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1. INTRODUCTION
The data assimilation problem

Observations, , and errorsyå
• Sondes
• Surface stations
• Ships
• Satellites

State vector, xå

Models ("forward models")

• Linking model state to observations
• yå = hå [xå ] + εå

Assimilation algorithm ("inverse model")

• Optimal Interpolation (OI)
• Variational data assimilation (Var.)
• Kalman filter

A-priori information, , and errorsxå B

• Background state
• Best guess
• Forecast 
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Representation of data
The 'state vector', xå
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uå  zonal wind field

vå  meridional wind field

θå  potential temperature

på  pressure

qå  specific humidity

λ longitude

φ latitude

ℓ  vertical level

• Values of all variables and at all grid points
are assembled in this vector.

• The system's state may be represented as a
point in the model's -
dimensional phase space.

(5 × n × m × L)

x2
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x3

The 'observation vector', yå

y1

y2

y3

yN

• Every measurement to be assimilated is
assembled in this vector.

• The observation type, location and time
needs to associated with each observation.

These vector structures allow them to be used in matrix equations (later).
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Data assimilation as an inexact and underconstrained inverse
problem

FORWARD
MODEL

INVERSE
MODEL

(model variables)
The state vector, xå

(predicted or measured)
The observations, yå

The forward model

Obs.

F.M. (physics & measurements)
Error in  due to error in 

State vector

yå = hå [xå ] + εå

yå xå

• The 'inverse model' approach to data assimilation can deal with 'direct' (in-situ) and 'indirect'
(remotely sensed) observations.

• The data assimilation problem is termed 'inexact' because all quantities have errors which must be
accounted for.

• The data assimilation problem is termed 'under constrained' because the state vector is not fully
observed.

All models are wrong!  All observations are inaccurate!
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Combining observational data: 1 unknown, 2 direct
observations

Aim: to estimate the value of a scalar, , and its uncertainty.x
Information to use: two unbiased direct measurements of  from different instruments.x

Quantity Value Error* Std. dev.†Notes
'truth' xt 0 n/a Abstract, as  can never be known preciselyxt

obs. 1 y1 ε1 σ1  is the precision of inst. 1σ1

obs. 2 y2 ε2 σ2  is the precision of inst. 2σ2

best est. of 'truth'xa εa σa  is a fn. of  and .   = 'analysis'σa σ1 σ2 a

*Deviation from 'truth', , .   are not known, only their 'stats'†.yn = xt + εn n = 1,2 εn

†Width of the probability density function (PDF), .σn ≡ 〈(yn − xt)2〉1/2 = 〈ε2
n〉1/2

Unbiased: means that repeated measurements are centred about the 'truth', , ie .〈εn〉 = 0 〈yn〉 = xt

xa = ( y1

σ2
1

+
y2

σ2
2
) ( 1
σ2

1
+

1
σ2

2
)−1

,    σa = ( 1
σ2

1
+

1
σ2

2
)−1/2

• This is simple data assimilation.
• The larger the '' of a measurement, the smaller its importance.σ
• Use (i) the 'method of least squares' and (ii) normal (a.k.a. Gaussian) PDFs (see later).
• Beware: the term 'error' is often used to indicate .  Should use the term 'error statistics'.σ
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Combining observational data: 6 unknowns, >6 indirect
observations - orbital determination

Aim: to estimate the six orbital parameters of Venus, , and their uncertainty.xå
Information to use: many indirect measurements.

xå = ( ) ,  yå = ( )a
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…
…

yå = hå [xå ] + εå
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x = (0.7210,  0.0201,  4.23,  88.9,  110.0,  176.6)
σ = (0.0020,  0.0078,  0.70,    8.1,    50.3,  6.8)
xt = (0.7233,  0.0067,  3.39,  76.7,  131.5,  182.0)

(a) Assimilation period
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(b) Future prediction of Venus's position
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Applications of data assimilation

• Keeping dynamical systems 'in touch' with reality.

TIME
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OBSERVATIONS
ASSIMILATED

MODEL
REALITY

• Initial conditions for weather or ocean forecasting.
• Reanalysis for scientific studies of climate (e.g. NCEP/NCAR, ERA).
• Inferring information that is difficult or impossible to measure directly, or using data from remote

sensing instruments (e.g. satellite sounding, surface carbon flux estimation, solar dynamics).
• Model and observation system evaluation.
• Systems control (e.g. landing a rocket on the moon, shooting a moving target).
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CONTENTS OF LECTURES

1.  Introduction

2.  Observations

3.  Models

4.  Data assimilation fundamentals

5.  Applications of and problems with data assimilation

6.  Further reading
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2. OBSERVATIONS
Types of instrument

Measurements from instruments assimilated routinely (not exhaustive)

Coverage Resolution
Instrument Quantities measuredSpatial Temporal Horiz. Vert.
In-situ instruments
Radiosondes , , , , , )u v T p q 3(O Cont'l N.H., t'sphere 6 hourly point point
Surface stations , , , , u v T p q Cont'l, surface 6 hourly point n/a
Aircraft , , , , u v T p q Flight paths, airportsIn flight point point
Drifting buoys , , , u v T p Drift paths, sea lev. Hourly point n/a
Remote sensing instruments
Geostationary sat. Rad: MW, IR, Vis Global 15-30 mins > 1 km kms
Polar orbiting sat. (nadir)Rad: MW, IR, Vis Global Continuous > 1 km kms
Polar orbiting sat. (limb) Rad: MW, IR, Vis Global Continuous 100s km 1-2 km
Scatterometer Radar backscatter Oceans Continuous 50 km n/a

'Rad'=radiances, 'MW'=microwave, 'IR'=infrared, 'Vis'=visible

In operational global weather forecasting there are  observations assimilated per cycle~106
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Coverage
Locations of four example observation types (courtesy Met Office (c) Crown copyright)
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Volumes of data and quality control
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ECMWF stats. (one cycle in June '03)
Total No. obs.: ~ 70,000,000
Total No. assimilated:~   3,500,000

(only 5%!)

Why are some observations rejected?

• Observation 'too far' from forecast (large systematic, human, or instrument error),
• Observation did not reach centre in time,
• Satellite radiance data - complications due to radiation from land, clouds or precipitation.

Ross Bannister, EO and DA, QUEST ES4 2006. Page 12 of 51



Satellite borne instruments
Orbit configurations

Polar orbiter (courtesy WAL)

• Quasi-global coverage.
• Non-continuous sampling of a given

location.
• Often used for sounders (e.g. on board

EnviSat, EOS Aura, etc).

Geostationary orbit (courtesy NASDA)

• 35 786 km above sea level, latitude 0.0°.
• View 1/4 of Earth's surface (60S-60N).
• Continuous sampling of a given location.
• Often used for imagers (e.g. on board

MeteoSat, etc).
• Horiz. resolution degrades poleward.
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Satellite borne instruments
Viewing geometries

Limb (left) and nadir (right) viewing geometries

Limb

• Good vertical resolution possible (~1km).
• Poor horizontal resolution.
• Difficulties in constructing observation

operator.
• Used mainly in research.

Nadir

• Good horizontal resolution possible.
• Poor vertical resolution (several km).
• Used mainly in operational weather

forecasting.

Ross Bannister, EO and DA, QUEST ES4 2006. Page 14 of 51



Satellite borne instruments
(not comprehensive!)

Instrument Expanded name Platform Geometry Orbit Measures Pass/ActSensitive to

HIRDLS High Resolution Dynamics Limb SounderEOS Aura Limb Polar ? Passive , , O3, etcT q
OMI Ozone Monitoring Experiment EOS Aura Nadir Polar Vis/UV PassiveO3, TCO3, etc.
TES Tropospheric Emission Spectrometer EOS Aura Limb/NadirPolar IR Passive , , O3, etcT q
MLS Microwave Limb Sounder EOS Aura Limb Polar MW Passive , , O3, etcT q
SSM/I Special Sensor Microwave Imager DMSP Nadir Polar MW PassiveTCWV, cloud, precip, surface wind,

     snow, sea ice
HIRS High resolution InfraRed Sounder NOAA Nadir Polar IR Passive , , O3, etcT q
AMSU Advanced Microwave Sounding Unit NOAA Nadir Polar MW Passive , , etcT q
AIRS Advanced InfraRed Sounder EOS Aqua Nadir Polar IR/MW/Vis Passive , , etcT q
SBUV Satellite Backscattered UltraViolet NOAA Nadir Polar UV PassiveO3
MIPAS Michelson Interferometer for Passive EnviSat Limb Polar IR/MW Passive , , O3, etcT q

     Atmospheric Sounding
GOME Global Ozone Monitoring Experiment ERS-2,METOPNadir Polar UV PassiveO3
SCIAMACHY SCanning Imaging Absorption spectroMeterEnviSat Limb/NadirPolar IR PassiveO3, , clouds, etcq

     for Atmospheric CartograpHY
MVIRI Meteosat Visible and InfraRed Imager MeteoSat Nadir Geost.Vis/IR/WV PassiveCloud, surface, motion vectors
SEVIRI Spinning Enhanced Visible and MSG Nadir Geost.Vis/IR/WV PassiveCloud, surface, motion vectors

     InfraRed Imager
GERB Geostationary Earth Radiation ExperimentMSG Nadir Geost.LW/SW Passive
AVHRR Advanced Very High Resolution RadiometerNOAA Nadir Polar Vis/IR/WV PassiveCloud, surface, motion vectors
ATSR Along Track Scanning Radiometer ERS-1, 2 Nadir Polar Vis/IR/WV PassiveSST, surface, clouds, cryosphere
SMOS Soil Moisture Ocean Salinity Earth explorerNadir Polar L-band (1.4GHz)PassiveSoil moisture, ocean salinity
SCAT Scatterometer ERS-1,2 QuasiNadirPolar C-band (6GHz) Active Surface wind
PR Precipitation Radar TRMM Nadir NEO Radar Active Precipitation
GPS/GLONASSGlobal Positioning System Limb Refractive indexActive T, , q p

'Vis'=visible, 'UV'=ultra violet, "IR"=infrared, 'MW'=microwave, TC03=total column ozone, TCWV=total column water vapour, Geost.=geostationary,
NEO=near equator orbit
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Deriving information from satellite soundings

A one-dimensional example - to show the need for adequate consideration of errors
Rodgers (2000)

Make  nadir radiance measurementsm

yå = ( )L (ν1)
L (ν2)

…
L (νm)

Forward model (radiative transfer equation)

Li (νi) = ∫
∞

0
B(½ν¿,T(z))  Ki (z) dz

What is  given a set of measurements?B(½ν¿,T(z))

Choose a basis of  polynomials to represent ,m B

B(½ν¿,T(z)) = ∑
m

j = 1

wj zj − 1

An inappropriate means of computing the  (and
hence , and hence ),

wj

B T (z)

Li (νi) = ∑
m

j = 1

Cijwj Cij = ∫
∞

0
zj − 1Ki (z) dz

yå = Cwå  ⇒  wå = C−1yå
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Results of 'exact' inverse problem

Courtesy, Rodgers (2000)

The 'C' operator is ill conditioned
'Exact' methods are inappropriate for real-world inverse problems

Need 'inexact' methods that properly account for errors - use the method of least squares - see later.
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General principles for deriving information from remotely
sensed observations

✓Use of forward model (a.k.a. observation operator).

• Remotely sensed observations contain information about those model quantities that the
operators are sensitive to (e.g. temperature).

✓Account for error statistics (data are inexact).
✓Need a-priori information (first guess) - observations may not constrain all unknowns (under

constrained).

✗Exact inversion.

The 'method of least squares' (later) can be used to solve the inexact, ill-conditioned, underconstrained
inverse problem.
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Deriving chemical species from satellite data

Courtesy Jean Noel Thepaut, ECMWF

Courtesy NASA Goddard
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Alternatives for assimilating satellite derived data
• Have hinted that it is possible to derive geophysical information from satellites in a 1d vertical

column (called 'retrievals').
• There are a number of options to assimilate satellite data with large 3d weather forecasting models.

'L0' Data
Photons
(counts)

↓   algorithm

'L1' Data Direct radiance assimilation.
1st choice   ← Radiances Need radiance operator in large

( )P/ (λAΩ) assimilation problem.

↓   retrieval algorithm
     (solve small inexact ill-posed inverse problems)

'L2' Data
2nd choice   ← Columns of geophysical quantities Assimilate columns as though

(vertical 'retrieval' profiles) radiosonde data.
Suboptimal.
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3. MODELS
DYNAMICAL CORE
(primitive equations)

PARAMETRISATIONS (e.g. ATMOS)
Cloud

SW and LW radiation
Boundary layer
Precipitation
Convection

Surface hydrology
Vertical diffusion
Gravity wave drag

Vegetation
Chemistry (e.g. ozone)

BOUNDARY CONDITIONS
Sea surface temperature

Sea ice
Solar insolation

Met Office "New Dynamics" Unified Model
Semi-Lagrangian advection
Typical res:  levs (60km mid-lats)0.8° × 0.5° × 50
Typical timestep:  minutes~ 15

Courtesy Australian Bureau for Meteorology Courtesy climateprediction.net
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• Coupled atmosphere/ocean models exist, but no coupled data assimilation systems exist.
• Component specific models (e.g. carbon cycle) exist.
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Summary of observations and models

• Wealth of obs for use in data assimilation.

• Broadly two types of observation:

• in-situ (geophysical quantities),

• remotely sensed (e.g. radiances).

• In-situ obs are straightforward to assimilate:

• good resolution,

• poor coverage.

• Remotely sensed obs are complicated to deal
with:

• limited resolution,

• good coverage.

• Geophysical quantities can be derived from
remotely sensed observations:

• off-line retrieval (1d vertical column) or

• (e.g.) direct assimilation of radiances.

• 'forward models' predict observations
from geophysical quantities).

• Satellite instruments:

• orbit types (geostationary, polar, sun
synchronous),

• viewing geometry types (nadir, limb),

• techniques (e.g. passive, active).

• Only a small fraction of observations
survives quality control.

• Observation uncertainty is very important.

• Models are an integral part of data
assimilation:

• models (i) predict obs, (ii) provide a-
priori information and (iii) make
forecasts.
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