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1. INTRODUCTION

One of the challenges of data assimilation is to construct a realistic representation of the
background error covariance matrix. This matrix is important to represent accurately as it
characterizes the uncertainties of the background state, and the correlations within it. This
has an impact on the weights assigned to the normal modes in the atmosphere, and to the way

that information from the observations is spread-out in space in the resulting analysis.

In many forms of data assimilation such as 3d-Var., the background error covariance matrix
is independent of time*. In 4d-Var., the background model state is propagated explicitly to
the time of each observation so that the model's version of the observation can be computed.
It is widely believed that the method similarly propagates the background error covariance
matrix. Unlike the background state vector, the background error covariance matrix is though

to evolve implicitly, so that we have to do some simple analysis to reveal this.

This propagation is done in a way that is consistent with the (linearized) dynamics of the
model (as in the Kalman filter). If B is the background error covariance matrix, and the time

integration model takes the background state from time ¢ = O (xp) to a later time ¢ (x3(¢)),

xg(t) = MM ,,... Msxp, (1.1)

(where Ot is the timestep as in [1]), then the propagated background error covariance matrix
is,

B() = M\M,,... My, BMj,... Ml_sM!, (1.2)

(see [2] for the justification of why covariance matrices are propagated like this). In Eq.

(1.2), M, is the linearization of M; (as in Eq. (1.1)), and can, in principle, be written as a

matrix.

It is easy to prove that this transformation on B is in an implicit part of 4d-Var. in the special
case that all observations are made at a common time [3]. In the more general case of
observations spread over many times, the relevance of this proof is uncertain, as outlined in

these notes.

* In some implementations of 3d-Var., seasonal dependence of the background error covariance
matrix has been imposed in a somewhat artificial manner.
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2. RECAP OF THE COST FUNCTION AND ITS GRADIENT

The standard cost function for 4d-Var. can be written [1],

At
J[x] = %(xg — x(0)" B (x5 — x(0)) + % > 6@ - H xO) E (v(1) - H [x(0O]),(2.1)
t=0

where x is the state for which the cost function is evaluated (the particular x that gives the
smallest J is referred to as the analysis), y(¢) are the vectors of the observations made at time
t, for which H?[x(¢)] are the model equivalents, E is the observation error covariance matrix,
and At is the duration of the 4d-Var. time window. Differentiating Eq. (2.1) with respect to

the vector x gives [1],

_ oo
VJ = =B (x5 — x(0)) — Y,(MM, ... Ms) 'H, E” (y(t) — H [x(1)]), (2:2)
t
where the observation Jacobian matrices HY, relevant to time ¢, are defined as,

e - GHIEO]

! dx (¢) 23

3. THE ANALYSIS

The background error covariance matrix, and the observation and time evolution operators
are too large to represent explicitly, or to invert. In variational analysis, the solution that
minimizes the cost function, Eq. (2.1), is found by iteration so that small increments in x
progressively move 'down hill' towards the analysis state. The procedure needed to achieve
this requires only the ability to act with the operators (and their adjoints) with no need to
invert any operators. This procedure is complicated and requires an extra preconditioning
step. Often however when one wishes to assess the behaviour of the assimilation scheme's
formulation, we can skip the variational part of the problem and write matrix inverses
symbolically. This method jumps straight to the analysis, and will give the same solution as

4d-Var. in the case of all operators being linear.

Setting the gradient of the cost function, Eq. (2.2), to zero (for the minimum) yields,
—1 Tyyo! -1 0
B (x(0) - x5) = X, (MM,y... My) 'H E” (y (1) — H{ [x()]), (3.1
t

= 3 MM,y,... M) B E? (5(1) = HY MM, g,... Mox O)).  (32)

We proceed by setting x(0) = x + (x(0) — xp) in Eq. (3.2), and assume that the time evolution

and observation operators are linear (ic M, ~ M, and H} ~ H?). The resulting equation,



trivially rearranged is,

—1 Tyyo!l p—lyyo
B + ) (MM.y.... Ms) 'HY E"HIMM,g.... My (x(0) ~ x5)
t

OT — 0
= 3 (MM y... M) 'H E7 (1) — HHMM, 5. Maxz)  (33)

t
Acting on each side with B,

OT — 0
{I + ZB(MtMt—(St--- M) THt E lHtMtMt—ét--- Mét} (x(0) — xp)
!

OT — 0
= Y BMM.y... M) 'H E™ (y(t) - HMM,4,... Moxp),  (3.4)
t

and the analysis increment, (x(0)— x3), is found by acting on each side with the inverse

operator, {T+ 3, B(M;M.y... My)"H E'"H/M,M,,,... M,,} . Equation (3.4) takes us only

half way to proving that 4d-Var. implicitly propagates in time the error covariance matrix B.

Following [3], it is straightforward to show that this property of 4d-Var. is carried through in
the case of observations present at only one time. Let the time that all observations made be

t. Equation (3.4) then simplifies to,

OT — 0
{1+ BMM_,... M) "H EHIMM,y,... My} (2(0) — 1)
OT — O
= B(MtMt—ét--- Mét) THt E l(y(t) - HtMtMt—ét--- Méth)- (3-5)
Operating now on each side with the operator M;M,s;... M;, and compacting using Eq. (1.2)

gives,

OT — O
{MM_s... My, + BOH EHMM, ... My} (x(0) — x5)

“BOH E' (1) - HMMy... Myxs),  (3.6)
which shows that all occurrences of B are replaced naturally with B(), thus proving the point
in this case. The difficulty for the case of observations present at more than one time is the
summation over time, blocking the use of the step leading to Eq. (3.6). It is thus unproven
here that the general 4d-Var. process propagates B in a manner consistent with the linearized

dynamics.
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