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1 Meteorological balance

1(a) What is balance and why is it important to worry about?
• Initial conditions of meteorological models need to be appropriately balanced.

Momentum equations

Du

Dt
= fv − 1

ρ

∂p

∂x
−Dx,

Dv

Dt
= −fu− 1

ρ

∂p

∂y
−Dy,

Dw

Dt
= −1

ρ

∂p

∂z
− g −Dx,

f = 2Ω sin(y/a),

Ω = 7.29× 10−5rads−1,

a = 6.371× 106m,

g = 9.806ms−1.

Dimensionless variables

u = Uũ, v = Uṽ, w = Ww̃, p = P p̃,

x = Lx̃, z = Hz̃, t = L/Ut̃,

�
�
�

�
�

Ro
Dũ

Dt̃
= v − P

fρUL

∂p̃

∂x̃
−

�
��D̃x,

�
�
�

�
�

Ro
Dṽ

Dt̃
= −ũ− P

fρUL

∂p̃

∂ỹ
−

�
��D̃y,

���
���

��

Ro
W

U

Dw̃

Dt̃
= − P

fρUH

∂p̃

∂z̃
− g

fU
−

�
��D̃x,

Ro =
U

fL
= O(10−1),

W

U
= O(10−2).

• Geostrophic balance

fv − 1

ρ

∂p

∂x
= 0.

• Hydrostatic balance

−1

ρ

∂p

∂z
− g = 0.
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• Geostrophic balance

fv − 1

ρ

∂p

∂x
= 0.

• Hydrostatic balance

−1

ρ

∂p

∂z
− g = 0.

• Geostrophic balance is characteristic of
mid-latitude flow (small Ro wind follows
the isobars).

� Some ageostrophic flow is needed in
initial conditions to match the atmo-
sphere.

� Too much ageostrophic flow can
damage a forecast.

� Unbalanced motion relaxes to near
balanced motion by geostrophic ad-
justment (gravity waves).

� All modern meteorological models
are capable of supporting gravity
waves so excessive gravity waves
will cause a problem.

• Hydrostatic balance is characteristic of
non-convective flow (small Ro and W/U ).

� Meteorological models that permit
convection explicitly must allow
non-hydrostatic flow.
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1(b) How can assimilation of observations lead to imbalance?
• Observations sample from the truth.

� The ’true manifold’ 6= the model manifold.

• Observations are not perfect.

• Essentially discovered by L.F. Richardson in the 1920s.
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1(c) How to respect balance in data assimilation?
• Initialization

� Post-posteriori filtering of imbalance
according to a set of rules.

� Moves away from observations just
assimilated.

• Forecast error covariance matrix

xa = xf +PfHT
(
R + HPfHT

)−1 [
y −Hxf

]
.

� Pf is used not just for regularization.

� Pf contains the ’statistics of bal-
ance’ (e.g. for strong hydrostatic bal-
ance: in ∆ = xa − xf (analysis in-
crements), the correlation between
∆[∂p/∂z] and ∆[ρg] should be −1:

∂p

∂z
+ ρg = 0.

� Pf in VAR is modelled using explicit
balance conditions (called B).

← Example structure functions giving the
output field (p, u or v down the side) associ-
ated with a point in the centre of the domain
(either of p, u or v along the top). Red is posi-
tive, blue is negative.
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1(d) How much balance should be in an analysis increment?
• Practically - we don’t know.

• Have climatological ideas (e.g. winter average for mid-latitudes), but this could change
from day-to-day (e.g. high-pressure vs. low pressure systems, fronts, convection, bound-
ary layer characteristics, etc.)

• In the Kalman Filter this information will be wrapped-up in Pf.

• In the Ensemble Kalman Filter this information is wrapped-up in the ensemble (see
later).

• Want the analysis increments to be balanced in the way described by the Kalman update
equation

xa = xf + PfHT
(
R + HPfHT

)−1 [
y −Hxf

]
.
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2 Ensemble data assimilation

2(a) Sampling error

Dynamical sample covariance PD
(N) =

1

N − 1

N∑
l=1

δxlδx
T
l =

1

N − 1
XXT,

PD
(N) ∈ Rn×n

Dynamical forecast ensemble X = {δx1, δx2, . . . δxN},
δxl ∈ Rn

X ∈ Rn×N

Sample covariance error [E(δPD
(N))]ij ∼

σiσj√
N − 1

(
1−

(
[P]ij
σiσj

)2
)
.

← v-p correlation function from ensemble
with N = 24.
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2(b) Localization

PL
(N,K) = PD

(N) ◦Ω(K)

PD
(N) ∈ Rn×n

Ω(K) ∈ Rn×n

• Notation:

� PD
(N) forecast error covariance matrix from N ensemble members (rank ∼ N ).

� Ω(K) localization / regularization matrix (rank K).

. Ω(K) is a correlation matrix.
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2(c) Balance (non-)preservation
• Balance is defined by the null-space (or near null space) of Pf.

� Localization changes the null-space.

• Localization assumes that structures become less important with distance from an ob-
servation.

� Some structures grow with distance.
� Example - can affect position of peaks in geostrophic lobes.

• Localization changes the values and gradients of fields1.

1Lorenc A.C., The potential of the ensemble Kalman Filter for NWP - a comparison with 4D-VAR, Quart. J. Roy. Meteor. Soc. 129,
3183-3203 (2003).
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2(d) Possible mitigation strategies
• Avoid doing localization with highly anisotropic fields like u and v - apply to ψ and χ

instead2.

� OK for geostrophic balance, unclear what to do for other balances.

• Perform localization on ’control variables’ and introduce a balance operator.

� Like the Met Office’s hybrid data assimilation system3.

� OK when balances are known and appropriate.

• → Adaptive localization schemes? ←

� SENCORP (Smoothed ENsemble COrrelations Raised to a Power)4.
� ECO-RAP (Ensemble COrrelations Raised to A Power)5 6.

2Kepert J.S., Covariance localization and balance in an ensemble Kalman filter, Quart. J. Roy. Meteor. Soc. 135, 1157-1176,
DOI:10.1002/qj.443 (2009).

3Clayton A.M., Lorenc A.C. and Barker D.M., Operational implementation of a hybrid ensemble/4D-Var global data assimilation
system at the Met Office, Q.J.R. Meteorol. Soc., DOI:10.1002/qj.2054 (2012).

4Bishop C.H. and Hodyss D., Flow adaptive moderation of spurious ensemble correlations and its used in ensemble-based data
assimilation, Quart. J. Roy. Met. Soc. 133, 2029-2044 (2007), DOI:10.1002/qj.169.

5Bishop C.H. and Hodyss D., Ensemble covariances adaptively localized with ECO-RAP, Part 1: Tests on simple error models, Tellus
A 61, 84-96 (2009).

6Bishop C.H. and Hodyss D., Ensemble covariances adaptively localized with ECO-RAP, Part 2: A strategy for the atmosphere,
Tellus A 61, 97-111 (2009).
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3 Balance diagnostics

3(a) Given an ensemble, what is the balance?
General: equation of motion and two-term balance equation

∂Q(x)

∂t
= A(x) + B(x) + C(x), 0 = A(x) + B(x).

A(x) will be exactly anti-correlated with B(x) if this balance condition is obeyed exactly.

Geostrophic balance (actually linear balance): the divergence equation

Dδ′

Dt
=M′ +W ′ + horiz. Coriolis + metric + forcing + other,

M′ = cp
(
θv0∇2

zΠ
′ +∇2

zΠ0 θ
′
v

)
, W ′ = −k · (∇× u′ + (∇f )× u) .

Hydrostatic balance: the vertical momentum equation

Dw′

Dt
= P ′ + T ′ + vert. Coriolis + metric + forcing + other,

P ′ = θv0
∂Π′

∂z
, T ′ =

∂Π0

∂z
θ′v.
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3(b) What is the balance correlation in a localized ensemble?

Dynamical sample cov PD
(N) =

1

N − 1

N∑
l=1

δxlδx
T
l =

1

N − 1
XXT PD

(N) ∈ Rn×n

Dynamical forecast ensemble X = {δx1, δx2, . . . δxN} X ∈ Rn×N

Localized sample cov PL
(N,K) = PD

(N) ◦Ω(K)
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3(b) What is the balance correlation in a localized ensemble?

Dynamical sample cov PD
(N) =

1

N − 1

N∑
l=1

δxlδx
T
l =

1

N − 1
XXT PD

(N) ∈ Rn×n

Dynamical forecast ensemble X = {δx1, δx2, . . . δxN} X ∈ Rn×N

Localized sample cov PL
(N,K) = PD

(N) ◦Ω(K)

Correlation Ω(K) =
1

K − 1

K∑
k=1

ωkω
T
k =

1

K − 1
KKT Ω(K) ∈ Rn×n

Correlation ensemble K = {ω1,ω2, . . .ωK} K ∈ Rn×K
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3(b) What is the balance correlation in a localized ensemble?

Dynamical sample cov PD
(N) =

1

N − 1

N∑
l=1

δxlδx
T
l =

1

N − 1
XXT PD

(N) ∈ Rn×n

Dynamical forecast ensemble X = {δx1, δx2, . . . δxN} X ∈ Rn×N

Localized sample cov PL
(N,K) = PD

(N) ◦Ω(K)

Correlation Ω(K) =
1

K − 1

K∑
k=1

ωkω
T
k =

1

K − 1
KKT Ω(K) ∈ Rn×n

Correlation ensemble K = {ω1,ω2, . . .ωK} K ∈ Rn×K

Localized sample cov revisited PL
(N,K) =

1

M − 1

M∑
m=1

δx̃mδx̃
T
m =

1

M − 1
X̃X̃T (M = NK)

Localized ensemble X̃ = {δx̃1, δx̃2, . . . δx̃M} X̃ ∈ Rn×M

δx̃m = δxl ◦ ωk

X̃ =

√
M − 1

(N − 1)(K − 1)
X M K
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3(c) The meteorological case

• 20/09/2011

• MOGREPS: Met Office Global and Regional Ensemble Precipitation System
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4 Adaptive and non-adaptive localization

4(a) Spectral representation (univariate non-adaptive localization for
variable s)

Ks = FsΛ
1/2
s

[Ks]rk = cos(kxrx + δxs ) cos(kyry + δys)ν(rz, kz)︸ ︷︷ ︸
Fs

λH
s (k2

x + k2
y)λ

V
s (kz)︸ ︷︷ ︸

Λ
1/2
s

• Over-bar means normalize - make sum of
squares of each row of matrix unity.

• Choose the # horiz. wns, Kx\y, and # vert.
modes, Kz: K = Kx\yKz.

• In practice K � n.
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4(b) Static localization scheme 1 (S1)

KS1 =


FδuΛ

1/2
δu 0 0 0 0

0 FδvΛ
1/2
δv 0 0 0

0 0 FδwΛ
1/2
δw 0 0

0 0 0 FδΠΛ
1/2
δΠ 0

0 0 0 0 FδθΛ
1/2
δθ

 ∈ Rn×5K

4(c) Static localization scheme 2 (S2)

KS2 =


FδuΛ

1/2
δu

FδvΛ
1/2
δv

FδwΛ
1/2
δw

FδΠΛ
1/2
δΠ

FδθΛ
1/2
δθ

 ∈ Rn×K



19

4(d) SENCORP (Smoothed ENsemble COrrelations Raised to a Power)
localization

Ω = C◦Q

1. From the ensemble members, δxl, create smoothed members, δwl.

2. Normalize.

3. Calculate correlation matrix

C =
1

N − 1

N∑
l=1

δwlδw
T
l .

4. C◦Q is the Schur power of C with itself Q times.

Q/2 ∈ Z and Q > 0

K = {ω1,ω2, . . .ωK} =

√
K − 1

(N − 1)Q
W M W M W M · · · K ∈ Rn×K

ωk =

√
K − 1

(N − 1)Q
δwl1 ◦ . . . ◦ δwlQ

K = NQ, but rank(C) < K
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4(e) ECO-RAP (Ensemble COrrelations Raised to A Power) localiza-
tion scheme 1 (E1)
A combination of SENCORP and S1

KE1 = C◦Q


FδuΛ

1/2
δu 0 0 0 0

0 FδvΛ
1/2
δv 0 0 0

0 0 FδwΛ
1/2
δw 0 0

0 0 0 FδΠΛ
1/2
δΠ 0

0 0 0 0 FδθΛ
1/2
δθ

 ∈ Rn×5K

4(f) ECO-RAP (Ensemble COrrelations Raised to A Power) localiza-
tion scheme 2 (E2)
A combination of SENCORP and S2

KE2 = C◦Q


FδuΛ

1/2
δu

FδvΛ
1/2
δv

FδwΛ
1/2
δw

FδΠΛ
1/2
δΠ

FδθΛ
1/2
δθ

 ∈ Rn×K

Practicality: expensive so have to restrict influence of C◦Q.
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5 Implied structure functions and balance diagnostics (dy-
namic ensemble)

(a) T-T (long/ht), (b) T-T (long/lat), (c) u-T (long/lat), (d) v-T long lat
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5 Implied structure functions and balance diagnostics (static
localization, S2)

(a) T-T (long/ht), (b) T-T (long/lat), (c) u-T (long/lat), (d) v-T long lat
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5 Implied structure functions and balance diagnostics (adap-
tive localization, SENCORP)

(a) T-T (long/ht), (b) T-T (long/lat), (c) u-T (long/lat), (d) v-T long lat
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5 Implied structure functions and balance diagnostics (adap-
tive localization, E2)

(a) T-T (long/ht), (b) T-T (long/lat), (c) u-T (long/lat), (d) v-T long lat

Fields not computed

Fields not computed
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5 Implied structure functions and balance diagnostics (dy-
namic ensemble)
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5 Implied structure functions and balance diagnostics (static
localization, S2)
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5 Implied structure functions and balance diagnostics (adap-
tive localization, SENCORP)
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5 Implied structure functions and balance diagnostics (adap-
tive localization, E2)
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6 Conclusions
• Balanced analyses for NWP.

� Crude DA does not respect balance.

� Not imposing balance when it
should be, . . ., and imposing balance
when it shouldn’t be.

� Adding localization to EnKF dis-
turbs balance.

• Balance diagnostics.

� Given an ensemble, find the correla-
tion between leading terms.

� Apply to dynamical (raw) ensemble.

� Apply to localized ensemble (com-
bining of dynamical and correlation
ensemble).

. Correlation ensemble is ’square-
root’ of localization matrix.

• Localization schemes.

� Static (spectral) scheme (S2).
� SENCORP scheme (localization de-

fined from smoothed ensemble).
� ECORAP (combination of S2 and

SENCORP) scheme (S2).

• Findings

� SENCORP doesn’t perform well.
� S2 performs well for geos. balance.
� E2 performs will for hydro. balance.

• Notes

� Many parameters (truncation,
length-scales, order Q, other things).

� Look at other profiles and cases.
� Is it worth the computational effort?
� Other balances (anelastic, moisture,
. . .).


