � 1 � 22 � for

Equation (1.22) is considered under two circumstances.

(a) j � i � 1

r†
i Api
 1 � � i
 1 � i
 1p

†
i
 1Api
 1 � 0 �

leading to an expression for ,� ii �
ii � r†

i � 1Api

p†
i Api

� � 1 � 23 �
(b) j � i � 1

In order to analyse the result in this case, we impose an extension of Eq. (1.11) that all

residuals be orthogonal. First use Eq. (1.10) to rewrite the first term of Eq. (1.22),

r†
i � rj � rj � 1�

j � � � j � i
 1p
†
j Apj � 0 � � 1 � 24 �

where the first term is zero under the conditions of . This shows that, under these

conditions,

j � i � 1

�
j � i
 1 � 0 j � i � 1 �for �

ji � 0 j � i � � 1 � 25�ie for

Putting this information into the assumed form, Eq. (1.19) gives,

pi � 1 � ri � 1 � � iipi � � 1 � 26 �
- 5 -

� ri � 1
� r†

i � 1Api

p†
i Api

pi �
�
1 � 27�

which gives the 'new' search direction in terms of the new residual and the previous search

direction only. It is due to the zero elements of Eq. (1.25) that makes the CG method a highly

efficient approach. If these elements were not zero, all previous search directions would have

to be stored and used in the full Eq. (1.19).

Minimizing quadratic surfaces when A is unknown

Most of the above theory has been developed with the problem, Eq. (1.1), in mind. The CG

algorithm can also be applied when minimizing a function for the specific purpose of

minimization, such as in variational data assimilation. In such applications, the value, , at

each point can be calculated, together with the local gradient, , but the operator (actually

called the Hessian) is unknown. This means that the parameters (as in Eq. (1.13)) and (as

in Eq. (1.23)) cannot be computed directly.

J
� r A
�

i � ii

 can be rewritten in a form that does not explicitly involve ,� ii A

	 � ii
� r†

i � 1Api

p†
i Api

�Eq. (1.23)

	 � 1�
i

r†
i � 1
�
ri
� ri � 1 �

p†
i Api

�use Eq. (1.10)

	 � � 1�
i

r†
i � 1ri � 1

p†
i Api

�orthogonal residuals

	 � � r†
i Api

r†
i ri

r†
i � 1ri � 1

p†
i Api

�use Eq. (1.13)

	 � �
�
pi
�� i � 1
 i � 1pi � 1 � † Api

r†
i ri

r†
i � 1ri � 1

p†
i Api

�use Eq. (1.26)

A 	 � � p†
i Api

r†
i ri

r†
i � 1ri � 1

p†
i Api

�-orthogonal search directions

� � r†
i � 1ri � 1

r†
i ri

� �
1 � 28 �

The key point is that Eq. (1.28) does not involve .A

As long as the in Eq. (1.18) derived by approach (b) (line minimization) is the same as that

in Eq. (1.13) derived by approach (a) (orthogonal residuals) then a consequence is that itself

does not actually need to be calculated at all. Instead, Eq. (1.8) can be by-passed by

performing a line minimization along the direction to arrive at the new position .

�
i �

i

pi xi � 1

- 6 -

It then remains to be shown that the two versions of are identical. Starting from Eq. (1.18)

using method (b),

�
i

� �
i � r†

i pi

p†
i Api �

Eq. (1.18)

� �
r†

i � ri ��� i � 1 	 i � 1pi � 1

p†

i A � ri ��� i � 1 	 i � 1pi � 1
��
use Eq. (1.26)

� � r†
i ri

p†
i A � ri ��� i � 1 	 i � 1pi � 1
��

use Eq. (1.17)

pi A � � r†
i ri

p†
i Ari � � 1 � 29
 are -orthogonal

Equation (1.29) is identical to Eq. (1.13) found from method (a), showing that the two methods

are equivalent.

In summary

In summary, the following conditions are imposed in or follow from the CG method:

1. The residuals are orthogonal, ie if .r†
i ri � 0 i
 j

2. The search directions are ' -orthogonal', ie if .A p†
i Apj � 0 i
 j

3. The 'next' residual is orthogonal to the search direction, ie .r†
i � 1pi � 0

2. PRECONDITIONING

Although the solution of Eq. (1.1) can be found in principle by minimizing in Eq. (1.4) in a

relatively efficient way using the CG method, further improvements can be made by

preconditioning the problem first.

J

The number of iterations required for convergence is said to be related to the conditioning number

of the operator . The conditioning number is the ratio of largest to smallest eigenvalue, which

ideally should be of order unity. Preconditioning is all about transforming the problem to an

equivalent matrix equation that has a unitary (or close to unitary) conditioning number.

Preconditioning is important because, for problems of large rank, it can make the difference

between a practical and impractical convergence rate. We discuss two simple methods of

preconditioning.

A

- 7 -

Left preconditioning

Let be an operator which is approximately equal to , but can be inverted easily. Acting from

the left with on Eq. (1.1) gives,

P A

P � 1

P
� 1Ax � P

� 1b � �
2 � 1 �

The solution to Eq. (2.1) is the same as that of Eq. (1.1), but where, in the CG algorithm,

 and . Since, by design, , the conditioning number of in Eq. (1.30)

would be expected to be close to unity.

A � P � 1A b � Pb P � A P � 1A

Right preconditioning

Right preconditioning involves an explicit change of variables. Let,

y � Px� �
2 � 2 �

x � P
� 1y � �

2 � 3 �i.e.

where is the same operator as discussed above. This change of variables makes Eq. (1.1),P

AP
� 1y � b � �

2 � 4 �
and the CG method would be applied with . The solution, , to Eq. (2.4) needs to be

transformed using Eq. (2.3). An example of the use of right preconditioning is given later in the

context of the General Conjugate Residual method for non-Hermitian operators (section 5).

A � AP � 1 y

Choosing the operator P

There are a number of strategies of choosing . If most of the weight of is along its diagonal

then is may suffice to choose,

P A

P � diag
�
A �	� �

2 � 5�
where the 'diag' operation sets to zero all off diagonal elements of its argument, and leaves

diagonal elements unchanged. is trivial to invert. Slightly more sophisticated, but on a similar

note, is to create a tridiagonal matrix,

P

P � tridiag
�
A �	� �

2 � 6 �
which is possible to invert efficiently. Other, more complicated techniques also exist, e.g. the

"Alternating Direction Implicit" method discussed later in the context of the "Generalised

Conjugate Residual" method (section 5).

- 8 -

3. THE CONJUGATE GRADIENT METHOD FOR NON-HERMITIAN PROBLEMS

If the matrix is non-Hermitian, then the state of that minimizes the function Eq. (1.4) is not the

solution of Eq. (1.1) (Eq. (1.4) has been formed by assuming Hermitian symmetry properties of).

The author does not know of any function that can be written in this way for non-Hermitian .

However, a Hermitian problem that is equivalent to Eq. (1.1) in the case that is non-Hermitian

can be written if the adjoint of is known. Act with on each side of Eq. (1.1),

A x

A

A

A

A A†

A†Ax � A†b � �
3 � 1 �

The active operator in this problem is and is Hermitian. Now the CG algorithm can be

applied with the substitution, and . It is found that systems of equations akin to

Eq. (3.1) tend to be very badly conditioned. Since the treatment of badly conditioned systems

(section 2) becomes expensive, alternative algorithms are sought.

A†A

A � A†A b � A†b

4. THE GENERALIZED CONJUGATE RESIDUAL METHOD

We wish to solve Eq. (1.1) in the case that is non-Hermitian. If is Hermitian, we could

construct a function, Eq. (1.4), whose minimum is exactly the solution of Eq. (1.1). Since we

cannot write a function directly for a non-Hermitian operator, we minimize the norm, , of the

residual,

A A

L2 J2

J2 � 1
2

� b � Ax � 22 � �
4 � 1 �

� 1
2

�
b � Ax� † � b � Ax� � �

4 � 2 �
and is not the same function used in the CG method. The factor of 1/2 is present for

convenience. In particular, with this factor, differentiating Eq. (4.2) gives the gradient which

contains no numerical factors,

J

�
xJ

2 � A†Ax � A†b � �
4 � 3�

It is assumed that the minimum of , ie where in Eq. (4.3), is close to the solution of Eq.

(1.1). It will become clear later how the GCR solver minimizes this function. It is assumed, for

simplicity, that all variables, vectors and operators are real-valued.

J2 �
xJ

2 � 0

Similarities with the analysis used for the conjugate gradient method

Under the generalized conjugate residual (GCR) method, ideas similar to the CG approach are

used. In particular, Eq. (1.8) giving the position at the start of the 'next' iteration is,

xi 	 1 � xi
�� ipi � �
4 � 4 �

Here, the residual shall be defined as the difference,

- 9 -

Axi � b � ri � �
4 � 5�

This is the negative of the definition used before for the CG method, Eq. (1.7), which could just

as well have been used here. The different form of Eq. (4.5) is taken here for compatibility with

the particular algorithm that the author is using (Met Office GCR(k) algorithm). Combining

Eqs. (4.4) and (4.5), gives an expression for the 'next' residual in the iteration,

ri � 1
� ri ��� iApi � �

4 � 6 �
Unlike for the CG method, this residual is not the gradient of the scalar to be minimized (or

minus the gradient), as was found in Eq. (1.7). This is not the case here because the form of the

scalar to be minimized has a different form to that used in section 1.

The remaining equation used is the one that updates the search direction for the 'next' iteration.

This is Eq. (1.19) for the CG algorithm, given as Eq. (4.7) here for the GCR, with a minor

modification (minus sign becomes a plus) for compatibility again with the particular algorithm

used,

pi � 1
� ri � 1 �
	

i

k � 0 � kipk � �
4 � 7�

Conditions imposed

The difference with the CG now follows. For the GCR, the following conditions are imposed:

1. The residuals, , at the end of the th step (start of the th step) are ' -orthogonal' to

the search directions for the th step, ,

ri i i � 1 A

i pi

r†
i � 1Api

� 0 � �
4 � 8 �

2. The search directions are ' -orthogonal',A†A

�
Api � † � Apj � � 0 i
 j � �

4 � 9 �for

These are alternative to the conditions of Eqs. (1.11) and (1.20) used for the CG method.

Imposing these conditions

Imposing condition 1 (Eq. (4.8)) on Eq. (4.6) yields an expression for ,� i

�
ri ��� iApi � † Api

� 0 � �
4 � 10 �

� i
� � r†

i Api�
Api � † � Api � �

�
4 � 11 �

which is then used in Eq. (4.4) to give the position at the start of the next iteration.

- 10 -

The search direction has not yet been determined and is found using Eq. (4.7) with condition 2

(Eq. (4.9)) imposed. Act with on Eq. (4.7),A

Api � 1
� Ari � 1

��� i
k � 0 � kiApk � � 4 	 12

and perform an inner product with ,Apj

� Apj
 † Api � 1
� � Apj
 † Ari � 1

��� i
k � 0 � ki � Apj
 † Apk 	 � 4 	 13

We will now consider two scenarios for the choice of .j

(a) j � i � 1

The summation over in Eq. (4.13) never reaches . Hence Eq. (4.8) becomes,k i � 1

� Api � 1
 † Api � 1
� � Api � 1
 † Ari � 1 	 � 4 	 14

(b) j � i

This scenario yields information on the constants . Due to the condition , and Eq. (4.9),

the left hand side of Eq. (4.13) is zero. This gives rise to the following,
� kj j � i

0 � � Apj
 † Ari � 1
�
� ji � Apj
 † Apj �

� ji
��
 � Apj
 † Ari � 1

� Apj
 † Apj
	 � 4 	 15

The constants , which can now be calculated, are plugged back into Eq. (4.12) for the search

direction for the 'next' iteration. Unlike for CG, these coefficients are not found to be zero for

all previous search directions, and so all previous search directions have to be stored.

� ij

Line minimization

Why do the conditions of Eqs. (4.8) and (4.9) lead to a minimization of of Eq. (4.1)? An

analysis, along the lines of that performed in section 1 for the CG algorithm is made here to

show this.

J2

Start with Eq. (4.4); given a search direction , how far in this direction from should one

move to minimize along this line? This gives us a such that . Start with Eq.

(1.16), but for instead of ,

pi xi

J2 �
i dJ2 / d � i

� 0

J2 J

d J2

d � i

� � J2

� xi � 1

d xi � 1

d � i

� 0 � � 4 	 16

- 11 -

The gradient vector in Eq. (4.16), comes from Eq. (4.3) and the other derivative in Eq. (4.16)

follows immediately from Eq. (4.4),

d J2

d � i

��� A†Axi � 1 � A†b � † pi �
�	� A† � Axi � 1 � b ��
 †

pi �
�	� Axi � 1 � b � † Api �
� r†

i � 1Api
� 0 � � 4 � 14 �

which says that the new residual is -orthogonal to the search direction. Substituting from

Eq. (4.6) gives,

A ri
 1

r†
i Api � � i

� Api � † Api
� 0 �

� i
� � r†

i Api� Api � † Api
� � 4 � 15�

This is the same result as Eq. (4.11), which was derived from the condition given as Eq. (4.8).

This says that the condition of Eq. (4.8) is equivalent to minimizing along the search direction.J2

5. EXAMPLE OF THE GENERALIZED CONJUGATE RESIDUAL METHOD

WITH AND WITHOUT PRECONDITIONING

The results shown in section 4 can be used to formulate an algorithm to solve Eq. (1.1). We first

construct an algorithm that involves no preconditioning. This is then modified into an equivalent

form that does involve preconditioning.

The GCR algorithm with no preconditioning

Set up initial values

Guess the solution, x0

The initial residual, r0 � Ax0 � b

The initial search direction, p0 � r0

Set i � 0

While not converged

Calculate � i ��� r†
i Api / ��� Api � †Api �

Update , x xi � 1 � xi � � ipi

Update residual, ri � 1 � ri � � iApi

Calculate for , �
ji 0 � j � i �

ji ��� � Apj � †Ari � 1 / ��� Apj � †Apj �

- 12 -

Update search direction, pi � 1 � ri � 1 ��� k � kipk

Increment i

End of while loop

The GCR algorithm with right preconditioning

Using so-called "right preconditioning" (section 2), we apply the above algorithm to a different

problem by making the following substitutions,

A � AP � 1 �
xi � Px	 i

�
pi � p	 i

�
ri � r

i
�

�
i � � 	

i
�

�
ji � � 	 ji

�
where is a preconditioning operator (section 2). Making the above substitutions and acting

with an additional on some of the lines, gives the following new algorithm.

P

P
 1

Set up initial values

Guess the solution, x� 0
The initial residual, r� 0 � AP � 1Px� 0 � b

The initial search direction, P � 1p� 0 � P � 1r� 0
Set i � 0
While not converged

Calculate � � i
� � r� †i AP � 1p� i/ ��� AP � 1p� i � †AP � 1p� i �

Update , x� P � 1Px� i � 1 � P � 1Px� i
� � � iP � 1p� i

Update residual, r� i � 1 � r� i
� � � iAP � 1p� i

Calculate for , � � ji 0 � j � i � � ji
� � � AP � 1p� j � †AP � 1r� i � 1/ ��� AP � 1p� j � †AP � 1p� j �

Update search direction, P � 1p� i � 1 � P � 1r� i � 1 ��� k � � kiP � 1p� k

Increment i

End of while loop

Note the following:

- 13 -

• Apart from the initial guess of the solution, all occurrences of are preceded by .

Since these operators cancel, exists in the same space as .

x� i P
� 1P

x� i xi

• All occurrences of are preceded by . For convenience, write .p� i P
� 1 P

� 1p� i
� p
�

i

Making this change, and allowing to cancel, gives the following algorithm.P
� 1P

Set up initial values

Guess the solution, x
�
0

The initial residual, r
�
0
� Ax

�
0
� b

The initial search direction, p
�
0
� P

� 1r� 0
Set i � 0
While not converged

Set qi
� Ap

�
i

Calculate
	 �

i
� � r

� †
i qi/
�� Ap

�
i
 †Ap

�
i �

Update , x
�

x
�

i � 1 � x
�

i � 	
�

ip
�

i

Update residual, r
�

i � 1 � r
�

i � 	
�

iqi

Calculate for , � �
ji 0 � j � i � �

ji
� � � Ap

�
j
 †AP

� 1r� i � 1/
�� Ap
�

j
 †Ap
�

j �
Update search direction, p

�
i � 1 � P

� 1r� i � 1 ��� k
� �

kip
�

k

Increment i

End of while loop

This is the preconditioned algorithm. The preconditioner enters the problem in the computation

of the initial search direction, in the calculation of and in the expression for the updated

search direction. For efficiency, an extra variable,, has been introduced in the algorithm

above. In this algorithm, it is now not strictly necessary to use overbars and hats on the variables

(since their original counterparts - without overbars and hats - are not used, there is no need to

distinguish between them).

� � ji

qi

The ADI preconditioner

Section to be written.

- 14 -

6. FURTHER INFORMATION

The document, "Iterative Solvers" (2000) by M. Zerroukat of the Met Office was very useful in

writing these notes. It discusses other related methods and gives an application to the "New

dynamics" formulation of the Unified Model. References are provided in this document.

- 15 -

