4. DATA ASSIMILATION FUNDAMENTALS

... [the atmosphere] "is a chaotic system in which errors introduced into
the system can grow with time ... As a consequence, data assimilation is a
struggle between chaotic destruction of knowledge and its restoration by
new observations."

Leith (1993)
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The vector notation for fields and data and the need for an a-
priori

The 'state vectorX The 'observation vectoy,

[e=)

; _ v
1 e Vo
zonal wind field Vil
3
meridional wind fielc |
potential temperatur

pressure

specific humidity i

longitude NWP models=~10° elements

latitude
v & - ’ vertical level The 'forward modelh

NWP models> 10" elementg5 x n x m x L)

e No. of obs. << No. of (unknown) elementsxin
* This is an under-constrained (and inexact) inverse problem.
* Need to fill-in the missing information with prior knowledge.

S
[
[ |
CITT]
r -
N S > O o Yoo

An 'a-priori' state (a.k.a. 'first guess', 'background', 'forecast’) is needed to make the assimilation |
well posed.
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Vectors and matrices

Vector/matrix notation is a powerful and compact way of dealing with large volumes of data

*A matrix operator acts on an input vector to give *The matrix transpose make rows into columns

an output vector, e.g. columns into rows (also for vectors), e.g.
2) D A1 Ao ... A A
1A e A4 gyl I A
2@ = ax® X2 | Ao Agp ... Poy || X A= A=
XF\IZ) ANl ANZ ANN X(Nl) ANl ANZ ANN IN 72N ANN
X1
*Matrix products do not commute in general, e.g. X, .
3@ = ABC? = CBARY X = It X = (Xg, X2, ... XN)
*Some matrices can be inverted (must be 'square’ XN

and non-singluar), e.g. *The inner product (‘scalar' or 'dot' product), e.g

1) 2)
X (ADy; (A D ... (A X »(Z)T?((l) KXY 4 ¥ Pyl (2)/(1)

(1 1 1 1 @ X + X3 X3 +... +XNOXNT = scalar
| = | B2 A2 o (A |1X2) - oThe outer product (a matrlx), e.g.

2D 2D 2 o(D)
X§\|1) (A_l)Nl (A_l)NZ (A_l)NN X§\|2) X& X& X& X& X& XN

2) (1 2) (1 2) (1
. . . PR G507 _ | XX X% L xR
(matrices are complicated to invert(fe~); # A;™.) =

XY XX . X
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Early data assimilation ("objective analysis")
The method of "successive corrections"

Bergthorsson & Doos (1955), Cressman (1959)

X X X X X X X X X
°
X X X X X .
°
X X X X
°
X X s WX
., * 3
X X X X X« o o
X X X X X X®
X X X ® X 3

X X X X X XX X X
@ Obs. . grid-point

« Analysis is a linear combination of nearby
observations, and an a-priori.

Ross Bannister, EO and DA, QUEST ES4 2006.

» Analysis— obs. (obs-rich regions).
» Analysis— a-priori (obs-poor regions).

[1Simple scheme to develop.
[1Computationally cheap.
[JUse a-priori in absence of observations.

[JPoor account of error statistics of obs and
a-priori.

[IDirect observations only.

[JAnomalous spreading of obs. information.

[INo multivariate relations (e.g. geostrophy).
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'‘Optimal’ Interpolation (Ol)

Introduced in the 1970s - a more powerful formulation of data assimilation

Xpa = Xg + K (Y — F‘[XB])

» K Is a rectangular matrix operator (the 'gain matrix').

« K depends upon the error covariance matiftasadR, and linearizatior.
« K = BH"(HBH' + R)™.. The Best Linear Unbiased Estimator (BLUE).
* R : observation error covariance matrix.

» Describes the error statistics of the observations (see later).
* B : background error covariance matrix.

» Describes the error statistics of the a-priori state (see later).
* H : linearized observation operator.

e N[%g + OX] ~ h[%g] + HOX.

[JAccount taken of a-priori and obs. error [JToo expensive for single global solution.

statistics. [IDifficult to know B.
[1Allows assimilation of some indirect [INo consistency with the equations of
obs. motion.

[JUse a-priori in absence of obs.
[1Works as an inverse model.
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Types of errors

1. Random errors E.g. As before but with biased thermometer:
Data Arising from truth
Obs. Noise !
Forecast Stochastic processes in model, AR Wx e
init. conds. mean
Assim. Input data m
E.g. repeated measurement of temperature:
ruth Biases should be corrected where possible.
X XX Xmémx x< x < x 3 Representativeness error
mean Data Arising from
spread WOr statistics') Assim. Unresolved variability
E.g. Interpolation of model grid values to locati
of observation (forward operatbX]):
2. Systematic errors Viz Vaz

@ ®
Data Arising from

Obs. E.g. reading errors

x{
Forecast Model formulation, init. conds. /\
Vi

Assim.  Input data, formulation

L
Va1
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Probability distribution functions

 Error statistics are described by a probability density function (PDF).
* PDFs of random and representativeness errors are often expressed together.
* They are often approximated by the normal (Gaussian) distribution.

A scalar (ie a single piece of information)y A vector (multiple pieces of information),X
s B PRy ‘
| / //
X1
X =1...
XN
Ty Y g
_ 2 . 1 . R R
P(y) o< exp—w P(X) o< exp(—— X — (B (% - (x)))
20 2
Mean : (y) Mean : (X)
Variance : ¢* (0X3)  (O%0%0) ... (OX10%\)
(Std. dev.: o) (O%0%1)  (OX5) ... (OX20%n)

Covariance B =
(OXNOX1)  {OXNOXo) ...  {OXR)

= (O%X')  where 0% = X — (X)
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Example of covariances: forecast as the a-priori

* Xg IS a forecast and so the equations of motion will influence strongly the covariance patterns.

Example Geostrophic error covariances

Geostrophic balance:
1dp

Z i\\_ Ny,
& LLLJ\ b : - .. " i %
Fritbot 6 1996 1900 4300 MPCHTPoR T oo oa ey SN R
F ct 18 1996 1200V000 ETZ (3 rag - cdbstropri&piind (kts) i S
i 860018 1996 1200v000 ETA (300 pres) Geepokeribfal-Height | _ )

Courtesy, Univ. of Washington

Pressure-pressure covariances assumption:
2
(Opop) = o° exp—z—tz V2L ~ 750 km
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Variational data assimilation

The 'method of least squares' - simple version

(X — %)’ + (V- h[X)°

J : cost function (a scalar)
Xg . a-priori (background) state
y . observations

y(A = y(lminJ =

X . variable "analysis"

Carl
Fredrich
Gauss
1777-1855

Ross Bannister, EO and DA, QUEST ES4 2006.

The 'method of least squares' - considering err

statistics

. observation operator (forward model)

B : background error covariance matrix
R : observation error covariance matrix

 This is the form used in operational weathe
forecasting, deriving satellite retrievals, etc

* Non-EuclidearL, norm.

» Assumes perfect forward model, unbiased
data.

e This is consistent with a Gaussian model o
error statistics (next slide).

 'Var.' is efficient enough to solve the global
problem.
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The Bayesian view of data assimilation

Rev. Thomas
Bayes
1702-1761

Bayes' Theorem

PH.%) =PRIVPD®| - . . PHIRNPX
P(?,Y/)=P(Y/|?<)P(?<>} "XV =5
« PP | ¥

1 : . L
PR IS o exp|— (X ~ %9 B - %) exp[-(RIR - 9" R iz - 9)

1 _ 1o 17
oc exp—(i(i’( — %) BT (X — Rg) + S(hIX - y) R (X - YI))

Maximum likelihood = Minimum penalty J

S 1 S S -1/, S 1 hro o -1, 2rs o
I = S = %) BTR - %) + S(M1X] - 9'R7(AIA - 9)
Xa = Xminy = "analysis"
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Minimising the cost function

The problem reduces to a (badly conditioned) optimisation probldffddimensional phase space.

» Descent algorithms minimizkiteratively.

* They need the local gradieM;J of the cost function at each iteration.

* The adjoint method is used to compute the adjoint.

« The curvaturé* (a.k.a. inverse Hessiaf¥3J)™) atX, indicates the error statistics of the analysis.

A very badly conditioned problem.
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Algebraic minimization of the cost function

Under simplified conditions the cost function can be minimized algebraically.

Assume that the linearization of the forward model is reasonable
A[X] ~ A% + H (X — Xg)

1 _ 1 R s R N
I = (% - Xs) B (X — Xg) + S(H X = %) = (v - h%e])' R™(H (X — %) — (¥ — h[%a]))

1. Calculate the gradient vector
dJ | dxq

§J/8X2

v.J = = B (X - %) + H'R(R[X] - 9)

dJ/ 8XN

2. The speciak that has zero gradient minimizé¢this cost function is quadratic and convex)
Vidl, = 0
% = % + (B + HRH)"H'R (¥ — h[xa])
= % + BH' (R + HBH")Y (¥ — h[xa])

This is the Ol formula with the BLUE!
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Types of data assimilation

Sequential data assimilation methods 1d-Var
« Data assimilation performed at each batch » Data assimilation performed for vertical
of observations. profile only, where satellite makes
» Model forecast made between batches (for observations.
background). » Used as a 'pre-main-assimilation' step to
» E.g. Ol, KF*, EnKF*, etc. produce vertical profiles of model
. : guantities (retrievals) from satellite
[JExplicit formula used for analysis. radiances.

[IVery expensive.
A

ML

* Kalman Filter (KF) and Ensemble Kalman Filter (EnKF).
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3d-Var
« Data assimilation performed every 6 hours.

« 6 hour model forecast between analysis
times (for background).

« Adequate for re-analysis.

[IRelatively cheap.

[JObservations withitt3 hours are not at
analysis timet.

[INo dynamical constraint used.

3drVar.

time window
\\\\//._\\‘y

T 1

t=-3 t

T
0 t=43 t=46

4d-Var

» Data assimilation performed every 6 (12)
hours.

* 6 (12) hour model forecast between
analysis times (for background).

» Used (e.g.) by ECMWF and Met Office for
operational weather forecasting.

[IModel used as a dynamical constraint.

[1Observations are compared to the model
trajectory at the correct time.

OPerfect model assumptiont.
[JExpensive, but not unfeasible.

_4d-Var.
\\\/‘ time window

T 1

t=-— t

0 t=4+3 t=+46

T 3dFGAT '3d First Guess at Time' is half-way between 3d and 4d-Var.

T 'Strong constraint' - it is possible to use 4d-Var with a model under the '‘weak-constraint' formule
Ross Bannister, EO and DA, QUEST ES4 2006.
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The 4d-Var cost function

_4d-Var.
time window

&
€
)~
~
\
N
N
~
~

T J

t=-3 t

0

t=4+3 t=+46

J [Xo]

* The observation vector comprises subveciif®r timet.

* The observation operatE{acts on model stak.

,\
X
I
3
S

(%] - Y R (B [%] — %)

NI NI
M

 Vary Xy in the minimization - the state at the start of the 4d-Var. cycle.
 Future states in the cycle are computed with the forecast rﬁpdeI{MO?(o.

» Forward model is the composite operdioM

* Important issues:

« Tangent linear model (and its adjoint) needed and can be difficult to find.
» Forecast model can be highly non-linear (e.g. sensitive dependence in model's convection

scheme - on/off 'switches').

Ross Bannister, EO and DA, QUEST ES4 2006.
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Assimilation of sequences of satellite images in 4d-Var

(Courtesy Samantha Pullen, Met Office)
Seqguence of observed brightness temperatures

ebearved IR brightness tamperaturea from geostationary orbit abearved IR brightness tamperatursa from gecetationary orbit
TOW SO B0 40 Jow 20 1070 o T GO BOOW 4074 Joow 2079 107 @°

60N BG"N BG°N BO°N

0N S0N SN S0°N

40°M 407N 40N 40°N

309N 307N 30N

20°N

Seqguence of simulated brightness temperatures

girmulated IR brightness temparaturss from MWP Backgreund simulated IR brightnese temparstures from NWP baskground simulated IR brightness temparatures from NWP Backgreund
TOoW SO 50w 40 a0 20 100 o° FO GO ilea i) 407w 307w 207w 1070 [ O G0 booW 40 J0°W 20 107w [+
60°M BO®N BO°M 60N BO®N BN
50 BO°N 50°N 5G°N 50N 50N
40 407N 40N 407 40N 40N
JoN JC°N 30°N 307N 30N J0°N
20°M 20°N 20°W 20°M 20°N 20°N

FOMW S0 50w 20 1050 o8 FO O™ S0 2070 107 o FOm &0 SoW 207 10 Qaf

@ o
Er'\gh%r?eb‘sws Temper%guwe (K) Elrigh%r?;gva Temper%QuWE (K)

200 210 220 230 244 257 260 270 280 280 300 200 210 220 230 240 250 260 270 280 280 300 200 paly] 220 230 240 250 260 270 280 280 300
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'‘4d-Var.' demonstration with a double pendulum

01

i
Il

dt\aa;) -

d (al_) JL
00,

V = gml, cosf; — gmul, cosfd; —
gms (I, cosé; + |5 cosh,)

T = %m (4 + Vo) +
Vamp (5 + ¥5) + Yeme (G + Y3)

 Demonstrate '4d-Var' with an OSSE - 'Observation System Simulation Experiment'.
» Also known as a 'twin experiment'.

« Choose a set of initial conditions and run the model (truth).

« Add random noise to generate pseudo-observations.

» Forget the truth and try to recover it by assimilating the observations.
» Use observations @f;, andé, only (no observations @f; andd,).
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OSSE demonstration (double pendulum) - truth run

Angle 1

Rate of change angle 1

0 0.5 1 15 2 2.5 3 3.5 4 4.5 5
\ "Truth' § Observations
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OSSE demonstration (double pendulum) - '4d-Var.' run

Angle 1

Rate of change angle 1

0 0.5 1 15 2 2.5 3 3.5 4 4.5 5
. time
\ Truth' % Observations \ '4d-Var.' analysis
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OSSE demonstration (double pendulum) - 'obs insertion' run

4
3
2
1
—
(<]
= 0
C
<
-1
-2
-3
-4
20
15
—
9 10
=
cs 5
(O]
2 0
©
S -5
©
g -10
T
-15
-20 ‘ ‘ ‘ ‘ : : : : ‘
0 0.5 1 1.5 2 2.5 3 3.5 4 45 5
. time
\ "Truth' § Observations ‘Insertion’ run
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Issues with data assimilation

« Data assimilation is a computer intensive process.

» For one cycle, 4d-Var. can use up to 100 times more computer power than the forecast.
» TheB-matrix (forecast error covariance matrix in Var.) is difficult to deal with.

« Assimilation process is very sensitiveBo
 Least well-known part of data assimilation.
« In operational data assimilatioB,is a10’ x 10" matrix.
* Need to model thB-matrix - use technique of 'control variable transforms'.
* In reality B is flow dependent. PracticallB,is quasi-static.
« Data assimilation replies on optimality. Issues of suboptimality arise if:

» Actual error distributions are non-Gaussian,
* B orR are inappropriate.
e Forward models are inaccurate or are non-linear.
 Data have biases.
« Cost function has not converged adequately (in Var.).
» Assimilation can introduce undesirable imbalances.
« Quantities not constrained by observations can be poor (e.g. diagnosed quantities):

* Precipitation.
 Vertical velocity, etc.
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