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1. INTRODUCTION

The data assimilation problem

State vectorx A-priori information,Xg, and errors
» Background state

Observationsy, and errorsé . ° Bestguess
« Sondes ' &« - Forecast
« Surface stamsi " /
* Ships
» Satellites

Assimilation algorithm ("inverse mode

Models (“forward models") * Optimal Interpolation (Ol)

 Linking model state to observations ) Vanatlongl data assimilation (Var.
L o, S o Kalman filter
ey = h[X] + ¢
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Representation of data

The 'state vectorX
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- Values of all variables and at all grid points ~ * Every measurement to be assimilated is

are assembled in this vector. assembled in this vector. |
» The system's state may be represented as a * The observation type, location and time
point in the model's5 x n x m x L)- needs to associated with each observation
dimensional phase space.
X3,
°.X
>X1

These vector structures allow them to be used in matrix equations (later).
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Data assimilation as an inexact and underconstrained Iinverse
problem

FORWARD >
< MODEL The forward model

< — ™ — ] > State vector

< — J— >

< MODEL Obs. Error iny due to error inX
<+ F.M. (physics & measurements)

The state vectok The observationg

(model variables) (predicted or measure

e The 'inverse model' approach to data assimilation can deabwébt'(in-situ) andihdirect
(remotely sensed) observations.

* The data assimilation problem is termiegxact because all quantities have errors whialstbe
accounted for.

* The data assimilation problem is termeaader constrain€doecause the state vector is not fully
observed.

All models are wrong! All observations are inaccurate!
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Combining observational data: 1 unknown, 2 direct
observations

Aim: to estimate the value of a scabgrand its uncertainty.

Information to usetwo unbiased direct measurements &élom different instruments.

Quantity Value Error* Std. dev.tNotes

'‘truth’ Xt 0 n/a Abstract, a®x can never be known precise
obs. 1 V1 &1 o1 o1 IS the precision of inst. 1

obs. 2 Vo €2 02 o> IS the precision of inst. 2

best est. of 'truthx, Ea Oa 04 1S a fn. oloy ando,. a="'analysis'

*Deviation from 'truth'y, = X% + e, n = 1,2. &, are not known, only their 'stats'?.

tWidth of the probability density function (PDR), = (Y, — x)2Y? = (2Y2

Unbiased means that repeated measurements are centred about thésgfuth'Q, iey,) = X;.

Vi, ¥

of 0%

Xa =

 This is simple data assimilation.

G
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* The larger thes" of a measurement, the smaller its importance.
» Use (i) the 'method of least squares' and (ii) normal (a.k.a. Gaussian) PDFs (see later).

 Beware: the term 'error' is often used to indicate&Should use the term 'error statistics'.
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Combining observational data: 6 unknowns, >6 indirect
observations - orbital determination

Aim: to estimate the six orbital parameters of Veuand their uncertainty.
Information to usemany indirect measurements.

a alt (1)
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(0.721Q 0.0201 4.23 889, 1100, 17/66)
(0.002Q 0.00/8 0.70, 8.1, 503, 6.8)
(0.7233 0.0067 3.39, 76.7, 1315, 1820)

(a) Assimilation period (b) Forecast period

(a) Verification of Venus's position (b) Future prediction of Venus's position

/ RA/dec trajectory derived frond / RA/dec trajectory derived frond
.- RA/dec trajectory derived from .- RA/dec trajectory derived from

«# Observations

-

13 Feb 2001

15 Feb 2003
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Applications of data assimilation

» Keeping dynamical systems 'in touch' with reality.

OBSERVATIONS y
ASSIMILATED o O0g,

ATMOSPHERIC STATE

TIME

* Initial conditions for weather or ocean forecasting.
» Reanalysis for scientific studies of climate (e.g. NCEP/NCAR, ERA).

* Inferring information that is difficult or impossible to measure directly, or using data from rema
sensing instruments (e.qg. satellite sounding, surface carbon flux estimation, solar dynamics).

 Model and observation system evaluation.
« Systems control (e.g. landing a rocket on the moon, shooting a moving target).
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2. OBSERVATIONS

Types of instrument

Measurements from instruments assimilated routinely (not exhaustive)

Coverage Resolution
Instrument Quantities measurecSpatial Temporal | Horiz.  Vert.
In-situ instruments
Radiosondes u, v, T,p,q,(03) Cont'l N.H., t'sphere 6 hourly point point
Surface stations u, v, T,p,q Cont'l, surface 6 hourly point n/a
Aircraft u v, T,p,q Flight paths, airportsin flight point point
Drifting buoys u, v, T,p Drift paths, sea lev. Hourly point n/a
Remote sensing instruments
Geostationary sat. Rad: MW, IR, Vis | Global 15-30 mins| > 1 km kms
Polar orbiting sat. (nadif)Rad: MW, IR, Vis | Global Continuous > 1 km kms
Polar orbiting sat. (limb) Rad: MW, IR, Vis | Global Continuous 100s km 1-2 km
Scatterometer Radar backscatter | Oceans Continuous 50 km  n/a

'Rad'=radiances, 'MW'=microwave, 'IR'=infrared, 'Vis'=visible
In operational global weather forecasting there atk0°® observations assimilated per cycle
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Coverage

Locations of four example observation tygesurtesy Met Office (c) Crown copyright)

Data Coverage: Surface (16/8/2006, 0 UTC, qu00) % Data Coverage: Sonde (16/8/2006, 0 UTC, qu00) %
Total number of observations assimilated: 12165 Total number of observations assimilated: 1614
LHDSYN ( 3832) SHP S YN (1929) BLAOY {4 558) PLOTLAND {323 FILOT SHIP 9 PILOT MOEILE 0] TEMP LAND {840}
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Volumes of data and quality control
70
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1le+06 - -+ 60
100000 - - 50

Number of observations made
Percentage assimilated

10000 20 ECMWEF stats. (one cycle in June''
| I Total No. obs.: ~ 70,000,00C
1000 1 30 Total No. assimilated~ 3,500,00C
(only 5%!)
100 | 1 20
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Why are some observations rejected?

» Observation 'too far' from forecast (large systematic, human, or instrument error),
* Observation did not reach centre in time,
» Satellite radiance data - complications due to radiation from land, clouds or precipitation.
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Satellite borne instruments

Orbit configurations

\

eostationary orbit ‘

Polar orbiter (courtesy WAL) Geostationary orbit (courtesy NASDA)
* Quasi-global coverage. » 35 786 km above sea level, latitude 0.0°.
* Non-continuous Samp”ng of a given * View 1/4 of Earth's surface (GOS-GON)
location. e Continuous sampling of a given location.
» Often used for sounders (e.g. on board » Often used for imagers (e.g. on board
EnviSat, EOS Aura, etc). MeteoSat, etc).

» Horiz. resolution degrades poleward.
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Satellite borne instruments

Viewing geometries

Limb (left) and nadir (right) viewing geometries

Limb Nadir
» Good vertical resolution possible (~1km). » Good horizontal resolution possible.
 Poor horizontal resolution.  Poor vertical resolution (several km).
» Difficulties in constructing observation » Used mainly in operational weather
operator. forecasting.

» Used mainly in research.
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Satellite borne instruments

(not comprehensive!)

Instrument Expanded name Platform Geometry Orbit Measures Pass/AcSensitive to
HIRDLS High Resolution Dynamics Limb SounderEOS Aura Limb Polar ? PassiveT, g, O3, etc
OoMI Ozone Monitoring Experiment EOS Aura Nadir Polar Vis/UV Passive O3, TCO3, etc.
TES Tropospheric Emission Spectrometer  EOS Aura Limb/NadirPolar IR PassiveT, g, O3, etc
MLS Microwave Limb Sounder EOS Aura Limb Polar MW PassiveT, g, O3, etc
SSM/I Special Sensor Microwave Imager DMSP Nadir Polar MW Passive TCWV, cloud, precip, surface win
snow, sea ice
HIRS High resolution InfraRed Sounder NOAA Nadir Polar IR PassiveT, g, O3, etc
AMSU Advanced Microwave Sounding Unit NOAA Nadir Polar MW PassiveT, g, etc
AIRS Advanced InfraRed Sounder EOS Aqua  Nadir Polar IR/IMW/Vis PassiveT, g, etc
SBUV Satellite Backscattered UltraViolet NOAA Nadir Polar UV Passive O3
MIPAS Michelson Interferometer for Passive EnviSat Limb Polar IR/IMW PassiveT, g, O3, etc
Atmospheric Sounding
GOME Global Ozone Monitoring Experiment  ERS-2,METOMadir Polar UV Passive O3
SCIAMACHY ScCanning Imaging Absorption spectroMelaviSat Limb/NadirPolar IR Passive O3, q, clouds, etc
for Atmospheric CartograpHY
MVIRI Meteosat Visible and InfraRed Imager MeteoSat Nadir GeostVis/IRIWV Passive Cloud, surface, motion vectors
SEVIRI Spinning Enhanced Visible and MSG Nadir GeostVis/IRIWV Passive Cloud, surface, motion vectors
InfraRed Imager
GERB Geostationary Earth Radiation ExperimemMISG Nadir GeostLW/SW Passive
AVHRR Advanced Very High Resolution Radiomet€dAA Nadir Polar Vis/IR/WV Passive Cloud, surface, motion vectors
ATSR Along Track Scanning Radiometer ERS-1, 2 Nadir Polar Vis/IR/WV Passive SST, surface, clouds, cryosphere
SMOS Soil Moisture Ocean Salinity Earth explorerNadir Polar L-band (1.4GHzPassive Soil moisture, ocean salinity
SCAT Scatterometer ERS-1,2 QuasiNadiPolar C-band (6GHz) Active Surface wind
PR Precipitation Radar TRMM Nadir NEO Radar Active Precipitation
GPS/GLONASSIobal Positioning System Limb Refractive indexActive T,q, p

'Vis'=visible, 'UV'=ultra violet, "IR"=infrared, '"MW'=microwave, TC03=total column ozone, TCWV=total column water vapour, Geost.=geostationar)
NEO=near equator orbit
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Deriving information from satellite soundings

A one-dimensional example - to show the need for adequate consideration of errors
Rodgers (2000)

Makem nadir radiance measurements Forward model (radiative transfer equation)
L) = [ B T(@) K (2 dz
=1 0
A : :
What isB(v),T(2)) given a set of measurements
L (v1) Choose a basis ofi polynomials to represef
L (v2)

<l
Il

B, T(@) = D w2z *
L (Vi) j=1

An inappropriate means of computing thg(and
henceB, and hencd (2)),

L (vi) = EC”V\/J Cij = f:i_lKi (2 dz
=1

y=Cw = w=Cly
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Results of 'exact' inverse problem

10§ T
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0.00 0.10 0.20 0.30 0.40 150 200 250 300
Weighting function Retrieved quantity

Courtesy, Rodgers (2000)

The 'C' operator is ill conditioned
'Exact' methods are inappropriate for real-world inverse problems
Need 'inexact’' methods that properly account for errors - use the method of least squares - see
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General principles for deriving information from remotely
sensed observations

[1Use of forward model (a.k.a. observation operator).

 Remotely sensed observations contain information about those model quantities that the
operators are sensitive to (e.g. temperature).

[JAccount for error statistics (data anexac).

[INeed a-priori information (first guess) - observations may not constrain all unknomdes (
constrainedl.

[JExact inversion.

The 'method of least squares' (later) can be used to solve the inexact, ill-conditioned, undercons
inverse problem.
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Deriving chemical species from satellite data
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Courtesy Jean Noel Thepaut, ECMWF

EOS Aura Atmospheric Profile Measurements

OMI also measures UVE flux, cloud topfcover, and column abundances of Oy, NO,, BrQ, aeroscl and volcanic SO,
TES also measures several additional *special products’ such as CIONO,, CF,Cl,, TFCly, N0 and volcanic S0,

| HIRDLS: High Resolution Dynamics Limb Sounder MLS: Microwawe Limb Sounder
OMI: Ozone Monitoring Instrument | | TES: Tropospheric Emission Spectrometer
OH CIONG, HCl SO
(o HO: N3Os NO HOCI Bro
HNO MO CF.Cl
temperature H.O CH, HCMN 3 iy e polar -
cO MO CFCi S0, strat g.'“i‘mhtt
= it chousd
cloud § cirrus
top ice
aercsol height ent
axtinction

Courtesy NASA Goddard
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Alternatives for assimilating satellite derived data

» Have hinted that it is possible to derive geophysical information from satellites in a 1d vertical
column (called 'retrievals').

* There are a number of options to assimilate satellite data with large 3d weather forecasting moc

'LO' Data
Photons
(counts)

! algorithm

1st choice « Radiances Need radiance operator in larg
(P/(AAQ)) assimilation problem.

1 retrieval algorithm
(solve small inexact ill-posed inverse problems)

'L2' Data
2nd choice « Columns of geophysical quantities Assimilate columns as though
(vertical 'retrieval' profiles) radiosonde data.

Suboptimal.
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3. MODELS

DYNAMICAL CORE Met Office "New Dynamics" Unified Model
(primitive equations) Semi-Lagrangian advection

Typical res0.8° x 0.5° x 50levs (60km mid-lats
Typical timestep=~ 15 minutes

ST

=
- ik

10 30

b

50 : {20
100 |.......

10

500 o
1000 i
Pressure (hPa) Altitude (km)
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» Coupled atmosphere/ocean models exist, but no coupled data assimilation systems exist.
» Component specific models (e.g. carbon cycle) exist.
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Summary of observations and models

« Wealth of obs for use in data assimilation. « Satellite instruments:

» Broadly two types of observation: » orbit types (geostationary, polar, sun
synchronous),

 viewing geometry types (nadir, limb),
 techniques (e.g. passive, active).

* in-situ (geophysical quantities),
» remotely sensed (e.g. radiances).

* In-situ obs are straightforward to assimilate: _ _
» Only a small fraction of observations

* good resolution, survives quality control.
* pOOor coverage. « Observation uncertainty is very important.
* Remotely sensed obs are complicated to deal « Models are an integral part of data
with: assimilation:
» limited resolution, « models (i) predict obs, (ii) provide a-
e good coverage. priori information and (iii) make

« Geophysical quantities can be derived from forecasts.

remotely sensed observations:

« off-line retrieval (1d vertical column) or
* (e.g.) direct assimilation of radiances.

« '‘forward models' predict observations
from geophysical quantities).
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