Inverse modelling for trace gas surface
 flux estimation, impact of a nondiagonal B-matrix
 Ross Bannister, Univ of Reading

Data Assimilation Research Centre
One of the most appealing uses of data assimilation
Os to infer useful information about a dynamical
system that is not observed directly. This is the case
for the estimation of surface fluxes of trace gases
(like methane). Such fluxes are not easy to measure
directly on a global scale, but it is possible to
measure the trace gas itself as it is transported
around the globe. This is the purpose of INVICAT
(the inverse modelling system of the chemical
transport model TOMCAT), which has been
developed here. INVICAT interprets observations of
(e.g.) methane over a time window to estimate the
initial conditions (ICs) and surface fluxes (SFs) of the
TOMCAT model.
This poster will show how invicat has been
expanded from a diagonal background error
covariance matrix (B-matrix, DB) to allow an
efficient representation of a non-diagonal B-matrix
(NDB). The results of this procens are mixed. A NDB-
matrix for the SF field improves the analysis against
independent data, but a NDB-matrix for the IC field
sometimes appears to degrade the analysis. This
poster presents these results and suggests that a
possible reason for the degraded analyses is the
presence of a possible bias in the system.

Why use a non-diagonal B-matrix?

- Diagonal B-matrix:
- Easy to represent
- Unrealistic, but potentially well conditioned numerically
- Lengthscales (ℓ) are the same as the grid boxes
- Need to know only background error variances
- Non-diagonal B-matrix:
- Complicated/potentially expensive to represent
- Need to know:
- Error variances
- Horiz. and vert. error corrs. in $x^{i c}$
- Horiz. and temp. error corrs. in $\mathbf{x}^{\text {sf }}$
- Need to represent a big matrix:
- Full B: $[(64 \times 32 \times 60)+$ $(64 \times 32 \times 16)]^{2} \approx 24 \times 10^{9}$ elements
- Horiz. corrs. only (for SF): [$64 \times 32]^{2}$ $\approx 4.2 \times 10^{6}$ elements
- We test an efficient implicit representation of B via an efficient spectral decomposition method
- Spectral representation: only 33 elements for horiz!

Experiments

- 665 surface obs.
- ~75\% assimilated
- ~25\% unassimilated (for evaluation)
- Above chosen randomly three times (obs networks 1, 2, 3)
- Different B-matrix configs. (see key)

Forward Model:

Species of interest:

 CH_{4}Number of grid points: $64 \times 32 \times 60$ ($55 / 8^{\circ} \times 5 \frac{5}{}{ }^{\circ}{ }^{\circ}$)

Period: First 100 days of 2018 Chemistry:

$$
\begin{aligned}
& \mathrm{OH}, \mathrm{O}\left({ }^{(1 D)}, \mathrm{Cl}\right. \\
& \frac{\partial \mathbf{x}_{t}}{\partial t}+\boldsymbol{u} \cdot \nabla \mathbf{x}_{t}=\mathbf{x}_{t}^{\mathrm{sf}}+\underset{\mathbf{c}}{\mathbf{c}} \\
& \text { Prescribed } \\
& \mathrm{CH}_{4} \text { winds } \\
& \text { concentration } \\
& \text { Surface Chemistry } \\
& \text { flux }
\end{aligned}
$$

Natural Natural
Environment Environment
Research Council

Configura

- For Bic:
- ic $^{\text {ic }}=0$.
- $\Sigma^{\mathrm{ic}}=0.1 \times$ background value
- Vert. corrs. (see below) on/off
- Horiz. corrs. ($\ell_{\mathrm{ic}}=400 \mathrm{~km}$) on/off
- For Bsf:
- $\Sigma^{\text {sf }}=0.4 \times$ background value
- Temp. corrs. ($\tau=2$ months) on/off
- Horiz. corrs. ($l_{\text {sf }}=200,400 \mathrm{~km}$) on/off
- Horiz. corrs. modelled explicitly or implicitly (but efficiently) via a spectral parametrisation
$\left.\begin{array}{|lc|}\text { Inverse Model: } & \text { Control } \\ \text { INVICAT } & \text { vector: } \\ J(\mathbf{x})= & \mathbf{x}=\left(\begin{array}{c}\mathbf{x}_{t=0}^{\text {ic }} \\ -- \\ \mathbf{x}_{t=0}^{\text {sf }} \\ \mathbf{x}_{t=1}^{\text {sf }} \\ \frac{1}{2}\left(\mathbf{x}-\mathbf{x}^{\mathrm{b}}\right)^{\mathrm{T}} \mathbf{B}^{-1}\left(\mathbf{x}-\mathbf{x}^{\mathrm{b}}\right)+ \\ \mathbf{x}_{t=2}^{\text {sf }} \\ \frac{1}{2}(\mathbf{y}-\mathbf{h}(\mathbf{x}))^{\mathrm{T}} \mathbf{R}^{-1}(\mathbf{y}-\mathbf{h}(\mathbf{x}))\end{array}\right. \\ \vdots\end{array}\right)$

horiz. lengthscale $\ell \mathrm{km}$ Is/ts with/without land-sea decoupling (implicit B only)
- I/E implicit/explicit
representation of B
- Initial concentration part of B
- $[\mathrm{V} / \mathrm{x}, \mathrm{l} / \mathrm{x}]=$
with/without vertical corrs. horiz. lengthscale $\ell \mathrm{km}$
- Surface flux part of B
- $[T / \times, \ell / \times]=$
with/without temporal corrs.
Evaluation obs O-B, O-A for obs network 2

21

Key:

19 I $[V, 400]\{T, 200\}$

θ

Obsenation set

