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3 VARIATIONAL DATA ASSIMILATION

Variational data assimilation (Var.) for the atmosphere is the procedure of combining observations with
dynamical knowledge of atmospheric behaviour. The objective is to produce an atmospheric state that
is optimally consistent with all of the information. The cost function J , below, is a measure of the misfit
between (i) a state vector, ~x (to be determined), and the prior knowledge in the form of the background,
~xB , and (ii) the real observations, ~y, and the observations predicted by ~x through the forward model,
~H . The cost function is [1],

J [~x′] =
1

2
(~x′ − ~x′B)TB−1(~x′ − ~x′B) +

1

2
(~y − ~H [~x′, ~x0])

T (E + F)−1(~y − ~H [~x′, ~x′0]), (1)

= JB + JO,

which is minimized at ~x = ~xa. This state is called the analysis. In Eq. 1, primed quantities are
perturbation quanties, e.g. ~x′ = ~x − ~x0, where x0 is a linearization state (often, but not always taken

to be the background state), and ~H is the forward operator that predicts the observations from the
model state at the current iteration. Provided that ~xB is unbiased with respect to the true state, that
~H [~x′, ~x′0] is unbiased with respect to ~y and the errors of ~xB and ~y have been characterized correctly in the
respective error covariance matrices B and E + F, ~xa will be the optimal combination of information.

The focus of this paper is to describe how, at the time of writing, the Met Office represents the
background term of the cost function (JB , the first term of Eq. 1). The background error covariance
matrix, B represents how errors in each model variable at each grid point covaries - in a Gaussian sense
- with every other. Represented explicitly B holds a huge amount of information. The dimensionality of
~x is typically ∼ 106-107 elements, and so B will consist of ∼ 1012-1014 matrix elements, which is beyond
the storage capability of present day computer resources (and note in Eq. 1 that the matrix B has to
be inverted).

Instead of attempting to representing B explicitly, the Met Office and other meteorological agencies
that employ Var. circumvent this problem by constructing a model of B out of physical, statistical and
intuitive arguments. The first simplification (which we make clear at the outset) is that B is determined
climatologically, ie, it contains no synoptic dependencies. (An attempt to account for synoptically
dependent errors has been introduced as an add-on to the cost function - see work on the ”errors of the
day” project [2][3]. Other approaches considered include use of the geostrophic coordinate transform
[4][5].)

3.1 Control variable transforms

In the minimization, components of ~x′ are varied iteratively to reduce - and hence minimize - the value of
J . A vector such as ~x′ which is varied in this way is called a control vector. Minimizing J by varying ~x′

directly is conceptually straightforward, but it leaves us with the problem of representing and inverting
B, and it would actually be a very inefficient approach to Var. Instead of solving the variational problem
involving ~x′, the problem is posed in terms of a different control vector, ~v′ which is designed, as below,
to have beneficial properties. As for ~x′, ~v′ is primed, indicating that it is a perturbation quantity.

The vector ~v′ is related to ~x′ via the so-called U-transform, transforming from ’control’ to ’model’
perturbations,

~x′ = U~v′, (2)

and its inverse is the so-called T-transform,

~v′ = T~x′. (3)

In order to see how this change of variables can help the problem, substitute Eq. 2 into the cost
function, Eq. 1,

J [~v′] =
1

2
(U~v′ −U~v′B)TB−1(U~v′ −U~v′B) +

1

2
(~y − ~H [U~v′, ~x0])

T (E + F)−1(~y − ~H [U~v′, ~x′0]),

=
1

2
(~v′ − ~v′B)TUTB−1U(~v′ − ~v′B) +

1

2
(y − ~H [U~v′, ~x0])

T (E + F)−1(y − ~H [U~v′, ~x′0]), (4)

=
1

2
(~v′ − ~v′B)T (~v′ − ~v′B) +

1

2
(y − ~H [U~v′, ~x0])

T (E + F)−1(y − ~H[U~v′, ~x′0]). (5)
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Inspecting the background term of Eq. 4 indicates that the effective inverse background error covariance
matrix in ~v-space is UTB−1U. The strategy is to design the U-transform to make this matrix into the
identity,

UTB−1U = I. (6)

This means that in ~v co-ordinates, elements of the background state vector are uncorrelated with all
other elements and each has a unit variance. This information has been imposed to give Eq. 5. The
cost function in the form of Eq. 5 is the one that is to be minimized with ~v′ as the new control vector.
As long as Eq. 6 holds, this cost function is equivalent to the original cost function, Eq. 1. Due to the
property of Eq. 6, the process of minimizing Eq. 5 is simpler than before as there is now no background
error covariance matrix to invert. Once a ~v′ has been found that minimizes J , the analysis in model
space is,

~xA = ~x0 + U~v′. (7)

Before proposing a general way in which the U-transform can be designed to achieve the special
property, we note how this change of variables helps us represent B and can also, at the same time,
improve the conditioning of the variational problem.

3.1.1 How can this change of variables help represent B?

Rearranging the operators in Eq. 6 gives an expression for B in terms of the transformation operators,

B = UUT , (8)

which, incidentally, has the required property of being symmetric. Thus by designing U to yield a unit
background error covariance matrix in the transformed space, the operator U is found to be the square
root of B. The information contained in B as in the original cost function, Eq. 1, is transferred into the
transformation operator, U in the new cost function, Eq. 5. B is now no longer explicit, but is, instead,
implied by the transformation. The task of defining B is now one of designing the U-operator.

3.1.2 How does changing the control vector improve the conditioning of the problem?

It is found that the cost function in the ~x′-formulation, Eq. 1 is badly conditioned. To show how
badly conditioned the original problem is requires knowledge of the properties of the operators in Eq.
1, especially B. The shape of the cost function is specified by the Hessian matrix. This is the matrix of
second derivatives of J with respect to elements of the control vector [6]. In ~x′-space, the Hessian is Ax,

Ax = B−1 + HT (E + F)−1H, (9)

which might describe the shape of the cost function to something like that in Fig. 1 (left panel). The
skewed arrows denote the principal axes of J in this space, which are the eigenvectors of Ax, and
the eigenvalues give the curvature of J along these directions. A small curvature, such as along the
elongated axis in the Fig. represents a ’mode’ of the data assimilation system about which there is little
information (these modes have a high variance). Conversely, a large curvature mode, as perpendicular
to the elongated axis, represents a mode of the data assimilation system about which there is much
information (these have a small variance and so constrain the analysis strongly). In general, and as
shown in Fig. 1, the principal axes will not be coincident with the model variables, which means that
they are not ’pure’ meteorological quantities, but a combination of such quantities.

The degree of skewness is determined by the range of Hessian eigenvalues, such that a broad range
gives rise to contours that are highly skewed. As a consequence, the descent towards the minimum of J
will be inefficient and prone to numerical error. A measure of the conditioning of J is the conditioning
number defined as,

conditioning number =
maximum eigenvalue

minimum eigenvalue
, (10)

with that note that all eigenvalues will be positive as the Hessian is positive definite. The conditioning
number will be large for badly conditioned problems and unity for well conditioned problems.

It is believed that the term in Eq. 9 responsible for most of the bad conditioning is B−1. Typically
B−1, which has the same conditioning as B, is found to have a very large conditioning number of ∼ 1010

[7]. Since we are transforming the effective background error covariance matrix in ~v-space to resemble
the unit matrix, the conditioning in that space is expected to be better - see Fig. 1 (right panel). The
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Figure 1: Schematic showing contours of the cost function J for model variables (~x′, left), for which
the problem is badly conditioned, and for control variables (~v′, right), for which the conditioning is
improved. The axes superimposed on the centre of the ellipses in the left panel denote the principle axes
of the Hessian in that case (Eq. 9).

Hessian in ~v-space is found, once more, by the matrix of second derivatives of J but now with respect
to elements of the new control vector. The second derivative of Eq. 5 with respect to ~v gives Av,

Av = I + UTHT (E + F)−1HU. (11)

Here the shape of J is much less skewed than before (having a relatively small range of eigenvalues
of Av), but not perfectly circular due to the presence of the observation contribution to the Hessian
(second term of Eq. 11). The conditioning number of the background term on its own in this space has
the ideal value of unity. The benefit of the transformation is that the descent algorithm now acts within
the shape of J [~v′] which allows it to work efficiently, and in a manner where similar weight is given to
each element of the control vector.

3.1.3 The transforms U, UT and T

Apart from U, there is also the adjoint transformation, UT , as used in Eq. 11, and the inverse T as
defined in Eq. 3. The adjoint operator also appears in the gradient of the cost function with respect to
~v′,

(

∂J [~v′]

∂~v′

)T

= (~v′ − ~v′B) −UTHT (E + F)−1(y − ~H[U~v′, ~x′0]), (12)

which is needed for the descent algorithm. The T-transform has not yet appeared explicitly in any
equations so far, but it is needed in two places in Var. The first is in the (off-line) calibration stage [8] in
order to determine the background error covariance statistics (and hence determine the U-transform -
see section 4.4), and the second is in the determination of ~v′B in equations 5 and 12 in those cases when
the linearization state, ~x0 is not coincident with the background, ~xB . Then, ~v′B = T(~xB − ~x0) (if the
linearization state is the same as the background - as is the usual case - then the T-transform is not
needed there as ~v′B is automatically zero).

3.2 A generic transform

Before discussing how the Met Office have designed their control variable transforms, we introduce a
method for formulating U which could be used if unlimited computing resources were available. Although
the approach to be described cannot be applied directly to a vector space of the size that is needed for
an atmospheric forecast model, it is used, in a partial sense, in the practical solution discussed later.

The first step is to diagonalize B (this is what prohibits direct use of this approach). Before we
do this, B must be scaled accordingly by choosing an appropriate ’inner product’. The simplest inner
product has the form, ~xT ~x, which is inappropriate in ~x-space. Reasons for this [12] are that firstly some
elements of ~x represent gridboxes larger than other elements and so will contribute disproportionally to
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the product; secondly such a product is dimensionally incorrect (kelvin2 terms will be combined with Pa2

terms, etc.). As a rule, whenever an inner product in ~x-space is required, ~xT ~x should be replaced with
~xTP~x where P is an inner product matrix, which must be symmetric. It will be useful to decompose P
into its square roots,

P = PT/2P1/2. (13)

Often P is taken to be a diagonal matrix of grid box volumes or areas [9]. It is not recommended
that B be diagonalized without using a physically meaningful inner product matrix as otherwise its
eigenfunctions will have (strictly speaking) no physical meaning.

The eigenvalue problem can now be meaningfully posed as,

BPX = XΛ, (14)

P1/2BPT/2P1/2X = P1/2XΛ, (15)

B′F = FΛ, (16)

where F = P1/2X, (17)

and B′ = P1/2BPT/2. (18)

The second two equations are a development of the first equation and the last two expressions are defini-
tions. In the above, Λ is the diagonal matrix of eigenvalues and the columns of X are the eigenfunctions
of B within the P inner-product framework. The matrix P has been included in Eq. 14 as the action of
B on X is an inner product in ~x-space. Equation 16 is a rewrite of Eq. 14 using alternative F-vectors
defined in Eq. 17, which are eigenvectors of the transformed matrix B′ defined in Eq. 18. Transformed
objects like B′, which have physical meaning, are sometimes called filters. There is no need for an
explicit inner product matrix in Eq. 16 as it has been subsumed into the other matrices.

The background error covariance matrix is symmetric, and so is the matrix P1/2BPT/2 (Eq. 18).
This means that its eigenvectors are orthogonal [10][11],

FFT = I and FTF = I, (19)

and so FT = F−1.
By simple matrix manipulation, Eq. 16 can be developed further, and inverted,

Λ1/2FTP−T/2B−1P−1/2FΛ1/2 = I, (20)

and then compared to Eq. 6. This gives a general form for the U transform (Eq. 21), from which its
adjoint 22 and inverse 23 follow,

U = P−1/2FΛ1/2, (21)

UT = Λ1/2FTP−T/2, (22)

T = Λ−1/2FTP1/2. (23)

These results have a simple interpretation by looking at Eq. 23 for the T-transform, which trans-
forms model to control increments (Eq. 3). After applying the square root of the inner product matrix,
it projects the result onto the eigenvectors of P1/2BPT/2. This is a rotation of the basis to the principal
axes of B before scaling by the square root of the inverse eigenvalue for that direction.

This choice of transformation was first pointed out by Parrish and Derber in 1992 [13]. They
suggested that if the control vector is chosen to represent the weights of the eigenvectors of B then the
background term could be made diagonal (and hence simple to treat). The extra step of scaling with
the square roots of the inverse eigenvalues then help to precondition the problem.

3.3 Other transform options - rotation

The U-transformation, representing the square root of B as in Eq. 21 is not unique. Alternatives for
the square roots have the general form,

U = P−1/2FΛ1/2R, (24)

where R is an orthogonal rotation matrix (RRT = I). There are an infinite number of possibile
alternatives of R (Eq. 21 has R = I). Although the particular choice of R will influence the transform
(as in Eq. 24), the background error covariance matrix - which the transformation is meant to represent

6



as its square root - will be independent of R (due to orthogonality of R, R cancels when Eq. 24 is
inserted into Eq. 8). Rotation of the modes in the vertical transform (see section 4.2) has been used
successfully to improve the representation of background error covariances in the stratosphere (see [14]).
The adjoint and inverse of Eq. 24 are,

UT = RTΛ1/2FTP−T/2, (25)

T = RTΛ−1/2FTP1/2. (26)

If we choose the rotation to be R = FT , where F is the matrix of eigenvectors found in section 3.2,
then this will satisfy the required orthogonality condition RRT = I. The U-transform in Eq. 24 will
then become,

U = P−1/2FΛ1/2FT , (27)

which is known as the ’symmetric’ square root of B (Eq. 27 is symmetric however only if P is absent).
Rotation has the consequence that the components of the control vector ~v′ no longer represent

the eigenvectors contained in the columns of F, but instead by the space represented by the additional
transform RT as in Eq. 26. In particular, if the choice, R = FT is made (as above) then the control
vector will be in the same representation as the model vector, ~x′.

Presence of rotation does not compromise the property that the background errors in ~v ′ should
be uncorrelated. In the example of rotation discussed above (that R = FT ) e.g., it might be thought
that, since the control vector, ~v′, is expressed in the same basis as the model vector, ~x′, and the model’s
basis members are correlated then components of ~v′ should also be correlated. It is easy to show that a
rotation satisfying RRT = I will not disrupt the uncorrelated nature of members of ~v′. Given that B
can be defined by the expectation, B = 〈~x′~x′T 〉, that ~v′ = T~x′, and Eq. 26 holds, then we can ask: does
〈~v′~v′T 〉 = I? (Note that expectation over realization is denoted by the angular brackets, 〈〉.)

〈~v′~v′T 〉 = 〈T~x′~x′TTT 〉,

≈ T〈~x′~x′T 〉TT ,

= TBTT ,

= RTΛ−1/2FTP1/2BPT/2FΛ−1/2R,

Use Eq. 18 and 16,

〈~v′~v′T 〉 = RTΛ−1/2ΛΛ−1/2R,

= I. (28)
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4 THE CURRENT TRANSFORMS

Although Eq. 24, is a generic and correct form of U, diagonalization of the full B is not possible, and so
an alternative approach is needed (that said, the result 24 remains useful and will be used to diagonalize
submatrices of B - see below). At the time of writing the current transform between model and control
vectors is comprised of three stages. These are the parameter transform, the vertical transform and the
horizontal transform (given subscripts ”p”, ”v” and ”h” respectively). Within this decomposition, T
and U are,

T = ThTvTp, (29)

U = UpUvUh, (30)

where the T and U components have an inverse relationship (sometimes exact, sometimes approximate),

U−1
p = Tp, U−1

v = Tv and U−1
h = Th, (31)

We will proceed by explaining the role of each transform in the order Tp, Tv and Th. Sometimes it is
easier to explain the workings of each transform by its T component, other times with its U counterpart.

4.1 The parameter transform

The first stage of the T-transform is to convert from model variables to new parameters which have
mutually uncorrelated errors. As long as parameters are derived with truly uncorrelated errors, this
step is essentially a block diagonalization of the problem, leaving only spatial covariances within each
parameter’s field.

The ’uncorrelated’ parameters are taken to be streamfunction, ψ, velocity potential, χ, unbalanced
pressure, AP and relative humidity, µ, as detailed in [15][16][6]. Figure 2 is a schematic of Bp, the error
covariance matrix imposed between the parameters. The role of Tp then is to break the big multivariate
error covariance problem down into many simpler univariate problems, each of which can be treated
further by the vertical and horizontal steps.

The basis for this choice of parameters is the assumption that their errors are uncorrelated between
parameters. The implied error covariances of the model fields will be UpBpU

T
p , but since the non-

correlation assumption is poor, the impled covariances will not necessarily be a good representation
of the true error covariances between model field errors. On practical grounds though the parameter
transform is relatively efficient. There is currently much discussion on alternative control parameters
that are better approximations to the problem (see [6][17][18][19]).

� � �Ap
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0

Figure 2: The error covariance matrix between parameters, Bp. Parameters, as output by Tp are
designed to be approximately uncorrelated. Each block is a submatrix of spatial covariances, and the
off diagonal matrices are set to zero as part of the covariance model.
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4.2 The vertical transform

The remaining vertical and horizontal transforms together are designed to project each parameter’s
field onto sets of orthogonal and uncorrelated modes, with variance scaling, e.g. as in Eq. 26. In the
decomposition of Eqs. 29 and 30 - where the vertical transfom is meant to represent the vertical error
covariances - the projection is rather like doing a fourier decomposition in the vertical direction, but
instead of projecting onto plane waves, the projection is onto empirical orthogonal functions (EOFs),
found from vertical error covariances matrices. Then, instead of thinking of error variances at different
vertical levels and covariances between levels, the vertical covariance model is built of variances of these
(uncorrelated) EOFs. Since there are no covariances in the vertical between these modes (or only weak
covariances where approximations), this step is a simplification of the representation of B.

Let the vertical background covariance matrix at position (λ, φ) for errors in one of the parameters
discussed in section 4.1 be Bv(λ, φ). We explain the vertical transform with reference to Tv . This is
performed at each horizontal position and for each parameter. For a given parameter, e.g. ψ, Tv yields
(at horizontal position (λ, φ)),

~ψ(λ, φ, ν) = Tv(λ, φ)~ψ(λ, φ, z), (32)

where the arguments (λ, φ, z) and (λ, φ, ν) have been added to the state vectors to show explicitly the
three dimensional space in which the components of the vectors exist. Tv will be different for different
parameters, but we drop an explicit parameter label to simplify notation. z is the original vertical
coordinate and ν is a new ’vertical’ coordinate. Actually, the nature of ν depends upon the choice of
the rotation (see below), but two possibilities are discussed here, these being either ν = z, the original
vertical co-ordinate or a new ’EOF index’ (the EOFs being the eigenvectors of Bv(λ, φ), weighted as in
Eq. 16). The latter representation denotes the projection onto the νth EOF - see Fig. 3, left panel).
Whatever the choice of rotation, projection onto vertical EOFs will be part of the vertical transform,
and a selection of such vertical modes is shown in Fig. 4.

Since we are aiming towards new variables that are uncorrelated and have unit variance in each
vertical column, we could choose Tv to have the form that is based on Eq. 26,

Tv(λ, φ) = RT
v (λ, φ) Λv(λ, φ)−1/2 Fv(λ, φ)T P1/2

v , (33)

where Rv is any vertical rotation (satisfying RvR
T
v = I), Fv are the vertical EOFs (eigenvectors of

Bv) and Λv are their variances. The transform in Eq. 33 acts on one parameter within one column,
positioned at (λ, φ) and similar transforms need to be made for all other positions and parameters.

4.2.1 Difficulties with the vertical modes

The EOFs, Fv(λ, φ) and their variances, Λv(λ, φ), will vary with horizontal position. For some choices
of Rv (e.g. Rv = I the Tv-transform will project columns of parameters onto vertical modes that are a
function of latitude and longitude. As a consequence of this variation with horizontal position, there is
potential for loss of continuity of the fields on the resulting EOF surfaces (see Fig. 3, right panel). This
is a difficulty especially if the order of the EOFs changes from one position to the next, so that if one
were to plot the surface ~ψ(λ, φ, ν = n), for n constant, then one might be plotting the scaled weight of
one mode at one position, but of another mode at the next.
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Figure 3: Left panel: in the T-transform, the vertical transform acts on a column and projects onto a
set of EOF modes. The U-transform, is designed to be the inverse. Right panel: if the EOF modes
are allowed to be a function of position xn = (λn, φn) the ordering of the modes - ordered by their
eigenvalues (variances) - may change. The fields in EOF space would then suffer a loss of continuity
which is why global modes are used in the current transform (see text).
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Figure 4: Example six leading vertical EOFs for the global mean vertical background error covariance
matrix for unbalanced pressure, Ap. Figure taken from [7].

4.2.2 One solution to this problem (ν = z)

A way round this problem is to use the freedom of rotation to project back onto the original vertical
co-ordinate, ν = z. Choosing RT

v = Fv(λ, φ) in Eq. 33 will result in the vertical transform from
every vertical column to yield an output in the model’s height space. This avoids loss of continuity.
This solution leads to the ’symmetric square-root’ transformation for the vertical error covariances and
results in the following transforms based on Eqs. 24 to 26,

Uv = P−1/2
v FvΛ

1/2
v FTv , (34)

UT
v = FvΛ

1/2
v FTv P−T/2

v , (35)

Tv = FvΛ
−1/2
v FTv P1/2

v . (36)

Although this rotation solves the continuity problem, it lacks certain features required (see section 5 for
a discussion). These may be added later however by using a wavelet or waveband solution, introduced
in section 6.

4.2.3 Another solution (ν = global EOF index)

Another solution, which is the one currently adopted by the Met Office, is to scrap the position depen-
dence of the EOFs and replace them with a single set of EOFs used at every horizontal position. In this
case the vertical coordinate, ν, output by the Tv transform is EOF index. This set of EOFs is taken
to be the eigenvectors of the globally averaged vertical covariance matrix. This step is made with two
costs: (i) there is no variation of vertical mode with position (the eigenvalues can change though - see
Eq. 37 below) and (ii) the global modes are no longer exactly uncorrelated locally, having a covariance
matrix, Λ̂v(λ, φ) at position (λ, φ). Let the global EOFs be columns of the matrix Fv ; Λ̂v(λ, φ) is then
found by projecting Bv(λ, φ) onto Fv ,

FTv P1/2
v Bv(λ, φ)PT/2

v Fv = Λ̂v(λ, φ), (37)

where the matrix Λ̂v(λ, φ) is expected to be nearly diagonal.
Instead of basing their vertical transform directly on Eq. 33 for this solution to the continuity

problem, the Met Office use a slightly different form which we now try to build by arguments that start
with Eq. 37. With the right hand side made exactly diagonal, Eq. 37 becomes,

FTv P1/2
v Bv(λ, φ)PT/2

v Fv ≈ diag
(

Λ̂v(λ, φ)
)

, (38)

where the ’diag’ operator strips the off diagonal elements, leaving the diagonal elements unaffected.
On the right hand side, multiply by Λ1/2RvR

T
v Λ−1/2 to the left, and by its adjoint, Λ−1/2RvR

T
v Λ1/2

to the right. Here Λ is the diagonal matrix of eigenvalues of the globally averaged vertical covariance
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matrix for a given parameter (as distinct from Λ̂v(λ, φ), which contains the local variances). Each of
these strings of matrices is equal to the identity matrix and so neither will alter the expression in any
way (recall that the rotations satisfy RvR

T
v = I). In addition, take the matrices of global EOFs (Fv

terms in Eq. 37) to the right hand side,

P1/2
v Bv(λ, φ)PT/2

v ≈ FvΛ
1/2RvR

T
v Λ−1/2diag

(

Λ̂v(λ, φ)
)

Λ−1/2RvR
T
v Λ1/2FTv . (39)

Since Λ±1/2 is diagonal, the matrices of eigenvalues adjacent to the ’diag’ operator can be taken inside.
The adjacent RT

v and Rv matrices are also taken inside, but this move is an approximation,

P1/2
v Bv(λ, φ)PT/2

v ≈ FvΛ
1/2Rv diag

(

RT
v Λ−1/2Λ̂v(λ, φ)Λ−1/2Rv

)

RT
v Λ1/2FTv . (40)

We have now made all the steps and approximations necessary to give Eq. 1.21 of the official documen-
tation [20] (with some sign errors presumably corrected). Equation 40 can be rewritten by parametrizing
the right hand side,

P1/2
v Bv(λ, φ)PT/2

v ≈ FvΛ
1/2RvM(λ, φ)RT

v Λ1/2FTv , (41)

where M(λ, φ), as in [20] is,
M(λ, φ) = diag(ZBv(λ, φ)ZT ), (42)

and, making use of Eq. 37,
Z = RT

v Λ−1/2FTv P1/2
v . (43)

Taking the inner products of Eq. 41 to the right hand side, allows Bv(λ, φ) to be written,

Bv(λ, φ) ≈ P−1/2
v FvΛ

1/2RvM(λ, φ)RT
v Λ1/2FTv P−T/2

v ,

≈ Z−1M(λ, φ)Z−T . (44)

By using analogous arguments to those used in section 3 (that the that the effective covariance
matrix in the vertical is to become the identity matrix), the vertical transforms can be formed by taking
the square root of Bv(λ, φ) as UvU

T
v . Comparing Eq. 44 with Bv = Uv(λ, φ)UT

v (λ, φ) (c.f. Eq. 8)
yields the Uv , UT

v and Tv transforms for this vertical transform,

Uv(λ, φ) = Z−1M(λ, φ)1/2, (45)

Uv(λ, φ)T = M(λ, φ)T/2Z−T , (46)

Tv(λ, φ) = M(λ, φ)−1/2Z. (47)

The result of Eq. 47 is different to that proposed before as Eq. 33, which why we had to take the above
route to demonstrate the legitimacy of the transforms used in the current scheme.

4.2.4 Note about local and global vertical EOFs

As it stands, we have two forms of the vertical transforms:

• Equations 34 to 36 have been designed with a rotation in mind that projects the vertical EOFs
back onto the height levels. This is desirable as the vertical EOFs can be a function of horizontal
position. The use of height levels is undesirable from another point of view however (see section
5),

• Eqs. 45 to 47 (the standard forms of the transforms) have been designed to input or output on
global EOF levels. There is thus no dependence on horizontal position of the vertical modes (only
of their variances). If a rotation matrix is used here, it must transform from the EOF modes
common to every horizontal position. We have not considered any such rotation matrix in this
report. It is difficult to see how a rotation matrix in these transforms can introduce horizontal
position dependence, which is not very useful. This is why the (simpler) first set of transforms has
been added to the discussion.
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4.3 The horizontal transform

In the T-transform sense, after acting with Tp and then with Tv(λ, φ) at each horizontal location
results in fields of parameter perturbations, each a function of λ, φ and ν, where the nature of the
vertical coordinate, ν, depends on the choice of rotation used in the vertical transform (section 4.2).
These fields are meant to have no correlations between parameters and no correlations between ν levels.
The remaining transform is the horizontal transform which is designed to produce variables that are
uncorrelated in the horizontal.

The methodology of the horizontal transform [9], in the details, is different from the general one
given in section 3.2, and from the one used for the vertical transform. Instead of basing our approach
directly on representing an error covariance matrix - which has the property of being symmetric - the
transform first represents a different kind of object that is self adjoint (the difference between the adjoint
and the transpose is outlined in appendix 1). The new object that will be modelled is the horizontal
filter Sh, which is explained in the next paragraph,

Sh = P
−1/2
h B′

hP
1/2
h , (48)

where B′
h = P

1/2
h BhP

T/2
h , (49)

and where Ph is the inner product used in the horizontal transform - it is actually taken as a diagonal
matrix of horizontal grid box areas (smaller values for elements that are near the poles than those near
the equator). Although it is written as one operator in Eq. 30, the horizontal tranform is made up of
separate transforms for each ν output by the vertical step. For the purpose of describing the horizontal
transform, we think of each ν in isolation.

In Eq. 49, B′
h is the horizontal error covariance matrix transformed to have meaningful eigenvalues

(see section 3.2, in particular Eq. 18). This is a representation of the usual horizontal background error

covariance matrix, Bh, and exists in the space transformed by multiplying by P
1/2
h (see Eq. 17). B′

h

is symmetric. The corresponding filter in the model’s horizontal space is Eq. 48 and is found by first

transforming to the ’physical meaningful space’ with P
1/2
h , acting with B′

h and then transforming back

with P
−1/2
h [21].

The filter Sh is not symmetric in the model’s space, but is self adjoint. This can be shown by
taking the adjoint (∗) of Sh and writing this using the result of appendix 1 (Eq. 134 with U → Sh, and
Pv ,Px → Ph),

S∗

h = P−1
h SThPh,

= P−1
h P

T/2
h B′

hP
−T/2
h Ph,

= P
−1/2
h P

−T/2
h P

T/2
h B′

hP
−T/2
h P

T/2
h P

1/2
h ,

= P
−1/2
h B′

hP
1/2
h ,

= Sh. (50)

In the second line, we have substituted Sh from Eq. 48, and in the third line we have used Ph =

P
T/2
h P

1/2
h .

We proceed by constructing a model of Sh which has this self adjoint property. If the horizontal
errors have a structure that is isotropic and homogeneous, then the filter is diagonal in spectral space
(see appendix 2),

F−1
h ShFh = Λh,

ie Sh = FhΛhF
−1
h , (51)

where the spectral transform, Fh takes a field from its spectral to its horizontal grid representation and
Λh is a diagonal matrix, the diagonal elements being the damping required for each horizontal mode.
Using the language of section 3.2 of this paper, and thinking of these objects as matrices, the columns
of Fh are akin to the independent modes (e.g. spherical harmonics on the globe [22] or Fourier modes
for a limited area model) and the Λh (making up a diagonal matrix) are akin to the variances of these
modes. (Reading along the diagonal of Λh, we obtain a wavenumber dependent quantity. Later we will
refer to the diagonal elements of Λh as correlation spectra.)

Evidently, the spectral transform has the property that the inverse is the adjoint, F−1
h = F∗

h [9].
This, and the assumption that the inner product matrix in wave space is the identity (making Λ∗

h = ΛTh ),
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means that the filter Sh in Eq. 51 can be written as,

Sh = (FhΛ
1/2
h )(FhΛ

1/2
h )∗, (52)

= (FhΛ
1/2
h )(FhΛ

1/2
h )TPh. (53)

In the last line, we have applied the result relating the adjoint to the transpose (Eq. 134 with U →

FhΛ
1/2
h , Px → Ph and Pv → I). The horizonal background error covariance matrix then follows from

Eqs. 48 and 49. This gives the first line of the follwing, and with Eq. 53 to give the second line,

Bh = ShP
−1
h ,

= (FhΛ
1/2
h )(FhΛ

1/2
h )T . (54)

The horizontal transforms required to decorrelate the horizontal modes, Uh, UT
h and Th then follow

using the horizontal counterpart of Eq. 8,

Uh = FhΛ
1/2
h , (55)

UT
h = Λ

1/2
h FTh ,

= Λ
1/2
h F−1

h P−1
h , (56)

and Th = Λ
−1/2
h F−1

h , (57)

where Eq. 56 follows, as before, from the application of the relationship between the adjoint and
transpose operators, Eq. 134, and F∗

h = F−1
h .

There are a number of options for modelling the variances of the spectral modes, Λ
1/2
h [9]. One

choice is the second order auto regressive (SOAR) function. In real and spectral spaces, this has the
form,

µ(r) =
(

1 +
r

s

)

exp
(

−
r

s

)

, (58)

Λ
1/2
h (~k) =

(

16πs2

NiNjδiδj

)1/2
(

1 +
s2

4

[

(

πk

Niδi

)2

+

(

πl

Njδj

)2
])−5/2

, (59)

where µ is the correlation between two points separated by a distance r, s is a correlation length, ~k is the
horizontal wavenumber vector, ~k = (πk/Niδi, πl/Njδj) for k and l integers. Ni and Nj are the number
of gridpoints in the longitude and latitude directions respectively and δi and δj are the respective grid
sizes. Another choice is the Gaussian form,

µ(r) = exp

(

−
1

2

( r

2s

)2
)

, (60)

Λ
1/2
h (~k) =

(

32πs2

NiNjδiδj

)1/2

exp

(

−s2

[

(

πk

Niδi

)2

+

(

πl

Njδj

)2
])

. (61)

Note that the two-dimensional fields for each vertical coordinate can have a different correlation length.
A plausibility argument as to why the above approach should model error structures that are

isotropic and homogeneous, and why the fourier transform of the correlation function should give the
wave damping is discussed in appendix 2.

4.4 Summary of current scheme

The parameter, vertical and horizontal transforms are often most easily explained in the T-transform
sence, which takes perturbations in ’model’ space (defined by the usual meterological variables, u, v, θ,
etc., each as a function of λ, φ and z) to produce perturbations in ’control’-space, which is the state
vector manipulated inside Var. The variable changes are designed to precondition the background error
covariance matrix, allowing Var. to be a practicable and efficient procedure. (The parameter transform
is also designed to control the degree of ’balance’ in the analysis, but these related issues are raised
elsewhere, e.g. [1], [6].)

Errors in control variables are uncorrelated and have unit variance (at least approximately, given
the approximate nature of some of the transforms), allowing the effective background error covariance
matrix for the control variables to be the identity matrix.
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• The parameter T-transform constructs new parameters as a function of (λ,φ,z) from model fields.
Errors in the parameters are assumed to be uncorrelated, but there remain spatial correlations
(autocorrelations) within the parameters.

• Vertical error covariances within each parameter are dealt with by the vertical T-transform. The
output of this transform is the set of rescaled parameters, each a function of (λ,φ,ν), ν being
the resulting vertical coordinate, whose nature depends on the choice of rotation in the vertical
transform. In ~v-space, parameters are uncorrelated in the vertical.

• Horizontal error covariances within each parameter and for each ν are dealt with by the horizontal
T-transform. This assumes that errors in spectral (or Fourier) modes are uncorrelated and the
variances are a function of total wavenumber only. This implies that such horizontal errors are
homogeneous and isotropic.

• The T-transform helps explain how the uncorrelated modes are found, but is used only:

– in the B-calibration stage, performed off-line before Var. is run (see section 4.5 below).

– to construct the background state perturbation in control space at the beginning of Var. in
the case that the reference state - from which perturbations are measured - is not the same
as the background state itself. In practice this is relevent only when Var. is run with many
outer loops, as is coded in the current Met Office Var. algorithm, but actually can be avoided
althogether (see e.g. [24]).

• The parameter, vertical and horizontal U-transforms (inverses to the T-transforms) and their
transposes, UT are used many times during the Var. iterations to compute gradients of the cost
function with respect to the control variables.

4.5 Calibrating the transforms by calculating covariance statistics

The design of the parameter, vertical and horizontal transforms has now been completed. The remaining
part is to determine the specific matrices and variances to be used, i.e. Bv, Λ and Fv in the current
vertical transform with no rotation, Fv and Λv in the simpler vertical transform with rotation, and Λh
in the horizontal transform (the parameter transform is already completely determined). We now derive
a means of calibrating these in a systematic way.

The error covariance matrix is found from the following outer product averaged over realizations,

B = 〈~x′~x′T 〉, (62)

where ~x′ = ~x− ~xt, (63)

and where ~xt is the ’truth’. We never know the truth, nor can we average over all realizations, and so
we settle for the following approximation to replace Eq. 63,

~x′ ≈ ~x48 − ~x24, (64)

where ~x48 and ~x24 are, respectively, 48 and 24 hour forecasts valid at the same time. This is known as
the ”NMC method” [25] in which the average over realizations is simulated by an average over situations
(actually giving twice the climalological covariances). Thus the desired (and synoptically dependent)
error covariance matrix in Eq. 62 using Eq. 63 is replaced with an approximate and climatological
version using Eq. 64. (Actually many different NMC runs are made at different times of the year
and Var. will interpolate between them for the current time of the year. Also a scaling factor is
required in Eq. 62 to take into account the use of 48-24 hour differences applied to the uncertainty in a
background state found from a short (6 or 12 hour) forecast.) The NMC method is not considered to
be the best way of estimating the background error statistics. Other ways are used by other agencies,
including averaging over ensembles of assimilation-plus-forecast runs, where each member uses similar,
but perturbed observations [26].

Whichever method is used, covariance calibration is done in stages, starting with the vertical trans-
form, followed by the horizontal transform, and is performed for each parameter output by the paramater
T-transform (ψ, χ, Ap, etc.).
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4.5.1 Calibrating the vertical transform

We introduce two new operators: let the operator Tψ
p be parameter T transform that yields only one

parameter (e.g. ψ in this case) instead of all of them, and let C(~r) act on this parameter’s field to yield
a single vertical column at position ~r. The vertical error covariance matrix for this parameter at this
horizontal position is then,

Bv(λ, φ) = 〈C(~r)Tψ
p ~x

′(C(~r)Tψ
p ~x

′)T 〉, (65)

where ~x′ is as Eq. 64. The matrix Bv(λ, φ) is the vertical covariance matrix (No. of levels × No. of
levels) at position (λ, φ).

The information needed for the vertical transform depends on the choice of vertical rotation, Rv,
used. The two standard cases discussed in section 4.2 are considered.

• If we choose to rotate from the vertical EOFs back to the model’s height domain (ν = z), then
we need to determine Fv(λ, φ) and Λv(λ, φ) in Eqs. 34 to 36. These are just the eigenvectors and
eigenvalues (respectively) of each local vertical covariance matrix (for each parameter).

• If we choose no rotation, Rv = I then we work with states projected onto EOFs of the globally
averaged vertical matrices (ν = global EOF index). For this option we require these EOFs, Fv

and their eigenvalues, Λv for each parameter. The local covariance matrices, Bv(λ, φ) (actually
averaged zonally and within small (5 ◦) latitude bands) and the gobal eigenvectors/eigenvalues
then define the vertical transform used in this case (Eqs. 45 to 47).

4.5.2 Calibrating the horizontal transform

The equation needed to develop the methodology for calibrating the horizontal transforms is now devel-
oped. Start with the definition of B (Eq. 62) and substitute for ~x′ using the U-transform (Eqs. 2 and
30),

〈~x′~x′T 〉 = 〈UpUvUh~v
′~v′TUT

hUT
v UT

p 〉. (66)

Use the fact that the transforms are independent of situation (i.e. can take the averaging brackets
throught the operators) and that control variables are uncorrelated, 〈~v′~v′T 〉 = I. Also take the parameter
transform and the vertical transform, which is known at this stage, to the left hand side,

〈TvT
ψ
p ~x

′(TvT
ψ
p ~x

′)T 〉 = UhU
T
h , (67)

= FhΛ
1/2
h Λ

1/2
h FTh . (68)

Since there is no covariance between parameters, the above has been written in terms of a single param-
eter (e.g. ψ) to simplify matters, and, in the last line, the form of the horizontal transform has been
substituted from Eq. 55. The spectral transform, Fh is fixed and so it can be taken to the left hand
side. This leaves,

〈F−1
h TvT

ψ
p ~x

′(F−1
h TvT

ψ
p ~x

′)T 〉 = Λh. (69)

Since we are assuming that the horizontal modes are uncorrelated, the right hand side is a diagonal matrix
of variances of the horizontal modes, known as correlation spectra (the left hand side, if calculated in
full will not be exactly diagonal, but we are interested in the diagonal elements only). Due to the
independence of vertical modes, the left hand side is calculated on a level-by-level basis, the level, ν,
being the ’vertical’ coordinate used in the control variable (z or global EOF mode, depending upon the
choice of rotation used in the vertical transform).

There is a different horizontal correlation spectrum for each vertical mode (and each parameter).
These spectra are not actually used directly in the horizontal transform. Instead, characteristic length-
scales for every vertical mode are derived from Eq. 69, and are used to fit functional forms, e.g. second
order auto regressive (SOAR) functions as mentioned in section 4.3 (in practice the lengthscales are
modified slightly to account for the erroneously large horizontal length scales derived from the NMC
method). This is essentially a parametrization of the horizontal transform where the calibration stage
helps determine the parameters.

In summary the calibration process is a step-by-step process requiring many forecast differences, and
uses only the T-transform. A difficulty is knowing the initial conditions for the 24 and 48 forecasts needed
for the NMC method. Since these are forecasts starting from analyses, data assimilation is required, and
the data assimilation process requires the background error covariance matrix, which we are trying to
find! Hence some ’boot-strapping’ is required. A best guess of the background error covariance matrix is
used at first with the expectation that a realistic background error covariance matrix is converged upon
by repeating the process.
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5 THE CASE FOR A NEW COVARIANCE MODEL

The form of the current transform (Eq. 30) has limited ability to represent realistically the square
root of B. In order to outline some features that are desirable for a covariance model to capture, we
highlight in this section some properties of ’observed’ covariances. We discuss only those features which
we believe can be improved using the proposed waveband summation transform (section 6) and take
results from [27], which is a more exhaustive survey. This is followed by a list of shortcomings of the
current transforms.

5.1 The structure of background errors

Ingleby [27] has used the NMC method to look at covariances of forecast differences between fields (these
are the background error covariances in Var.). We extract a number of relevent points below.

5.1.1 Vertical scales, horizontal scales and separability

Analysis of correlations between fields shows that modes with short (long) horizontal length scales are
associated with short (long) vertical length scales (for streamfunction, see Fig. 2a of [27], which is
reproduced in Fig. 7a later). Further evidence for this kind of correspondence between vertical and
horizontal scales is highlighted by two additional features mentioned in [28].

• The horizontal scales for correlations in differences of temperature, T , are shorter than those for
geopotential, Φ (see Fig. 1 and table 1 of [27]; the table is reproduced below in Fig. 5a). If ∆T

h

and ∆Φ
h are such horizontal length scales for T and Φ respectively then mathematicaly,

∆T
h < ∆Φ

h .

T and Φ are related largely via hydrostatic balance. Using the equation of state the hydrostatic
relation is,

dΦ

d ln p
= −

R

g
T, (70)

where p is pressure, R is the specific gas constant, and g is the acceleration due to gravity. The
hydrostatic relation implies that the vertical (subscript v) scales will follow,

∆T
v < ∆Φ

v ,

because the derivative of Φ on the left hand side of Eq. 70 weights shorter vertical scales more
than larger ones. The above two inequalities are consistent if short horizontal and vertical scales
are associated. This is evidence that short (long) horizontal scales are associated with short (long)
vertical scales.

• Similar arguments are used to demonstrate non-separability by the observation that the vertical
length scales for correlations in differences of horizontal wind, u are less than those for geopotential,

∆u

v < ∆Φ
v .

If winds and geopotential are largely geostrophically related via horizontal gradients,

u =
1

f
k ×∇Φ, (71)

where k is the local vector pointing to zenith, and f is the Coriolis parameter, then the following
follows from Eq. 71,

∆u

h < ∆Φ
h .

The above two inequalities imply an association between horizontal and vertical scales.

The structure functions of an error covariance matrix are its columns (or rows). They are sometimes
written as a product of functions - one that is a function of horizontal, but not vertical position, and
another that is a function of vertical, but not horizontal position. If this is done, the structure functions
are said to be ”separable”. Furthermore, structure functions that are separable in positional space are
also separable in spectral space meaning that the horizontal and vertical space scales are independent.
In the light of the points outlined above concerning observed length scales, structure functions of the
atmosphere are not separable and consequently this must be represented by the modelled covariances
via the control variable transforms.
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Figure 5: Horizontal length scales for various quantities at a selection of levels in the atmosphere (”RKE”
is rotational kinetic energy and ”DKE” is divergent kinetic energy). This figure is reproduced from [27].
Panel a is for ’observed’ lengths and panel b is for lengths implied from the current covariance model.

5.1.2 Latitudinal variation of vertical errors

Variances and vertical covariances often vary strongly with latitude (and more weakly with longitude).
The variation of the tropopause height is an important feature that leaves its mark in the ’observed’ error
statistics. This is evident in the standard deviation of zonal wind errors (see Fig. 4a of [27], reproduced
in Fig. 6a later) and in vertical correlations of temperatures (see Fig. 6c of [27], reproduced in Fig. 8a
later).

5.1.3 Latitudinal and height variation of horizontal errors

Horizontal length scales found in the forecast differences are found to be a function of height and
latitude. In particular Ingleby found that, generally speaking, errors have longer horizontal scales in the
stratosphere than in the troposphere (see table 1 of [27], reproduced as Fig. 5a) and longer scales in the
tropics than at high latitudes (see Fig. 1 of [27]).

5.2 The shortcomings of the current covariance model

The current transform imposes restrictions on which features of the ’observed’ covariances can be repre-
sented adequately in Var. There are known problems with all three components of the transforms (Eq.
30), but we review some important problems with the vertical and horizontal transforms, and their use
as a product of transforms in Eqs. 30 and 29.

• In the T-transform of the Met Office, the vertical transform is performed before the horizontal
transform (see Eq. 29). This makes is possible for the vertical transform to be dependent on
horizontal position, and for the horizontal transform to be dependent on vertical mode.

• Two methods of using the vertical transform have been discussed. One with no vertical rotation,
giving rise to a vertical-EOF based vertical coordinate for each parameter (ν = EOF-index) and
the other that maintains height as the vertical transform (even though in the latter case, local
vertical EOFs are used as an intermediate space). These options have different properties and
drawbacks depending upon which is used.
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• For the first case, which is the one documented in [1], the transforms have the ability to asso-
ciate different vertical scales with different horizontal scales (this is possible because each vertical
EOF has a characteristic vertical length scale, which then can have its own horizontal scale in
the horizontal transform). This assocation of vertical and horizontal scales is necessary for non-
separable implied structure functions and is captured in the implied covariances. An example
involving streamfunction is shown in Fig. 7. The ’observed’ covariances (panel a) show a variation
of vertical scale with horizontal scale, which is captured in the implied covariances (panel b).

• This first case has its drawbacks. It is not possible to specify a dependence of horizontal scale
with height, leading to disagreements between the ’observed’ length scales (Fig. 5, panel a) and
the implied ones (panel b). Furthermore, this approach does not allow variation of the EOFs with
horizontal position (only a variation of their variances with latitude band), leading to a failure to
capture the ’observed’ latitudinal variation of the tropopause height as manifest, e.g., in the zonal
wind standard deviations (Fig. 6, panel a), which do not agree with the implied values (panel
b). Failures are evident also in the variation of vertical temperature covariances with latitude.
Compare ’observed’ values (Fig. 8, panel a) and implied values (panel b).

• For the case with rotation of the vertical EOFs back onto height, the vertical covariance model is
allowed to vary with horizontal position. No test cases are available for this option, but would be
expected to do well in representing the level dependence on horizontal scale, and the variation of
the tropopause with latitude. It should also capture land-sea contrasts.

• For this second case however, it is no longer possible to associate vertical and horizontal scales.
This is a serious drawback as the implied structure functions will become nearly separable, and
the method will not perform well in capturing the wavenumber dependence shown e.g. in Fig. 7.

The inability of the currect scheme to allow spatial dependencies and to allow associations between
horizontal and vertical scales simultaneously is the drive to replace it with a better scheme.

(a)

(b)

Figure 6: Observed (panel a) and implied (panel b) standard deviation of zonal wind. Reproduced from
[27].
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(a)

(b)

1

Figure 7: Observed (panel a) and implied (panel b) correlations in streamfunction. The correlation is
between streamfunction at each model level with itself at model level 11 (∼ 500 hPa) as a function of
horizontal wavenumber. Reproduced from [27].

5.3 Structure functions in the current scheme

Structure functions of the atmosphere are not separable and so the modelled covariances must lead to non-
separable structure functions. In appendix 3 we work through calculations of implied structure functions
under simplified conditions. We find that they are exactly separable only under certain conditions.

• For the first case of no rotation in the vertical transform, the structure functions are exactly
separable in the event that M in the vertical transform (Eqs. 45-47) is independent of position, and
Λh in the horizontal transform (Eqs. 55-57) is independent of EOF index. The first condition means
that variances of the global vertical EOFs are the same over the globe and the second condition
implies that the horizontal length scales are the same for all vertical modes. In practice these
conditions are not exactly met by the transforms, meaning that the implied structure functions are
non-separable as desired. This result is necessary, given that the agreement between the panels in
Fig. 7 is so good.

• For the second case using vertical rotation back to height, we find an analagous conclusion. The
structure functions are separable only if the vertical modes - Fv , and their variances - are inde-
pendent of horizontal position and Λh is independent of height.
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(a)

(b)

Figure 8: Observed (panel a) and implied (panel b) correlations in temperature. The correlation is
between temperature at each model level with itself at model level 11 (∼ 500 hPa) as a function of
latitude. Reproduced from [27].

6 THE PROPOSED WAVEBAND SUMMATION TRANSFORM

In order to ease some of the restrictions set by the current control variable transforms, a new model of B is
required with transforms capable of representing the more complicated position and scale dependencies in
the covariances. Several alternative transforms have been proposed for use in the Met Office variational
assimilation system [28] (see the main part and appendix F of this cited document). These include
transforms that use multiple sets of control variables, namely the ECMWF’s scheme (labelled ”MF”
in appendix F of [28]), and a proposed version of this adapted for use with the Met Office’s grid-point
Unified Model (labelled ”PA”). This adapted version keeps many of the ECMWF’s conventions intact.
A further alternative (”VH”) is defined in terms of the Met Office’s current vertical and horizontal
transforms, applied in a similar way to the current system, but operating (as the above variants do)
on different and multiple sets of control variables separately. The final alternative (”WS” - meaning
”waveband summation”) is along similar lines to the VH transform, but uses only one set of control
variables - as in the current approach. The WS transform itself has two variants in [28] - one is discussed
in the bulk of this cited document, and the other in appendix F. We will be working with the version
introduced in the appendix, at least in the first instance. While it is hoped to yield improved results over
the current scheme, it is similar enough in structure to the current operators to facilitate a relatively
short development time. This transform is described here.

6.1 The definition of the WS transform

The U-transform for the WS transform is defined as the following (using, where possible, the same
notation used beforehand in this paper),

UWS = Up

J
∑

j=0

UvjUhΨ
2
j . (72)

Many of these operators are the same as in the current scheme. Up is the parameter transform operator
(section 4.1), Uvj is the vertical transform operator (section 4.2), Uh is the horizontal transform operator
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(section 4.3), and Ψ2
j are new so-called spectral band pass filters. The band pass filters are each a function

of total horizontal wavenumber, n, and are described in section 6.2. The summation, j is over J + 1
bands. In summary this transform, Eq. 72, replaces the current transform, Eq. 30 which acts on the
control vector, which represents fields of parameters as functions of horizontal wavenumber and vertical
co-ordinate, and generates fields of model increment, which are functions of horizontal position and
height. The control vector, acted upon by Eq. 72, has the same structure to that used currently.

The difference between this and the current transform is the summation over bands, the extra
’band index’ on the vertical transform and the presence of the spectral band pass filters. Note that the
parameter transform is unchanged (the WS transform approach replaces the simple product of vertical
and horizontal operators only). Unfortunately, in this formulation, there is no exact inverse transform -
only an approximate one. The approximate T-transform will be introduced later.

The objective of this new transform is to introduce an extra flexibility into the covariance model to
allow it to represent the background errors more realistically than at present. In particular, by virtue of
the extra band index on the vertical transform in Eq. 72, it allows a greater degree of non-separability
of the horizontal and vertical transforms.

The limitations of the current formulation are discussed in section 5.2 of this document. In partic-
ular, we may choose to use one of the following options:

• Allow horizontal length scales to depend upon vertical scales, as required for covariances. The
cost is that the shapes of the vertical transforms cannot vary with horizontal position. This is the
current working mode.

• Allow vertical covariances to depend fully on horiztonal position, as desirable to capture the varia-
tion of the tropopause height and to capture the land-sea contrast. The cost is that the horizontal
and vertical length scales cannot be associated. This is not a current working mode, but can be
achieved with modification.

The WS transform has the potential to satisfy both of these features (scale and position dependence)
simultaneously if the vertical transform has characteristics of the second of the above options.

Each band pass filter is designed to select a different range of horizontal length scales from the
control vector, and each can be treated by a different vertical operator (this is the purpose of the extra
index ’j’ on Uvj). This gives both position and scale dependence to the new vertical covariance model.
The number of bands, J + 1, is unspecified at present. The more wavebands that are used, the greater
the scope for scale dependence on the vertical covariances. The price for this however is that more
computation is needed, and, the spatial dependence becomes less meaningful.

6.1.1 Restrictions

There is a restriction on how Uvj can depend upon band if we choose no rotation of the vertical modes
(when the vertical co-odinate is EOF-index - section 4.2.3). In this case the waveband approach does
not allow different vertical modes in Fv for different bands. This is demanded because the results from
each operator are added, and so the vector spaces must be the same. The new ’band dependence’ on
the vertical transform must therefore be made through the vertical variances only, allowing vertical and
horizontal scales to be associated.

There is no such restriction if the EOFs are rotated back to height space, as in the vertical scheme
proposed in section 4.2.2. It is envisaged that this will be the choice used with the WS transform and
so we will probably not have to worry about the above restriction.

In line with [28], there is no band dependence on the horizontal transform in the version of the
WS transform given as Eq. 72. The reason is to keep the transform as close as possible to the current
scheme, but later (section 6.5) a band dependence will be considered.

6.1.2 Similarity with current transforms

The WS transform of Eq. 72 has the same effective property as the current transforms if the band index
is removed from the vertical transform, and if the bandpass filters obey a normalization condition. The
physical effect of the transform is revealed through its implied covariance. Substituting Eq. 72 into Eq.
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8 yields,

BWS = UWSU
T
WS

=



Up

J
∑

j=0

UvUhΨ
2
j







Up

J
∑

j′=0

UvUhΨ
2
j′





T

= UpUvUh





J
∑

j=0

Ψ2
j









J
∑

j′=0

Ψ2
j′



UT
hUT

v UT
p , (73)

which is the same as for the current transforms, UpUvUhU
T
hUT

v UT
p , if, for each total horizontal

wavenumber (n), the band pass filters are normalized, ie,

J
∑

j=0

Ψ2
j (n) = 1, (74)

(the definition of the total wavenumber is given in section 2 of [29]). In matrix form this is,
∑J
j=0 Ψ2

j = I,
where the matrix Ψj is diagonal and the total wavenumber dependence of the function Ψj(n) runs along
its diagonal.

6.2 The spectral band pass filters

The shapes of the functions Ψj(n), and their dependence on the band, j, are now specified. The Met
Office has proposed using so-called ’optimal’ functions that have the following triangular form [28],

Ψ2
j(n) =







0 for n ≤ Nj−1

1 for n = Nj
0 for n ≥ Nj+1

, (75)

with linear dependence between the wavenumbers Nj−1 to Nj , and Nj to Nj+1. (The exception is the
’last’ band pass function in the set defined. This has a slightly different form - see below.) An example
band pass function is shown in Fig. 9. The wavenumbers, Nj , that help define these functions are found
by using the definition of ’optimality’ (see below).
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� 2
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ntotal wavenumber, 

Nj � 1 Nj Nj � 1
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0.5

1.0

Figure 9: Example triangular band pass function j, as defined in Eq. 75. The three total wavenumbers,
Nj−1, Nj and Nj+1, that define such functions are found from Eq. 78.

6.2.1 Determination of the bounding wavenumbers for ’optimal’ functions

The Met Office define the optimal band pass functions as those that have a ’full width at half maximum’
(FWHM) equal to the ’typical wavenumber’ of the function. For the functions defined in Eq. 75, the
FWHM is the following (for band j),

FWHMj =
1

2
(Nj+1 −Nj−1). (76)
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The typical wavenumber, n̄j , could have many definitions, but the one that the Met Office have used in
[28] is the average of the wavenumbers at the points where the function is half maximum,

n̄j =
1

2

{

1

2
(Nj +Nj−1) +

1

2
(Nj+1 +Nj)

}

,

=
1

4
{Nj−1 + 2Nj +Nj+1}, (77)

which has a more general definition for more general functions in appendix A.2 of [28].
Determining the Nj arises from equating Eqs. 76 with 77, which yields the following recurrence

relation,
Nj+1 = 3Nj−1 + 2Nj . (78)

The boundary conditions on Nj are (as in [28]) are N0 = 0 and NJ = Nmax. Equation 78 then represents
a set of (tridiagonal) simultaneous equations whose solution is the set of Nj ,
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
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
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









=
















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
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
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
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

. (79)

The determination of the upper limit of the summation, J , is discussed in appendix A.4 of [28].
They start by writing the system of equations, Eq. 78, in a different way by defining a new parameter
Kj ,

Kj = 3K−1
j−1 + 2, (80)

whereKj = Nj+1/Nj , (81)

and then multiplying K−1
j in Eq. 81 between j = 1 and J − 1.

J−1
∏

j=1

K−1
j =

J−1
∏

j=1

Nj
Nj+1

,

=





J−1
∏

j=1

Nj



×





J−1
∏

j=1

1

Nj+1



 ,

=





J−1
∏

j=1

Nj



×





J
∏

j=2

1

Nj



 ,

= N1





J−1
∏

j=2

Nj



×





J−1
∏

j=2

1

Nj





1

NJ
,

=
N1

NJ
. (82)

If we choose to restrict N1 ≥ 1, then Eq. 82 leads to,

NJ

J−1
∏

j=1

K−1
j ≥ 1. (83)

Equation 80 tells us what the set of Kj are (given that K1 = 2), which then allows computation of the
product in Eq. 83. By evaulating the left hand side of Eq. 83 for trial values of J , we use the largest J
that the inequality in Eq. 83 holds.
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6.2.2 Options for the ’last’ band pass function

The example band pass functions shown in [28] are reproduced in Fig. 10. Note that the condition of
Eq. 74 is satisfied at all wavenumbers, as required. Importantly, for the triangular functions, no more
than two are non-zero at any one wavenumber. For a particular maximum wavenumber, there is a choice
of two conventions in how the last function (highest band index) is represented, and the two possibilities
require different numbers of functions, differing by one. The panels in Fig. 10 cover the two schemes.
The last function of panel (a) is a so-called ’oversized’ function and in panel (b) it is an ’undersized’
function. These alternatives each have good and bad features.

• The typical wavenumber of the oversize function in panel (a) is smaller than its FWHM. The
length scales of this function therefore have a greater range than they should have, including
smaller scales. This is not a problem with the undersized option in panel (b).

• One less band pass function is needed in panel (a) than in panel (b) to fill the wavenumber range
and to satisfy Eq. 74. Implementing the oversized option therefore presents the possibility for a
more efficient solution.

The discussion in [28] recommends use of the oversized scheme for reasons of efficiency, and that any
inadequacies at small length scales are probably swamped by problems in the model anyway. Also
discussed in appendix D of [28] are other shapes of band pass filters.
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Figure 10: Example triangular band pass functions showing the two alternatives for specification of the
final function required to fill the same total wavenumber domain in each case. Panel (a) uses an oversize
function and panel (b) uses an undersize function. The oversize option requires one less function than
the undersize option.

6.3 The T-transform for the WS transform

A difficulty of the waveband summation transform is that it has no exact inverse. The foremost cause
of this is the non-orthogonality of the band pass functions. Before suggesting an approximate inverse
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transform, it is pertinent now to highlight some commutation properties of the operators that appear in
Eq. 72.

6.3.1 Commutation between the vertical and horizontal transforms

There are two alternatives for the configuration of the vertical transform and we consider separately the
commutation of each with the horizontal transform and with the bandpass filters (proofs are given in
appendix 4).

Considering firstly the configuration with no vertical rotation (section 4.2.3), the combination UvUh

can be written with reference to Eqs. 45 (with an extra band index, Mj) and 55 as,

UvUh = Z−1M
1/2
j FhΛ

1/2
h ,

= (Z−1M
1/2
j FhΛ

1/2
h F−1

h )Fh. (84)

The bracketted term in Eq. 84 is the combined vertical U-transform and the horizontal U-transform
written in real space. Using square brackets, [A,B], to denote the commutator, AB −BA, the commu-
tation between the vertical and horizontal transforms can be written as,

[Z−1M
1/2
j ,FhΛ

1/2
h F−1

h ] = 0 if Mj ind. of horiz. pos. and Λh ind. of z, (85)

6= 0 otherwise. (86)

With vertical rotation (Eq. 34 with an extra band index, Fvj , Λvj), the commutator is,

[FvjΛvjF
T
vj ,FhΛ

1/2
h F−1

h ] = 0 if Λvj , Fvj ind. of horiz. pos. and Λh ind. of EOF index, (87)

6= 0 otherwise. (88)

6.3.2 Commutation between part of the horizontal transform and waveband filters

Since each are diagonal operators in spectral space, the part of the horizontal transform, Λ
1/2
h , commutes

with each bandpass function, Ψ2
j ,

[Λ
1/2
h ,Ψ2

j ] = 0. (89)

6.3.3 Commutation between the vertical transform and waveband filters

Once more, we consider the two vertical transform configurations. For the case with no rotation, we

examine the commutivity between the vertical transform, Uvj = Z−1M
1/2
j , and the waveband operator

translated into grid space, FhΨ
2
jF

−1
h ,

[Z−1M
1/2
j ,FhΨ

2
jF

−1
h ] = 0. if Mj ind. of horiz. pos. (90)

6= 0. otherwise (91)

which is the same result as in section 6.3.1 for commutation between the vertical and horizontal trans-
forms. This commutivity property does not hold strictly if M

1/2
j is not independent of position. It is

however assumed to hold approximately if its positional dependence is weak.
With vertical rotation in the simple vertical scheme outlined in section 4.2.2, the commutator is,

[FvjΛ
1/2
vj FTvj ,FhΨ

2
jF

−1
h ] = 0. if Λvj , Fvj ind. of horiz. pos. (92)

6= 0. otherwise, (93)

which is the same result as in section 6.3.1 for commutation between the vertical and horizontal trans-
forms.

Equation 92, e.g., gives the vertical operator (first term) and the band filters (second term) in
positional space. This, and other, commutations can equivalently be expressed with both operators in
spectral space. Equations 92 and 93 are then,

[F−1
h FvjΛ

1/2
vj FTvjFh,Ψ

2
j ] = 0. if Λvj , Fvj ind. of horiz. pos. (94)

6= 0. otherwise. (95)

25



6.3.4 The inverse transform

The exact inverse transform of Eq. 72 does not exist. There are two reasons for this. (i) The use of a
single control vector between all of the wavebands, and the non-orthogonality of the bandpass functions
means that UWS has no exact inverse, but an approximate inverse can be constructed. (ii) The bandpass
functions in the inverse of UWS must be to the right of the vertical operators. This is the way that the
vertical operators gain their band dependence. The bandpass functions are however on the right of the
vertical operators in the forward transform - Eq. 72 - which will be reversed in the inverse. There is
therefore a need to develop an approximate inverse that has the right ordering.

An approximate inverse that deals with problem (i) is,

TWS ≈

J
∑

j=0

Ψ2
jThTvjTp,

≈

J
∑

j=0

Ψ2
jΛ

−1/2
h F−1

h TvjTp,

≈

J
∑

j=0

Λ
−1/2
h Ψ2

jF
−1
h TvjTp. (96)

The first line is a reversal of order and inversion of each operator in Eq. 72, except that the bandpass
functions have not been inverted. In the second line, the horizontal operator has been substituted with
its explicit form (Eq. 57). The vertical operator could be substituded with either Eq. 36 or 47, depending
upon the chosen convention (Eq. 36 is considered the most suitable for use with wavelets), but in the
above it is left in its generic form. In the last line, the bandpass functions have been commuted with the

horizontal matrix, Λ
−1/2
h , since both are diagonal in spectral space (section 6.3.2). It can be confirmed

that UWSTWS ≈ I, (using Eqs. 72 and 96) starting in the following way,

UWSTWS ≈ Up

J
∑

j=0

UvjFhΨ
2
jΛ

1/2
h

J
∑

j′=0

Λ
−1/2
h Ψ2

j′F
−1
h Tvj′Tp,

≈ UpFh



F−1
h

J
∑

j=0

UvjFhΨ
2
j

J
∑

j′=0

Ψ2
j′F

−1
h Tvj′Fh



F−1
h Tp. (97)

In the last line, the horizontal operators cancel, and the operators FhF
−1
h have been added near each

end of the expression. The part of the expression within the large brackets is an operator in spectral
space. The string of operators F−1

h UvjFh is the vertical transform for band j in spectral space. It is
found in section 6.3.3 (with details in appendix 4) that if the spatial variation of the vertical transform is
weak then in spectral space it will commute approximately with Ψ2

j and can regarded as approximately
block diagonal in wavenumber. We consider one such block of this operator that is concerned with

wavenumber k. Let the kth block of F−1
h UvjFh = B

1/2
v (j, k), which is a vertical-only operator. The kth

block of the bracketed part of Eq. 97 is,

J
∑

j=0

B1/2
v (j, k)Ψ2

j (k)

J
∑

j′=0

Ψ2
j′(k)B

−1/2
v (j′, k). (98)

Wavenumber k will contribute to this operator only if both Ψ2
j and Ψ2

j′ are non-zero. Let wavenumber
k have contributions from bands j = α and j = β, where α and β are neighbouring bands that overlap
(see Fig. 10). Equation 98 then becomes,

(

B1/2
v (α, k)Ψ2

α(k) + B1/2
v (β, k)Ψ2

β(k)
)(

Ψ2
α(k)B−1/2

v (α, k) + Ψ2
β(k)B

−1/2
v (β, k)

)

= Ψ4
α(k) + B1/2

v (α, k)B−1/2
v (β, k)Ψ2

α(k)Ψ2
β(k) + B1/2

v (β, k)B−1/2
v (α, k)Ψ2

β(k)Ψ
2
α(k) + Ψ4

β(k). (99)

Assuming that the vertical operators do not change very much between neighbouring bands then we

may take B
1/2
v (α, k)B

−1/2
v (β, k) ≈ I, and Eq. 99 becomes,

Ψ4
α(k) + Ψ2

α(k)Ψ2
β(k) + Ψ2

β(k)Ψ
2
α(k) + Ψ4

β(k) = Ψ2
α(k)

(

Ψ2
α(k) + Ψ2

β(k)
)

+ Ψ2
β(k)

(

Ψ2
α(k) + Ψ2

β(k)
)

,

= I, (100)
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where Eq. 74 has been used. This last step explains why Ψ2
j , and not Ψj , is used in this transform.

Inserting Eq. 100 into 97 completes the justification of UWSTWS ≈ I. These steps are similar to those
in [28].

Equation 96 is however not a suitable inverse transform as the bandpass functions are not positioned
to the right of the vertical operators (problem (ii) above). It is argued that a suitable approximate inverse
can be formed by commuting Ψ2

j with the vertical transform in spectral space giving (see section 6.3.3),

TWS ≈ Th

J
∑

j=0

TvjFhΨ
2
jF

−1
h Tp, (101)

which is reasonable, providing that the vertical transform varies slowly with latitude. The alternative
forward version of Eq. 101 is,

UWS ≈ Up

J
∑

j=0

FhΨ
2
jF

−1
h UvjUh, (102)

which is used when calibrating the wavelet transforms in section 6.5.

6.4 The UT -transform for the WS transform

The transpose of the waveband summation transform, UT
WS , follows in a straightforward manner from

Eq. 72. Taking the transpose yields,

UT
WS =

J
∑

j=0

Ψ2
jU

T
hUT

vjU
T
p . (103)

The individual transposes UT
h , UT

vj and UT
p should follow from the standard code that already exists

(with appropriate modifications to UT
vj given the extra band index). The Ψ2

j operator is diagonal in
spectral space and so is trivially self-adjoint.

6.5 Calibrating the WS transform

The covariances statistics for the waveband summation (WS) transform are calibrated in a similar way
to the current transforms (see section 4.5), but now there is more information to deal with due to the
multiple bands. It is here that we make use of the approximate inverse of UWS derived in section 6.3.4.
Recall that in the current transforms, we have to determine the following.

• The vertical covariance matrices at each position, Bv(λ, φ) are required. When averaged globally,
these will yield the eigenvectors, Fv and eigenvalues, Λv, which will allow calculation of the diagonal
matrices M(λ, φ). This is the information required for the current vertical transform in the case
of no rotation (see section 4.2.3).

• The horizontal variances, Λh, can then be computed for each vertical mode. These are then used
to determine a length scale for each vertical mode.

The WS transform calibration (below) is more complicated than this and there are a number of
alternative approaches that can be considered. Options include the use of top-hat and triangular band-
pass functions and the introduction of a band-dependent horizontal transform - something that has not
been considered until now. For the WS transform, we will use a specific choice of rotation in the vertical
transform (see below).

The structure of the WS calibration procedure is similar to that for the current transform (section
4.5). It is proposed that the NMC method will be continued and so in the following, ~x′ refers to the
forecast differences as in Eq. 64 and the angled braces, 〈〉, refer to an average over situations. As in
the current scheme, the calibration is done in stages and we can consider each parameter (ψ, χ,Ap, etc.)
separately (we consider ψ below). There are a number of choices that have to be made.

• Full benefit of the WS transform is gained when the vertical transform is a function of horizontal
position (variances and EOFs). In the light of the discussion in section 4.2.1, this requires the
version of the vertical transform discussed in section 4.2.2 which works by projecting fields onto
EOFs, scaling with variances and then rotating back to height. This proposed version of the
vertical transform is simpler than the one currently implemented and is the version used in the
description below.
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• The spectral bandpass filters overlap (Fig. 10). This creates difficulties when dealing with calibra-
tion of the horizontal transform. Many treatments of this problem are discussed below - extending
the discussion given in section 7 of [28]. Four options are discussed, labelled as 1a, 1b, 2a and
2b (section 6.5.2). Considerations include the use of non-overlapping top-hat bandpass functions
and an approximate treatment of the band coupling present when using the triangular bandpass
functions.

6.5.1 Calibrating the vertical transform

The vertical transform statistics depend upon the waveband. Analagous to Eq. 65, the vertical error
covariance matrix for ψ at position ~r in waveband j is,

Bvj(λ, φ) = 〈C(~r)FhΨ
2
jF

−1
h Tψ

p ~x
′(C(~r)FhΨ

2
jF

−1
h Tψ

p ~x
′)T 〉. (104)

The string of operators C(~r)FhΨ
2
jF

−1
h Tψ

p ~x
′ does the following: (i) Tψ

p generates streamfunction from

~x′, (ii) FhΨ
2
jF

−1
h filters through a range of wavenumbers as specified by the bandpass function Ψ2

j , and
(iii) C(~r) isolates the vertical column at position ~r. This string of operators (except for C(~r)) is the
same as that string appearing in the approximate form of the WS T-transform in Eq. 101.

The waveband (and position) dependent vertical transforms are, from Eqs. 34 to 36 (and with an
extra band index, j),

Uvj = P−1/2
v FvjΛ

1/2
vj FTvj , (105)

UT
vj = FvjΛ

1/2
vj FTvjP

−T/2
v , (106)

Tvj = FvjΛ
−1/2
vj FTvjP

1/2
v . (107)

The matrices Fvj(~r) and Λvj(~r) are, respectively, the eigenvectors and eigenvalues of the matrix Bvj in
Eq. 104 (they are functions of position ~r = (λ, φ)). This process is repeated for each position and band
(and parameter) and in total describes the vertical part of the WS transform.

Note: in the case of the above equations, the bandpass functions are the triangular functions shown
in Fig. 10. For some options in the discussion to follow, the transforms will use the top-hat functions
shown in Fig. 11 instead, which are denoted by a ’hat’, Ψ̂2

j . In these cases, replace Ψ2
j with Ψ̂2

j in Eq.
104.
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Figure 11: Non-overlapping top-hat band pass functions, Ψ̂2
j , approximating the triangular ones of Fig.

10. The sides of the top-hat Ψ̂2
j functions is taken to be midway between the peaks of neighbouring Ψ2

j

functions.

6.5.2 Calibrating the horizontal transform

The equations needed to calibrate the horizontal transforms are now developed with four different options
for treating the band overlap.
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Calibration option 1a: non-overlapping top-hat bandpass functions with a band-independent
horizontal transform

After finding the vertical transform matrices (refer to Eq. 104 with Ψ2
j replaced with Ψ̂2

j ) the hori-
zontal transform needs to be determined. By analogy with section 4.5.2, start with the definition of B
(Eq. 62) and substitute for ~x′ using the approximate UWS-transform (Eqs. 2 and 102),

〈~x′~x′T 〉 ≈ 〈Up

J
∑

j=0

FhΨ̂
2
jF

−1
h UvjUhj~v

′~v′T (Up

J
∑

j′=0

FhΨ̂
2
j′F

−1
h Uvj′Uhj′ )

T 〉. (108)

There are a number of differences between the approximate UWS-transform used above and that shown
in Eq. 102. In this first option, 1a, we treat the band overlap by ignoring it, ie top-hat bandpass
functions have been used instead of triangular ones (only for calibration). There is also an additional
band index on the horizontal transform, even though we will soon drop this (see below for why this index
has been added). The angled brackets can be taken to the ~v′~v′T , giving 〈~v′~v′T 〉 = I (control vectors are
uncorrelated). Even though the bandpass functions are non-overlapping, there can be a contribution
to 〈~x′~x′T 〉 even when j 6= j′. This inter-band coupling can arise from scales introduced by position
dependences in the vertical transform. For simplicity though we will proceed by assuming that such
coupling is negligible and take contributions to 〈~x′~x′T 〉 from j = j′ only, thus elliminating one of the
summations,

〈~x′~x′T 〉 ≈ Up

J
∑

j′=0

FhΨ̂
2
j′F

−1
h Uvj′Uhj′ (UpFhΨ̂

2
j′F

−1
h Uvj′Uhj′)

T . (109)

Take the parameter transform and the outer spectral transforms to the left-hand side. Considering only
one parameter (ψ),

〈F−1
h Tψ

p ~x
′(F−1

h Tψ
p ~x

′)T 〉 ≈

J
∑

j′=0

Ψ̂2
j′F

−1
h Uvj′Uhj′ (Ψ̂

2
j′F

−1
h Uvj′Uhj′ )

T . (110)

Multiply (to the left and right) by the operator Ψ̂2
j . The only member of the summation over j ′ that

survives is where j′ = j (and only within the part of the spectrum where the bandpass function is finite),

〈Ψ̂2
jF

−1
h Tψ

p ~x
′(Ψ̂2

jF
−1
h Tψ

p ~x
′)T 〉 ≈ F−1

h UvjUhj(F
−1
h UvjUhj)

T . (111)

Take the inverse spectral transforms, and the vertical transforms, which are now known from subsection
6.5.1, to the left hand side,

〈TvjFhΨ̂
2
jF

−1
h Tψ

p ~x
′(TvjFhΨ̂

2
jF

−1
h Tψ

p ~x
′)T 〉 ≈ Uhj(Uhj)

T . (112)

The horizontal transform is defined by FhΛ
1/2
hj (Eq. 55). Substituting this into Eq. 112 gives the

horizontal spectrum for band j,

〈F−1
h TvjFhΨ̂

2
jF

−1
h Tψ

p ~x
′(F−1

h TvjFhΨ̂
2
jF

−1
h Tψ

p ~x
′)T 〉 ≈ Λhj . (113)

Λhj is the diagonal matrix of variances as a function of wavenumber and height and Eq. 113 can be used
to determine these diagonal elements. Even though there is a band label on this horizontal spectrum, it
does not mean that the horizontal transform has to be band-dependent. The label here identifies the part
of the spectrum (range of wavenumbers) that is found from Eq. 113 for a given j. Due to the spectral
filtering in Eq. 113, the horizontal variances for band j are expected to be non-zero predominantly inside
the range of wavenumbers associated with band j only (via the filter Ψ̂2

j - see Fig. 11). For option 1a,
only this weight inside the top-hat is preserved (it is set to zero outside). By applying this procedure
over all bands j (0 ≤ j ≤ J), the entire spectrum of variances at each level is found for each parameter,

Λh =
J
∑

j=0

Λhj . (114)

Calibration option 1b: non-overlapping top-hat bandpass functions with a band-dependent
horizontal transform

There are two instances where inter-band coupling is neglected in option 1a. The first is with the
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removal of one of the band summations to give Eq. 109, and the other is made near the end to give a
band-independent horizontal transform. It is possible to not neglect the weight outside of each top-hat
function in the second instance and we may wish to investigate its effect by capturing the entire spectrum
for Λhj . This gives rise to a different spectrum for each band and thus introduces a band dependence
on the horizontal transform.

Calibration option 2a: triangular band pass functions with a band-independent horizontal
transform

It is claimed that it is possible to calibrate the WS transform without the need to approximate the band
pass functions with non-overlapping top-hat functions. This procedure uses the same triangular band
pass functions that are present in the original definition of UWS (Fig. 9), but still uses the approximate
UWS-transform (Eq. 102). Just as for the top-hat function case, there are two options - with and
without a band-dependent horizontal transform. Of these two triangular cases, the band-independent
case (option 2a) is by far the simpler method, but treats the overlap in an approximate way. It is left to
option 2b for an outline of the exact formulation.

Apart from the use of triangular functions in the calculation of the vertical and horizontal trans-
forms, the procedure for triangular functions here differs from option 1a in another way. Some of the
transforms used in the calibration may require a modification to correct for double counting of variances;
the correction is in the form of a spectral correction function, Γ(n). Double counting occurs because the
triangular band pass functions overlap and so each wavenumber will be considered twice. At any given
wavenumber, at least two band pass functions are non-zero - see Fig. 10. This approach is not a formal
treatment, and so its effectivness will need to be demonstrated.

For now we will take Γ(n) as a given (a form of Γ(n), similar to that proposed in [28], is derived in
appendix 6) and consider it to be a diagonal matrix in spectral space, used in association with the band
pass functions, ie Ψ2

j → Ψ2
jΓ when used in the T-transform sense and Ψ2

j → Γ−1Ψ2
j in the U-transform

sense. It is not clear at this stage whether this modification should appear in both the vertical and
horizontal calibration steps, or just one. We will assume for now that the correction should be used in
both. Then, the formula for the vertical transform, Eq. 104, becomes,

Bvj(λ, φ) = 〈C(~r)FhΨ
2
jΓF−1

h Tψ
p ~x

′(C(~r)FhΨ
2
jΓF−1

h Tψ
p ~x

′)T 〉, (115)

and for the horizontal transform, Eq. 113, becomes,

〈F−1
h TvjFhΨ

2
jΓF−1

h Tψ
p ~x

′(F−1
h TvjFhΨ

2
jΓF−1

h Tψ
p ~x

′)T 〉 ≈ Λhj . (116)

Calibration option 2b: triangular band pass functions with a band-dependent horizontal
transform

The following approach makes no approximations to the calibration process other than making use
of the approximate transform, Eq. 102 as before. Treating the band coupling properly gives rise to
equations that are difficult to solve (i.e. a large rank problem that cannot be solved entirely by off-the-
shelf numerical routines).

The vertical transforms are found as before by application of Eq. 104. The vertical transform
matrices follow from Eqs. 105 to 107. The difficulty starts with calibration of the horizontal transform,
which, incidently, is now necessarily band dependent.

Start with the definition of B (Eq. 62) and substitute for ~x′ using the approximate UWS-transform
(with an additional band index on the horizontal transform), Eqs. 2 and 102,

〈~x′~x′T 〉 ≈ 〈Up

J
∑

j=0

FhΨ
2
jF

−1
h UvjUhj~v

′~v′T (Up

J
∑

j′=0

FhΨ
2
j′F

−1
h Uvj′Uhj′ )

T 〉. (117)

The angled brackets on the right hand side can be taken to the ~v′~v′T , giving 〈~v′~v′T 〉 = I,

〈~x′~x′T 〉 ≈ Up

J
∑

j=0

FhΨ
2
jF

−1
h UvjUhj(Up

J
∑

j′=0

FhΨ
2
j′F

−1
h Uvj′Uhj′ )

T . (118)

Take the parameter transform and the outer spectral transforms to the left-hand side. Considering only
one parameter (ψ),

〈F−1
h Tψ

p ~x
′(F−1

h Tψ
p ~x

′)T 〉 ≈

J
∑

j=0

Ψ2
jF

−1
h UvjUhj(

J
∑

j′=0

Ψ2
j′F

−1
h Uvj′Uhj′ )

T . (119)
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Multiply from the left with the operator Ψ̂2
l and from the right with Ψ̂2

l′ ,

〈Ψ2
lF

−1
h Tψ

p ~x
′(Ψ2

l′F
−1
h Tψ

p ~x
′)T 〉 ≈

J
∑

j=0

Ψ2
lΨ

2
jF

−1
h UvjUhj(

J
∑

j′=0

Ψ2
l′Ψ

2
j′F

−1
h Uvj′Uhj′)

T . (120)

Equation 120 has a similar structure to a matrix equation, but where we have ’matrices of matrices’
instead of the more familiar situation of matrices of numbers. It is apparent that the left-hand side is a
(J + 1) × (J + 1) matrix of N ×N matrices (or ’blocks’), where N is the number of grid-points in the
model domain. Each block is found by varying l and l′.

It will simplify the procedure used to solve Eq. 120 if matrix blocks in this equation are defined as
the following,

let : R̃ll′ = 〈Ψ2
lF

−1
h Tψ

p ~x
′(Ψ2

l′F
−1
h Tψ

p ~x
′)T 〉, (121)

Ψ̃ll′ = Ψ2
lΨ

2
l′ , (122)

Q̃jj′ = F−1
h UvjUhjU

T
hj′U

T
vj′F

−T
h . (123)

R̃ll′ , Ψ̃ll′ and Q̃jj′ are all N×N matrices. By varying l and l′, Eq. 120 then resembles a matrix equation
(of matrices),

R̃ll′ =
J
∑

j=0

J
∑

j′=0

Ψ̃ljQ̃jj′ Ψ̃j′l′ . (124)

The Ψ̃ll′ forms a tridiagonal block of diagonal matrices (it is tridiagonal because bands further than
nearest neighbours do not overlap). It is beyond the scope of this report to discuss the method of
solution of this equation, but the aim is to calculate the Q̃jj′ matrices by solving Eq. 124. For the
remainder of this report it is assumed that these matrices are now known. In fact, to compute the
band-dependent horizontal spectra, the diagonal blocks of Q̃ will suffice. Continuing from the definition
of Q̃jj from Eq. 123, we have,

Q̃jj = F−1
h UvjUhjU

T
hjU

T
vjF

−T
h . (125)

The spectral transform on the left of the right-hand side and the adjacent vertical transform (which is
now known from the previous subsection) can be taken to the left-hand side, followed by a transpose of
the whole equation,

TvjFhQ̃jj = UhjU
T
hjU

T
vjF

−T
h ,

(

TvjFhQ̃jj

)T

= F−1
h UvjUhjU

T
hj . (126)

The remaining horizontal and vertical transforms, on the right-hand side in Eq. 126, can then be
transferred to the left-hand side as above,

TvjFh

(

TvjFhQ̃jj

)T

= UhjU
T
hj . (127)

The left-hand side is known and the horizontal spectrum for band j is found by substituting the form
for the horizontal transform from Eq. 55 (with an extra band index on the spectrum) on the right-hand
side. Rearranged this gives,

F−1
h

(

F−1
h TvjFh

(

TvjFhQ̃jj

)T
)T

= Λhj . (128)

Repeating this for every block matrix, Q̃jj , along the diagonal of Q̃ for 0 ≤ j ≤ J derives the horizontal
spectra.
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7 APPENDIX 1 - Transpose and adjoint operators

The role of an operator is to map one vector space to another. Typically in data assimilation, such
operators fit into the ’forward part’ of the data assimilation scheme, where each operator is part of a
sequence whose ultimate aim is to predict the observations that are consistent with a control vector, ~v ′.
Information is passed back to the control vector in reverse by the adjoint counterparts of each operator.
The information that is passed back is in the form of gradients with respect to each vector, and the
ultimate aim of this ’adjoint part’ is to provide a gradient of the cost function with respect to components
of ~v′. This is then passed to a descent algorithm which decides how to adjust ~v′.

In order to see how we need adjoint operators, consider the following example which uses the U
operator (see Eq. 2). Since U is a linear operator, it may be represented as a matrix, and Eq. 2 may be
expanded for the ith component of ~x′,

~x′ = U~v′,

x′i =
∑

j

Uij~v
′

j ,

thus
∂x′i
∂v′j

= Uij . (129)

If we are provided with a vector of partial derivatives of a scalar, J , performed with respect to each
component of ~x′, then the chain rule as follows can be used to find the vector of partial derivatives of J
with respect to each component of ~v′,

∂

∂v′j
J =

∑

i

∂x′i
∂v′j

∂

∂x′i
J,

=
∑

i

Uij
∂

∂x′i
J,

=
∑

i

UT
ji

∂

∂x′i
J,

thus

(

∂

∂~v′

)T

= UT

(

∂

∂~x′

)T

. (130)

The transpose, which is the same as the adjoint operator under certain conditions (see below), propagates
the gradient information in the opposite direction to the forward operator.

The inner product between two vectors in ~x′-space and in ~v′-space are defined as the following [23],

〈~x′1, ~x
′

2〉x = ~x′1
TPx~x

′

2, (131)

〈~v′1, ~v
′

2〉v = ~v′1
TPv~v

′

2, (132)

where Px and Py are inner product matrices. In the left hand side of Eq. 131, substitute ~x′2 = U~v′2.
This can be written as follows, which can be regarded as the definition of the adjoint operator,

〈~x′1,U~v
′

2〉x = 〈U∗~x′1, ~v
′

2〉v . (133)

In Eq. 133, U∗ is the adjoint of U. A similar inner product can be written for practically any operator,
allowing its adjoint to be defined. Completing the inner products using Eqs. 131 and 132 yields,

~x′1
TPxU~v

′

2 = (U∗~x′1)
TPv~v

′

2,

leading to U∗ = P−1
v UTPx, (134)

which is the relationship between the adjoint and transpose operators (when deriving the second line
from the first line, remember that the inner product matrices are symmetric). It is only in the event
that the inner products are identity matrices that the adjoint is the same as the transpose, even though
the terminology is often used interchangeably.

Let J be a scalar that is a functional of ~x′. We note that the change, δJ , that follows from the
change δ~x′ has the form of a scalar product,

δJ =
∂J

∂~x′
δ~x′, (135)
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where the partial derivative has not been transposed (as might have been expected) as it is a row vector
already. Alternatively, we may write δJ in terms of the functional derivative, ∇~x′J , which is expressed
as the following inner product equation,

δJ = 〈∇~x′J, δ~x′〉x = (∇~x′J)TPxδ~x
′, (136)

which has been written using the definition of the inner product in Eq. 131. The δJ has to be the same
in Eqs. 136 and 135, and so ∇~x′J must have a different meaning from ∂J/∂~x′. Comparing the two
equations yields the relationship between the functional and partial derivatives,

∇~x′J = Px

−1

(

∂J

∂~x′

)T

. (137)

A similar relation exists between the functional and partial derivatives for vectors in ~v-space,

∇~v′J = P−1
v

(

∂J

∂~v′

)T

. (138)

Substituting the partial derivatives into the chain rule, Eq. 130, yields the following,

Pv∇~v′J = UTPx∇~x′J,

∇~v′J = P−1
v UTPx∇~x′J,

∇~v′J = U∗∇~x′J, (139)

where in the last line, we have used the relationship between the adjoint and transpose operators (Eq.
134). Equation 139 is the chain rule for functional derivatives and is analogous to Eq. 130 for simple
partial derivatives.

8 APPENDIX 2 - Covariance and convolution

It is often quoted that errors in the atmosphere have a horizontal structure which is approximately
isotropic and homogeneous. This approximation is exploited in the horizontal transform, specifically in
the form of Eq. 51. Another way of making this statement is that given that errors are isotropic and
homogeneous in the horizontal, then modes (spherical harmonics in the case of a global model and plane
waves in the case of a limited area model - the rows in F−1

h ) are uncorrelated and the variances are the
diagonal elements of Λh. Since this point is not explained in the main body of this paper, we reserve
this appendix to give a plausibility argument towards its validity.

At the heart of the argument is the convolution theorem for fourier transforms. For simplicity we
proceed to show our workings using the ordinary fourier transform in one dimension only, and assume that
the result holds in the plane and for other bases. In particular we assume that there is a corresponding
convolution theorem for a sperical harmonics-based transform.

A convolution is written as the following,

g̃(x) =

∫

x′

µ(x′ − x)g(x′)dx′, (140)

where g(x) is the function being convoluted, and µ(x) is the function that specifies how g(x) is to be
smoothed. Fourier transforming each side of Eq. 140 and assuming that µ(x) is even, results in the
following,

G̃(k) = M(k)G(k), (141)

where G̃(k) =

∫

x′

g̃(x) exp(−ikx)dx, (142)

M(k) =

∫

x′

µ(x) exp(−ikx)dx, (143)

and G(k) =

∫

x′

g(x) exp(−ikx)dx, (144)

where G̃(k), M(k) and G(k) denote the fourier transforms of g̃(x), µ(x) and g(x) respectively. Equation
141 is called the convolution theorem and says that the convolution process is diagonal in fourier space.
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This result is useful when considering the action of a covariance matrix. In a discreet space, if the
function g(x′) is represented by the vector ~g, then Eq. 140 is equivalent to acting on ~g with a covariance
matrix, Mx, whose rows are thought of as vectors, each being the function µ(x′ − x), with x varying in
each row (ie the rows are representations of the function µ(x′), shifted in space by a different amount in
each row of Mx). The matrix form of Eq. 140 is,

~̃g = Mx~g. (145)

Let the vectors ~G and ~̃G be the fourier space vector representations of ~g and ~̃g, respectively,

~G = F−1
h ~g, (146)

~̃G = F−1
h
~̃g, (147)

where F−1
h is the horizontal spectral transform operator introduced in section 2.3, which represents the

integrals in Eqs. 142, 143 and 144. Substituting the above two equations into Eq. 145 yields,

~̃G = F−1
h MxFh ~G. (148)

Comparing this equation to Eq. 141 tells us that F−1
h MxFh (an operator in spectral space) is diagonal,

and that the diagonal elements are found from the fourier transform of the smoothing function, µ. The
equivalence of F−1

h MxFh with M(k) is essentially Eq. 51 in section 2.3 with Sh = Mx, and Λh = M(k).
Note that the property of errors being isotropic is reflected in our analysis by µ being an even function,
and the homogeneous aspect is a natural consequence of the convolution.

9 APPENDIX 3 - Example of the implied covariances in the

current transform

The control variable transforms, even in their current form, can be conceptually non-trivial to under-
stand. In this appendix we analyse the combined horizontal and vertical transforms in the absense of
the parameter transform, and their implied covariances.

Even though the current transforms are written as products (Eqs. 29 and 30), generally they imply
non-separable structure functions (i.e. the structure functions cannot, in general, be written as a product
of functions - one depending on height but not on horizontal position, and another on horizontal position
but not on height). Some circumstances do lead to separable structure functions. We examine these
below in the cases of two options for rotation.

9.1 Implied structure functions when Rv = I

Taking the U-transform to be made up of the horizontal and vertical parts only, the U-transform is
written,

~x′ = UvUh~v
′,

= Z−1M1/2FhΛ
1/2
h ~v′, (149)

where the same notation as in the main body of the text is used here (see in particular Eqs. 45 and 55),
except that (due to the absence of the parameter transform in our arguments here) ~x′ now refers to a
parameter rather than a model variable. Equation 149 is more clearly written in integral notation,

x′(r, z) =

∫

dνZ−1(z, ν)M1/2(r, ν)

∫

dkFh(r, k)Λ
1/2
h (k, ν)v′(k, ν), (150)

where r represents horizontal position, z height, k horizontal mode, and ν vertical mode index (in this
integral form the symbols that were matrices are now functions of the two variables that the rows and
columns of the matrix represented). The implied covariance, UUT is written,

x′(r′, z′) =

∫

dνZ−1(z′, ν)M1/2(r′, ν)

∫

dkFh(r
′, k)Λ

1/2
h (k, ν) ×

∫

drΛ
1/2
h (k, ν)F∗

h(r, k)

∫

dzM1/2(r, ν)Z−1(z, ν)x′′(r, z). (151)
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In integral form, the transpose operation does the integral over r and z instead of k and ν. Additionally
the horizontal modes use the complex conjugate, F∗

h. The implied covariance maps each point in model
space (at r and z in x′′) to every other (at r′ and z′ in x′), just like a convolution (see appendix 2).

In order to see how this integral operator spreads information, let it act on the delta function
δ(r − r̃, z − z̃). Equation 151 then simplifies to,

x′(r′, z′) =

∫

dνZ−1(z′, ν)M1/2(r′, ν)

∫

dkFh(r
′, k)Λh(k, ν)F

∗

h(r̃, k)M
1/2(r̃, ν)Z−1(z̃, ν),

=

∫

dνZ−1(z′, ν)M1/2(r′, ν)M1/2(r̃, ν)Z−1(z̃, ν) ×

∫

dkFh(r
′, k)Λh(k, ν)F

∗

h(r̃, k), (152)

which has effectively traced-out a column of the implied covariance matrix - represented as a function -
that represents the covariance between the point (r̃, z̃) and every other (r′, z′) (such a function is called
a structure function).

As it stands, Eq. 152 is non-separable. If, however, the r dependence of M and the ν dependence
of Λh are removed, then the structure function becomes separable. This means that Eq. 152 can be
written as a product of two terms - one that is a function of height but not of horizontal position, and
another that is a function of horizontal position but not of height,

x′(r′, z′) =

∫

dνZ−1(z′, ν)M(ν)Z−1(z̃, ν) ×

∫

dkFh(r
′, k)Λh(k)F

∗

h(r̃, k). (153)

9.2 Implied structure functions when Rv = FT
v

The other choice of Rv discussed involves a variation of EOF and rotation with horizontal position,
Rv(λ, φ) = FTv (λ, φ). The vertical co-ordinate output by the Tv transform is now height, and the
vertical transforms (Eqs. 34 to 36) are used to investigate the nature of the structure functions. For
simplified notation let the horizontal position dependence (λ, φ) = r of the vertical matrices be implicit
in Eq. 154. The analogue here of Eq. 149 is,

~x′ = UvUh~v
′,

= FvΛ
1/2
v FTv FhΛ

1/2
h ~v′, (154)

In integral form, this U-transform (with no parameter transform) is,

x′(r, z′) =

∫

dµFv(z
′, µ, r)Λ1/2

v (µ, r)

∫

dzF∗

v(z, µ, r)

∫

dkFh(r, k)Λ
1/2
h (k, z)v′(k, z), (155)

where, due to the rotation, v′ and Λh are now functions of z where they were a function of EOF mode
in the previous section. The paraneter µ is a new variable for the local EOF index (ν was used before,
which has become to mean height in this report when discussing the choice of rotation used here). The
implied covariance, UUT , is,

x′(r′, z′) =

∫

dµ′Fv(z
′, µ′, r′)Λ1/2

v (µ′, r′)

∫

dz′′F∗

v(z
′′, µ′, r′)

∫

dkFh(r
′, k)Λ

1/2
h (k, z′′) ×

Λ
1/2
h (k, z′′)

∫

drF∗

h(r, k)

∫

dµFv(z
′′, µ, r)Λ1/2

v (µ, r)

∫

dzF∗

v(z, µ, r)x
′′(r, z). (156)

To derive the structure function, let this integral act on the same delta function as before. Let x′′(r, z) =
δ(r − r̃, z − z̃) giving,

x′(r′, z′) =

∫

dµ′Fv(z
′, µ′, r′)Λ1/2

v (µ′, r′)

∫

dz′′F∗

v(z
′′, µ′, r′)

∫

dkFh(r
′, k)Λ

1/2
h (k, z′′) ×

Λ
1/2
h (k, z′′)F∗

h(r̃, k)

∫

dµFv(z
′′, µ, r̃)Λ1/2

v (µ, r̃)F∗

v(z̃, µ, r̃),

=

∫

dµ′Fv(z
′, µ′, r′)Λ1/2

v (µ′, r′)

∫

dz′′F∗

v(z
′′, µ′, r′)

∫

dµFv(z
′′, µ, r̃)Λ1/2

v (µ, r̃)F∗

v(z̃, µ, r̃) ×

∫

dkFh(r
′, k)Λh(k, z

′′)F∗

h(r̃, k). (157)
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As it stands, Eq. 157 is non-separable, as in the first case with no rotation of the vertical modes. If
the r dependence of Λv and Fv and the z dependence of Λh are removed, then the structure function
becomes separable,

x′(r′, z′) =

∫

dµ′Fv(z
′, µ′)Λ1/2

v (µ′)

∫

dz′′F∗

v(z
′′, µ′)

∫

dµFv(z
′′, µ)Λ1/2

v (µ)F∗

v(z̃, µ) ×

∫

dkFh(r
′, k)Λh(k)F

∗

h(r̃, k). (158)

9.3 Variation of horizontal scale with horizontal position

It is believed - although more difficult to show - that the horizontal length scale is a (probably weak)
function of horizontal position, at least in the first of the above cases. Although the horizontal trans-
form is meant to be homogeneous (section 4.3), the presence of latitudinal dependences in the vertical
transform gives rise to inhomogeneous structure functions when the horizontal and vertical transforms
are combined. This may be shown, e.g., by looking at the width of the structure functions, Eq. 152 or
157 as the delta-function is moved around (in particular varied with latitude). This probably requires
simplified numerical examples to show this in a straightforward manner.

10 APPENDIX 4 - Demonstration of some relations

10.1 Commutation between the vertical and horizontal transforms when

Rv = I

Does the vertical U-transform in the case of no rotation of the vertical modes, Z−1M1/2, commute with

the horizontal U-transform translated into grid space, FhΛ
1/2
h F−1

h ? Let v′(r′, z) be the result of acting
with the translated horizontal transform, and then the vertical transform on the state v ′(r, ν),

v′(r′, z) =

∫

dνZ−1(z, ν)M1/2(r′, ν)

∫

dkFh(r
′, k)Λ

1/2
h (k, ν)

∫

drF∗

h(r, k)v
′(r, ν). (159)

The vertical and horizontal U-transforms commute only if (i) Λh is no longer a function of ν and (ii) M
is no longer a function of r′. In this case, the order of the transformations can be reversed,

v′(r′, z) =

∫

dνZ−1(z, ν)M1/2(ν)

∫

dkFh(r
′, k)Λ

1/2
h (k)

∫

drF∗

h(r, k)v
′(r, ν),

=

∫

dkFh(r
′, k)Λ

1/2
h (k)

∫

drF∗

h(r, k)

∫

dνZ−1(z, ν)M1/2(ν)v′(r, ν). (160)

10.2 Commutation between the vertical and bandpass functions when Rv = I

Does the vertical U-transform in the case of no rotation of the vertical modes, Z−1M1/2, commute with
the bandpass functions translated into grid space, FhΨ

2
j (k)F

−1
h ? Since this is the same analysis as the

above (with Λ
1/2
h replaced with Ψ2

j ), a similar conclusion applies. The vertical and bandpass functions

commute only if M1/2 is no longer a function of r′.

10.3 Commutation between the vertical and horizontal transforms when

Rv = FT
v

Does the vertical U-transform in the case of rotation of the vertical modes back to height co-ordinates,

FvΛ
1/2
v FTv , commute with the horizontal U-transform translated into grid space, FhΛ

1/2
h F−1

h ? Let
v′(r′, z′) be the result of acting with the translated horizontal transform, and then the vertical transform
on the state v′(r, z),

v′(r′, z) =

∫

dµFv(z
′, µ, r′)Λ1/2

v (r′, µ)

∫

dzF∗

v(z, µ, r
′)

∫

dkFh(r
′, k)Λ

1/2
h (k, z)

∫

drF∗

h(r, k)v
′(r, z),

(161)
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where µ is the vertical EOF index. The vertical and horizontal U-transforms commute only if (i) Λh is
no longer a function of z and (ii) Λv and Fv are no longer functions of r′. In this case, the order of the
transformations can be reversed,

v′(r′, z′) =

∫

dµFv(z
′, µ)Λ1/2

v (µ)

∫

dzF∗

v(z, µ)

∫

dkFh(r
′, k)Λ

1/2
h (k)

∫

drF∗

h(r, k)v
′(r, z),

=

∫

dkFh(r
′, k)Λ

1/2
h (k)

∫

drF∗

h(r, k)

∫

dµFv(z
′, µ)Λ1/2

v (µ)

∫

dzF∗

v(z, µ)v′(r, z). (162)

10.4 Commutation between the vertical and bandpass functions when Rv =

FT
v

Does the vertical U-transform in the case of rotation of the vertical modes, FvΛ
1/2
v FTv , commute with

the bandpass functions translated into grid space, FhΨ
2
j (k)F

−1
h ? Since this is the same analysis as the

above (with Λ
1/2
h replaced with Ψ2

j ), a similar conclusion applies. The vertical and bandpass functions
commute only if Λv and Fv are no longer functions of r′.

10.5 The combination of operators F−1
h UvjFh and F−1

h TvjFh

10.5.1 This combination when Rv = I

In section 6.3.4 we used the result that the combinations of operators F−1
h UvjFh and F−1

h TvjFh are
diagonal in spectral space if Mj is independent of position. The U counterpart (first one of these) is
demonstrated here by writing the combination in integral form, and acting on the function x′(k, ν).
Using the form of the vertical transform from Eq. 45 in integral form (including the extra band index
’j’ required for the WS transform),

x′(k′, z) =

∫

drF∗

h(r, k
′)

∫

dνZ−1(z, ν)M
1/2
j (ν)

∫

dkFh(r, k)x
′(k, ν),

=

∫

dk

∫

dνZ−1(z, ν)M
1/2
j (ν)

(∫

drF∗

h(r, k
′)Fh(r, k)

)

x′(k, ν). (163)

The manipulation shown in the last line can be done only if Mj is independent of position. The functions
comprising the Fh, and inverse, operators will be mutually orthogonal. This means that the integral
enclosed in brackets can be evaluated as,

(∫

drF∗

h(r, k
′)Fh(r, k)

)

= δ(k − k′), (164)

where δ is the dirac delta function. This leaves Eq. 163 as,

x′(k′, z) =

∫

dνZ−1(z, ν)M
1/2
j (ν)x′(k′, ν), (165)

which is block diagonal in spectral space. The combination F−1
h TvjFh can similarly be shown to be

diagonal under the same circumstances.
In practice, Mj , will be a function of position. As long as this function varies only slowly with

position, then we would expect that the combinations of operators in question would be approximately
diagonal, that is, any transfer of weight between different wavenumbers as a result of these operators
would be negligible.

10.5.2 This combination when Rv = FTv

We repeat the analysis in section 10.5.1, but now for the case with rotation and using the vertical
transform from Eq. 34. In integral form, with the added ’j’ index required for the WS transform, and
with no horizontal position dependence on components on the vertical transform, the combination of
operators, F−1

h UvjFh is,

x′(k′, z) =

∫

drF∗

h(r, k
′)

∫

dµFvj(z
′, µ)Λ

1/2
vj (µ)

∫

dzF∗

vj(z, µ)

∫

dkFh(r, k)x
′(k, z),

=

∫

dk

∫

dµFvj(z
′, µ)Λ

1/2
vj (µ)

∫

dzF∗

vj(z, µ)

(∫

drF∗

h(r, k
′)Fh(r, k)

)

x′(k, z). (166)
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The manipulation shown in the last line can be done only if Fvj and Λv are independent of horizontal
position. The functions comprising the Fh, and inverse, operators will be mutually orthogonal. This
means that the integral enclosed in brackets can be evaluated as the delta-function in Eq. 164 above.
This leaves Eq. 166 as,

x′(k′, z) =

∫

dµFvj(z
′, µ)Λ

1/2
vj (µ)

∫

dzF∗

vj(z, µ)x′(k, z), (167)

which is diagonal. The combination F−1
h TvjFh can similarly be shown to be diagonal under the same

circumstances.
In practice, Fvj and Λv, will be functions of position. As long as they vary only slowly with position,

then we would expect that the combinations of operators in question would be approximately diagonal,
that is, any transfer of weight between different wavenumbers as a result of these operators would be
negligible.

11 APPENDIX 5 - Example of the implied covariances in the

WS scheme

In appendix 3 we showed that under the current set of transforms the implied covariances are nearly
or exactly separable, depending upon whether the vertical transform is dependent or independent of
horizontal position. In the first section of this appendix, we perform a similar analysis with the proposed
waveband summation (WS) transform. This is followed by a rough examination of the interplay between
the positional and scale resolutions implied by the WS scheme.

11.1 Non-separability of the WS transform

The implied covariances, Eq. 8, can be calculated for the proposed form of the WS transform, Eq. 72.
In a similar way to the method of appendix 3, we consider the implied covariances for one parameter
only for the two possibilities of vertical transform discussed in this report.

11.1.1 Implied structure functions in WS when Rv = I

In an analagous way to Eq. 151, which is written in integral notation, the following holds for the WS
transform when there is no rotation of the vertical transform, Eq. 45,

x′(r′, z′) =

J
∑

j′=0

∫

dνZ−1(z′, ν)M
1/2
j′ (r′, ν)

∫

dkFh(r
′, k)Λ

1/2
h (k, ν)Ψ2

j′ (n)

J
∑

j=0

Ψ2
j (n)Λ

1/2
h (k, ν)

∫

drF∗

h(r, k)M
1/2
j (r, ν)

∫

dzZ−1(z, ν)x′′(r, z), (168)

where j, j′ are band indices, J is the top band index, ν is the EOF index, z, z′ label vertical coordinate,
r, r′ label horizontal position, k is horizontal wavenumber and n is total horizontal wavenumber (a
function of k). The operators are described in sections 4.2 and 4.3. The implied covariance maps each
point in model space (at r and z in x′′) to every other (at r′ and z′ in x′), just like a convolution (see
appendix 2).

Acting on a delta function spike at r′′, z′′ yields the structure functions implied by the WS transform,

x′(r′, z′) =

J
∑

j,j′=0

∫

dνZ−1(z′, ν)M
1/2
j′ (r′, ν)M

1/2
j (r′′, ν)Z−1(z′′, ν)

∫

dkFh(r
′, k)Λh(k, ν)Ψ

2
j′ (n)Ψ2

j (n)F∗

h(r
′′, k). (169)

The structure function of Eq. 169 is not separable, even if M is not a function of r and Λh is not a
function of ν (unlike for the current scheme - see Eq. 153). Under these conditions, Eq. 169 becomes,

x′(r′, z′) =

J
∑

j,j′=0

∫

dνZ−1(z′, ν)Mj′(ν)Z
−1(z′′, ν)

∫

dkFh(r
′, k)Λh(k)Ψ

2
j′(n)Ψ2

j (n)F∗

h(r
′′, k). (170)
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Each component inside the double summation comprises a separable function in this case. A sum of
separable functions, however, is not itself a separable function in general. Hence the WS transform leads
to fundamentally non-separable functions.

11.1.2 Implied structure functions in WS when Rv = FTv

In an analagous way to Eq. 151, which is written in integral notation, the following holds for the WS
transform when there is rotation of the vertical transform, Eq. 34,

x′(r′, z′) =

J
∑

j′=0

∫

dµ′Fvj′ (z
′, µ′, r′)Λ

1/2
vj′ (µ

′, r′)

∫

dz′′′F∗

vj′ (z
′′′, µ′, r′)

∫

dkFh(r
′, k)Λ

1/2
h (k, z′′′)Ψ2

j′(n)

J
∑

j=0

Ψ2
j (n)Λ

1/2
h (k, z′′′)

∫

drF∗

h(r, k)

∫

dµFvj(z
′′′, µ, r)Λ

1/2
vj (µ, r)

∫

dzF∗

vj(z, µ, r)x
′′(r, z), (171)

where j, j′ are band indices, J is the top band index, µ is the EOF index, z, z′, z′′′ label vertical coordi-
nate, r, r′ label horizontal position, k is horizontal wavenumber and n is total horizontal wavenumber (a
function of k). The operators are described in sections 4.2 and 4.3. The implied covariance maps each
point in model space (at r and z in x′′) to every other (at r′ and z′ in x′), just like a convolution (see
appendix 2).

Acting on a delta function spike at r′′, z′′ yields the structure functions implied by the WS transform,

x′(r′, z′) =

J
∑

j,j′=0

∫

dµ′Fvj′ (z
′, µ′, r′)Λ

1/2
vj′ (µ′, r′)

∫

dz′′′F∗

vj′ (z
′′′, µ′, r′)

∫

dkFh(r
′, k)Λh(k, z

′′′)Ψ2
j′(n)Ψ2

j (n)

F∗

h(r
′′, k)

∫

dµFvj(z
′′′, µ, r′′)Λ

1/2
vj (µ, r′′)F∗

vj(z
′′, µ, r′′). (172)

The structure function of Eq. 172 is not separable, even if Fvj and Λvj are not functions of r and Λh
is not a function of z (unlike for the current scheme - see Eq. 153). Under these conditions, Eq. 172
becomes,

x′(r′, z′) =

J
∑

j,j′=0

∫

dµ′Fvj′ (z
′, µ′)Λ

1/2
vj′ (µ

′)

∫

dz′′′F∗

vj′(z
′′′, µ′)

∫

dµFvj(z
′′′, µ)Λ

1/2
vj (µ)F ∗

vj(z
′′, µ)

∫

dkFh(r
′, k)Λh(k)Ψ

2
j′ (n)Ψ2

j (n)F∗

h(r
′′, k). (173)

Each component inside the double summation comprises a separable function in this case. A sum of
separable functions, however, is not itself a separable function in general. Hence the WS transform leads
to fundamentally non-separable functions.

11.2 Interplay between positional and scale resolutions

In the current transform, there is no explicit horizontal scale dependence of the vertical transform - just
horizontal position dependence. Although the new WS transform introduces a scale dependence to the
structure functions, we show here that this comes - unsurprisingly - at the expence of the ability to
capture positional dependent features. The analysis here is rough, and is presented only for illustrative
purposes.

We examine the structure function associated with a δ-function at position r′′, z′′, as in Eq. 172,
but - for simplicity - in the case of a single vertical level. This has the consequence that Fvj = 1 (or
Z = 1, depending upon the choice of vertical transform), and that there is no vertical position or mode
dependence (and hence no vertical integrals). The presence of only one level means that the result that
follows can be interpreted in terms of either of the vertical transform options considered in this report.
The analysis below is written in the framework of the simple vertical transform in section 4.2.2 involving

Λvj . For the current vertical transform (section 4.2.3), simply replace Λ
1/2
vj with M

1/2
vj below. We make
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the the further simplifications that the horizontal domain (r) is one dimensional, and that the transform
to and from spectral space is achieved through a fourier transform. We maintain, however, the positional
dependence of Λvj . Equation 172 is then,

x′(r′) =
J
∑

j,j′=0

Λ
1/2
vj′ (r

′)

∫

dkFh(r
′, k)Λh(k)Ψ

2
j′(n)Ψ2

j (n)F∗

h(r
′′, k)Λ

1/2
vj (r′′). (174)

In order to reduce this equation, let the bandpass functions approximate to non-overlapping top-hat
functions. For function j, let it have the value unity inside the bounds Nj to Nj+1, and zero elsewhere.
This orthogonality leads to Eq. 174 simplifying to,

x′(r′) =

J
∑

j=0

Λ
1/2
vj (r′)Λ

1/2
vj (r′′)

∫ Nj+1

Nj

dkFh(r
′, k)F∗

h(r
′′, k)Λh(k). (175)

There is only one band summation now because the product of bandpass functions Ψ2
j′(n)Ψ2

j (n) are
non-zero only when j = j ′. Using fourier transforms, Eq. 175 becomes,

x′(r′) =

J
∑

j=0

Λ
1/2
vj (r′)Λ

1/2
vj (r′′)

∫ Nj+1

Nj

dk exp ik(r′ − r′′) Λh(k). (176)

Let y = r′−r′′, and assume that the the range Nj+1−Nj = ∆k is so small that the horizontal variances,
Λh(k), vary very little over that range,

x′(y) ≈

J
∑

j=0

Λ
1/2
vj (y + r′′)Λ

1/2
vj (r′′)Λh(kj)

1

ix
[exp ikx]

Nj+1

Nj
,

≈ −
J
∑

j=0

Λ
1/2
vj (y + r′′)Λ

1/2
vj (r′′)Λh(kj)

i exp i∆kx

x
,

Re(x′(y)) ≈

J
∑

j=0

Λ
1/2
vj (y + r′′)Λ

1/2
vj (r′′)Λh(kj)

sin ∆kx

x
,

≈
J
∑

j=0

Λ
1/2
vj (y + r′′)Λ

1/2
vj (r′′)Λh(kj)∆k, (177)

where kj is the typical wavenumber inside the range Nj to Nj+1 (e.g., kj = (Nj+1 −Nj)/2), and where
we assume in the last line that ∆kx� 1.

This expression for the structure function (Eq. 177) is valid only when the number of bands is large.

Equation 177 has the form of a linear combination of functions Λ
1/2
vj (y+ r′′), with expansion coefficients

Λ
1/2
vj (r′′)Λh(kj)∆k. If each Λ

1/2
vj (y + r′′) has a different spacial variation, then the linear combination

will smear out the contributions from each scale, with a greater smearing effect with the greater number
of bands.

12 APPENDIX 6 - The spectral correction function

When calibrating the WS transform, the overlap of the triangular band pass functions complicates the
process. One way of dealing with the overlap that has been proposed is to treat the calibration equations
as though there is no overlap, apart from the inclusion of a spectral correction factor, Γ. This is the
approach of calibration option 2a, which is described in section 6.5.2. A proposed form of Γ is developed
in this appendix, based on that shown in [28]. We end this appendix with a note on whether we do
actually need to use a correction function at all.

The ’Andrews and Lorenc’ method
Andrews and Lorenc [28] derive similar functions which here are called the spectral correction func-

tions. These are designed to correct for the ’double counting’ that occurs due to the overlap of the
triangular spectral band pass functions.
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The total variance of a parameter (e.g. ψ) associated with a given band, j, has contributions from
each wavenumber within band j according to the weighted sum,

Variance of ψ for band j =

∫ Nj+1

Nj−1

dn wj(n) × Variance of ψ at wavenumber n, (178)

where wj(n)dn is the weight applied to each individual wavenumber in the integral. This weight is given
by the assumed form,

wj(n) =
Ψ2
j (n)Γ(n)

∫ Nj+1

Nj−1
dn′Ψ2

j (n
′)
. (179)

(Note that in [28], Ψ4
j (n) has been used instead of Ψ2

j (n) as in the above. It is not clear which is correct.)
For any given total wavenumber, n, the weights must sum to unity and Γ(n) in Eq. 179 is there as a
’fudge-factor’ to make this happen. Enforcing this gives a formula for Γ(n),

J
∑

j=0

wj(n)δn = 1,

∴ Γ(n) =





J
∑

j=0

Ψ2
j (n)δn

∫ Nj+1

Nj−1
dn′Ψ2

j (n
′)





−1

. (180)

In the above, δn represents the area of wavenumber-space occupied by wavenumber n. The fact that
this is δn, rather than dn reflects the fact that our problem is discrete (strictly speaking the normal-
ization integrals in the denominator should be summations rather than integrals). At any given total
wavenumber, there are a maximum of two bands that are non-zero,

Γ(n) =























(

Ψ2
j−1(n)δn

R Nj

Nj−2
dn′Ψ2

j
(n′)

+
Ψ2

j (n)δn
R Nj+1

Nj−1
dn′Ψ2

j
(n′)

)−1

for Nj−1 ≤ n ≤ Nj

(

Ψ2
j (n)δn

R Nj+1

Nj−1
dn′Ψ2

j
(n′)

+
Ψ2

j+1(n)δn
R Nj+2

Nj
dn′Ψ2

j
(n′)

)−1

for Nj < n ≤ Nj+1

, (181)

Γ is used when calibrating the transforms and is used in Eq. 116. There are two possible problems with
this result:

• We are correcting for overcounting and so it seems sensible that Γ < 1. This is found not to be
the case (see Fig. 12, solid curve).

• If the trangular band pass functions in the above procedure are replace by non-overlaping functions
(such as top-hat functions), then there is no correction required and Γ should be unity at all
wavenumbers. As a test, we find that this is not the case (see Fig. 12, dashed curve).

It is not certain whether these findings prevent the spectral correction factor from being used. Certainly
Γ in its current form is not suitable, but may give better behaviour with modifications.

Do we need a spectral correction factor?
The above derivation is not definitive. The assumed form of wj(n), Eq. 179, is subjective. If the

width of a band is broadened, it should as a whole carry more variance in Eq. 178, yet the increased
denominator in Eq. 179 will ’normalize-away’ this effect (approximately). In other words, the above
definitions do not allow the variances to scale properly with band width. Here we argue that perhaps
we do not need a correction function at all.

Let us repeat the derivation, but with a different definition of wj(n) than Eq. 179. Replace Eq.
179 with the following simpler form, that does allow band scaling in a qualitatively reasonable fashion,

wj(n) = Ψ2
j (n)Γ(n). (182)

Once again, we find the Γ(n) that gives a unit sum of weights,

J
∑

j=0

wj(n) = 1,

∴ Γ(n) =





J
∑

j=0

Ψ2
j (n)





−1

. (183)
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Figure 12: Example calculation of the Γ(n) spectral correction functions for the case of triangular band
pass functions (solid curve) and top-hat band pass functions (dashed curve). For simplicity, this example
has been derived from a two-dimensional situation, with just latitude as the horizontal coordinate; total
wavenumber has been replaced by meridional wavenumber. There are three bands with the Nj positions
shown as the light, thick vertical lines (these lie also at the left- and right-most end of the plot, and are
partially obscured by the left and right boundaries of the graph).

Thus, due to Eq. 74, Γ is equal to unity. It can be argued then that the double counting is compensated
for, approximately, by the band pass functions themselves, leaving no need for an additional factor.

13 APPENDIX 7 - Costs comparison of the schemes

Cost is an important consideration when choosing a scheme to implement. Table I gives a breakdown of
the memory cost (number of floating-point numbers needed) for a number of schemes in two-dimensions
(n levels, p latitudes and J + 1 bands). The total costs are plotted in Fig. 13 as a function of J for a
resolution typical for an operational Var. system.

Some of the schemes shown in the table and plotted in the figure are not used in this report.
’EXPL’ refers to the explicit background error covariance matrix, ’MetO’ is for the current Met Office
scheme, ’WS’ is the waveband summation scheme considered in this report (exploiting rotation in the
vertical transform) and ’WSMCV ’ is another wavelet scheme that uses multiple control vectors. WSMCV

is considered to be more fundamental than WS (WS is an approximation of WSMCV ) and is discussed
in [30] (in [30] WSMCV is labelled as ’WS1’ and WS is labelled as ’WS2’). WSMCV is a variation of the
scheme introduced in [26].

Figure 13 shows that the two WS (ie wavelet) schemes need more memory than MetO, but much
less than that needed for the explicit matrix. The bare WS schemes (labelled as ”no efficiencies”) can
be made more memory efficient. Efficiency savings involve (i) storage of Fvj and Λvj on grids with
a resolution that reflects the scales represented by the band, and (ii) storage of only those parts of
subvector vj (used in the WSMCV in [30]) that have non-zero representation by Ψj . Costs for memory

efficient WS and WSMCV are labelled ”efficiencies” in Fig. 13. The cost as a function of J is virtually
flat when efficiencies are used (the cost actually reduces slightly for J ≥ 1; this is because some cost
contributions in table I are a function of the actual distribution of Nj , which changes with J).

Differences between WS and WSMCV are too small to be visible in Fig. 13, and both are feasible
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Scheme Σ Fvj
(1) Λvj

(2) Λh v
EXPL n/a (np)2 n/a n/a np
MetO n/a n2 np np np

WSMCV (no efficiencies) np (J + 1)n2p (J + 1)np np (J + 1)np

WSMCV (efficiencies) np n2
∑J

j=0
180Nj

2π n
∑J
j=0

180Nj

2π np 2np

WS (no efficiencies) np (J + 1)n2p (J + 1)np np np

WS (efficiencies) np n2
∑J

j=0
180Nj

2π n
∑J
j=0

180Nj

2π np np

Table I: : A breakdown of the memory usage (in number of floating-point numbers) of a number of
background error covariance schemes. The schemes are two-dimensional (latitude vs height) with n
model levels and p latitude points. ’EXPL’ refers to the explicit background error covariance matrix,
’MetO’ is for the current Met Office scheme, ’WS’ is the waveband summation scheme considered in
this report (exploiting rotation in the vertical transform) and ’WSMCV ’ is another wavelet scheme that
uses multiple control vectors (see text). Costs for WSMCV and WS are specified with and without the
efficiency savings described in the text. Σ (column 2) is a diagonal matrix of standard deviations in
positional space. Σ has not been considered in this report, but is considered to be essential in [30]. Fvj ,
Λvj and Λh are other matrices used in the schemes (some matrices are diagonal) and v is the control
vector in each case. Note that the number of latitude points considered necessary to represent matrices
for band j for the efficient versions of WSMCV and WS is ∼ 180Nj/2π. Notes: (1) for EXPL this column
represents the total matrix size and for MetO it is the Z-matrix, (2) for MetO this column represents
the M-matrix.

if the efficiencies are used. The size of v is important, as it will affect the convergence rate of Var., but
it is not expected that doubling the size of v, required for WSMCV will be a major problem. With the
longitude dimension present, the difference between MetO, WS and WSMCV will not be very different
to those shown, unless it is deemed necessary to capture the longitudinal dependence of the Fvj and Λvj
matrices (to represent land-sea, orographic and tropopause variations with longitude).
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Figure 13: The storage cost (number of floating-point numbers) of the background error schemes shown
in table I plotted as a function of J , calculated for 60 vertical levels, 250 latitudes and no longitude
dependence.
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