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The starting point of atmospheric variational data assimilation [1], is an es-
timate of the atmospheric state in model representation. The aim is to refine
this estimate using the best available information, consisting of the latest ob-
servations and a forecast model. Adjustments to the model state are made
by minimizing a cost function, J, which is a measure of the misfit between
the current estimate and the incoming information.

Let the current estimate of the state of the atmosphere, X, be specified as a

perturbation, X’ from a guess state, X, such that,

X=X +X, (1.1)
and the background, X, is,

.EC)B = ._XT'G + 32%. (1.2)
The cost function in perturbation variables is,

-/ 1—>/ I 4 =1 /= -7
J®) = E(xg—xfBl(B—x)

+% G-Hs +¥) € +F)' G - H[Z + ¥1). (1.3)

In Eq. (1.3), B is the background error covariance matrix, y is the vector of
observations and H is the forward model operator (giving model equivalent
of the observations). The error correlation matrix of the observations,
E + F, is a combination of the error of representativeness and the instru-

mental error [2].

As it stands, the cost function in model space (ie X’-space) is badly condi-
tioned, and involves directly the use of B™', which has a rank too large to

deal with practically. Instead of X’, minimization is done with respect to a
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control vector, ¥/, which has none of these problems. If ¥’ is related to ¥’ via
[2],
X = UV, Vo= T¥, (1.4) (1.5)

(T = U™) then the preconditioned cost function in control variable space

can be written,
=7 1 =7 >1\T s>/ e
J(V) = E(VB = V) (Vg — V)

+%® —H[G + UV (E + F' G — H[%; + U¥]). (1.6)

Here the background perturbation in V'-space is ¥3 = Tx3. We have chosen
the transformation such that the background error co-variance matrix is ab-
sent in the background term (first term of Eq. (1.6)). Thus in ¥-space, the
background error correlation is the unit matrix [3]. This is an objective of

preconditioning [2], and B is implicit in the transformation, B = UU’.

In order to simplify the notation, it is convenient in the discussion below to

write, ,, = H [%¢ + UV

How is J minimized? A descent algorithm makes the desired adjustments,
but this requires the gradient of J with respect to V. The state V' is a field
that we think of as a vector. The gradient of J thus is also a vector, each

component being the partial derivative with respect to its component in V',

aJ | dvi
gradient of Jwrtv’ = V,J = (jé)T = o710, . (1.7)
aJ | ov,
The gradient of J is expressed fully as,
Vi = =@~ ) - UH(E + F)' G - Iw) (1.8)
= Vg + Vi, (1.9)

which follows from differentiating Eq. (1.6) with respect to each element of
v individually, or, by first differentiating with respect to X, and then using
the chain rule [4] to give the gradient in V'-space. The treatment of the
background contribution is trivial in ¥'-space as the gradient of Jp is just a
difference of vectors. The way that the gradient of J, is found is a three
stage process: (i) by applying the forward model (to calculate y,,), (i) dif-
ferencing with the actual observations and operating with (E + F)™! as in
Eq. (1.8), and (iii) applying the adjoint model to find the gradient. In Eq.
(1.8), H (a matrix) is the linearization of H (a vector operator). Since in this
report, we are dealing with observations, we will focus entirely on J, and its

gradient.



(i) Forward model state

The sequence of actions that predict the observations from the model state is
the forward model. In the Met Office 3d-Var., the forward model is con-
structed along the following lines.

1. Convert the variational model state, V' (a perturbation state in a
transformed space) to the model state, X" (the perturbation state in
'normal' model space) via the U operator (Eq. (1.4)).

2. Use interpolation to derive columns of these perturbation quantities

-

at the horizontal positions of the observations, Cy.

3. Add to 6’; the columns, C » found beforehand from the guess state
(in a similar way to C7). The resultis C;.

4. Operate on the 6‘; columns to give the model version of the obser-

vations, y,,,. These can then be compared with the actual observa-

tions, y.

Steps 2 to 4 are implicit in the H -operator.

(ii) The residual
When comparing ¥,, with ¥, the following is computed (as part of Eq. (1.8)),

—E+F) Q= 3. (1.10)
This is the gradient of J,, with respect t0 Yo, (AJ5/ d¥mo)' = V. J,, which

is an adjoint vector.

(iii) Adjoint model state

The gradient of J, with respect to V" is found by acting with a string of ad-
joint operators, which propagate the adjoint state in reverse order to the for-
ward models (the forward model part corresponding to each adjoint are giv-

en in brackets below each operator),

T
Vi, = (df")
dav
a\"[acz\ (dct) (dF,,\
= x —x )\ {=(E + FY' G = Vo 1.11
(dv,) (dk,) (dc;) (d@){ E +F)'G - )} (L11)
= A B © (D)
= U H Vi o (1.12)

In the last line we have highlighted the fact that the operator (A) is the ad-
joint of U, and the combined operator (B)- (D) is the adjoint of H. (Note
that in practice, the model field state X’ is replaced in the above by a low
resolution field -called W in [2]. We will not be concerned with this here.)
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2. Ozone
retrieval
assimilation

In the Met Office Var. scheme, the first three operators, (A)-(C), are per-
formed by the core scheme. When adding new observation operators, we

need be concerned only with the gradient of J, with respect to 6‘;,

- T
Gradient of J, wit Ct = ViJ, = dyf'” Vs, o (1.13)
x dC; mo
dj’)mo ! —1 /> -
=32 FE+F'G -0 114)

The nature of the observations that we are to assimilate

We report here on how we evaluate the forward and adjoint models (up to
the stage where the gradient is with respect to 6’;, as above) for vertical-
profile satellite retrievals of ozone, relative humidity and temperature (sec-
tions 2, 3 and 4 respectively). We will also describe the treatment of total
column ozone (section 5). In the case of profiles, the observed values are
specified on a set of vertical pressure levels. We take into account that val-
ues of the retrieved profile on these levels do not represent point values, but

instead are more like layer averages.

Ozone is specified as a mass mixing ratio, and so the methodology outlined
in this section can be applied for any quantity given in this way. Let the
pressure of the ith observation level (on which retrieved ozone, 0., is spec-
ified) be p¢’. These levels are bounded by a set of level boundaries with
pressure p?® (p?? < p¢' < p)). These define the layers that the specified
mixing ratios are layer-averaged within). The model level pressures are p}*
on which there are ozone mixing ratios g;. All of these levels and boundar-
ies are shown schematically in the Fig. below.
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The forward model for ozone should mass-weight (within each observation
layer) the model's mixing ratio as given on model levels. The result is g;,
the model's version of the observations. We assume that the weight of each



model level j contributing to the measured signal within the layer i is the
same (ie that a 'top-hat' weighting function, which is unity within the obser-
vation layer and zero elsewhere, is appropriate). This evaluation will in-
volve some interpolation as the observation layer boundaries will not, in

general, lie on the model levels.

Given that the mass mixing ratio of ozone between two model pressure lev-
els (found from the arithmetic mean of the mixing ratio at the bounding lev-
els) is %2 (g; + gj+1), then the total amount of ozone in this model layer per

unit horizontal area is,

g = “p(q; + gj+1) 0z, (2.1
where p is the density, and oz is the height thickness of the layer. We as-
sume that the shallow atmosphere approximation is valid as we will take the
horizontal area of the column to be constant with height. The height thick-
ness, 0z, can be found from the pressure thickness, dp, under the hydrostatic

approximation,

poz = —@. (2.2)

4
This information allows us to write a 'layer averaging' operator X" (see be-
low). As this operator is linear, its adjoint, X" follows in a straightforward

manner (also see below).

The forward model

The information required by the layer averaging operator includes: N, (the
number of model levels), N, (the number of observation layers), p?° (the
observation layer boundary pressures - there are N, + 1 of these), pj* (the
model level pressures) and g; (the model's mass mixing ratio of the trace
substance that we are interested in - in this case ozone). The output is &,- (the
observation layer averaged mixing ratio). g; is the model version of O; (the

observed value).

It is convenient to describe also an auxiliary structure /;. This is an index
pertaining to observation layer boundary i and references the first model
level immediately below it. To use the schematic in the above Fig. as an
example, it can be seen that I, = 5 indicating that model level 5 is immedi-
ately below observation layer boundary 2.

The algorithm for X" is now described.

For each observation layer i (the layer is bounded by pressures p?® and p2,):
IfI,'+1 > I; then

(there is at least one model level in this observation layer)




First sum over any complete model layers
Ifl;,;, > I; + 1then
(there is at least one model layer within this observation layer),
g = ST (g + ge) @ — B2
end if-block
Include the contribution from the 'ends' (incomplete model layers)
(qi, + (dq/dp), @Y — PI) + qu+1)
X (Pl = pi")12
4y, + (dq/dp)y,,, W% — PF.)
X% = PR)12
Layer average: ¢; = (¢ + ¢ + ¢°)/ (0% — p?)

'Lower' contribution: g;?

'Upper’ contribution: g;°

else
(there are no model levels in this observation layer)
g = (2qi, + (dq/dpy, (B — 20 + pPia))/2

end if-block

Importantly, in the above, the gradient (dg/dp); is calculated on model lev-
els as a forward difference, (dg/dp); = (gj+1 — q;)/ P51 — p}n).

The adjoint model

Since the forward model is linear, it is straightforward (albeit tedious and
time consuming) to give the algorithm for the adjoint. In the case of the
layer average operator, the adjoint takes us from the gradient (of J,) with re-
spect to the layer averages, to the gradient with respect to the model col-

umns of mixing ratio (see section 1),

T T T
(i J, = (d—i’) (i) s, (23)
dq dqg) \dg

Note that since J,, depends on model variables in other ways, we have partial
derivatives. Equation (2.3) is nothing more than the generalized chain rule
[4]. In this Eq., the values of g; have been assembled into the model vector
g (akin to a subset of 5}’ introduced in section 1 of this report - as in Eq.
(1.13)), and the layer average quantities c}i into the vector ?1 (akin to a subset
of ¥mo). In order to construct the adjoint, it is useful to first imagine the for-
ward operator for g; in differential form written as a linear combination of
the model values, g,

4
dq;

The coefficients Xj", which can be derived by considering the forward algo-

g = ngm% where X" = (2.4), (2.5)
J

rithm, form an N,;, X N,, matrix and the above left-hand Eq. can be written



in matrix form, 31 = X°"q. With the coefficients known, the adjoint can be
constructed. ~From first principles, this is done via the chain rule

component-by-component,

aq, om d om\T dJ
=2 Xij— = 2, X )i— (2.6)
j Z a% aQt Z ! 07611' Z ! 07611'
In matrix form this is (as in Eq. (2.3)),
T T
i) - xomT(i) . 2.7)
dq dq

A simple strategy to construct the adjoint is the following. First note that a
matrix element, X", appearing in the forward model transfers information
from model level j to observation layer i, as 0g; = X{"g;. For each such
element, the adjoint spreads information the other way such that
0(d/dq;) = X" (d/3g;) (of course the transpose instruction is absent in
the last Eq. as it is not in matrix form). Repeating this last action over all

non-zero matrix elements achieves the adjoint operation.

The adjoint algorithm follows from this procedure. Note first that when
writing the forward model as a linecar combination, one should expand the
derivatives dg/dp that are present in the forward model algorithm. This
yields more terms than is first apparent. In the following, each adjoint con-
tribution is accompanied (in red and within curly brackets) by the forward

contribution on which it is based.

For each observation layer i (the layer is bounded by pressures p?’ and p?2,):
Ifl;,; > I;then
(there is at least one model level in this observation layer)
First deal with any complete model layers
Ifl;,; > I; + 1then
For each integer (j) between /; + land /;,; — 1
Letf, = (P — Pm)/2(Pz+1 Qb)
Voilo = iVaido 104 = f1g;)
NVoisido = fiVailo  {0: = f1gje1)
end loop
end if-block
Include the contribution from the 'ends' (incomplete model layers)
The 'lower' contribution:
Letfi = (01— p) /1 2@%1 = p?) fo = 0P =PI P+1— PD),
3= fif2
oVaido = (fi = fa)Veido 10Gi = (f1 — f3)ai,}




3. Relative
humidity
retrieval
assimilation

OVosrido = (1 + f) Voo {04 = (f1 + f3) a1}

The 'upper’ contribution:

Let f1 = @ =pi, )2 0% = 6" fo= @F=pl) ] W 1= D),
f3=fif2

OVei.Jo = Cf1 = f3)Vaido 106G = 2f1 = f3)aqu.,,}

6Vq,1,-+1+1-]o = fsvt‘z,ifo {0g; = f3CI1,+1+1}

else
(there are no model levels in this observation layer)
Letfi = (p? + pt — 2010/ 2 (Pl 1—pl)
oVyido = (1 = f) Ve, {0G; = (1 = f)aqy)
OVyr+Jo = f1Vaido 160G = f1q141}

end if-block

In this algorithm, V,;J, is the derivative of J, with respect to the jth compo-
nent of model ozone. Similarly, V;J, is the derivative of J, with respect to

the ith component of the model-observation (layer averaged) ozone.

Relative humidity is not a mixing ratio, and so it is meaningless to layer av-
erage this quantity. Instead, we must convert the model values to something

that does resemble a mixing ratio.

The forward model

The forward model is comprised of the algorithm outlined in the following
list. Note that the model variables available are 6;" and RH;" (potential tem-
perature and relative humidity respectively, each on model level j). These
are actually contained within the vector 6’; . The model version of the rela-
tive humidity observations are, for observation layer i, RH?, and form part of

the vector y,,,. Here is the forward model:

1. Convert 67" to temperature, 7;" by multiplying by the exner pres-

sure,

A

" = (i 07, (3.1)
Do

(x is the thermodynamic constant of 0.286, and py is the reference

pressure of 100 hPa).

2. Calculate the saturation water vapour partial pressure, ei;. The
partial pressure is a function of temperature only and in the Met
Office, values are found by reference to look-up tables (the deriva-
tive, d efy;/ d T;", which is required for the adjoint calculation lat-

er, can also be returned at this stage).



3. From ey, calculate the saturated specific humidity, g,

g = S (3.2)
sat - ’ .
oo

(¢ is the ratio of molecular weights of water vapour to dry air,
e = 0.622).
4. Compute the actual specific humidity,

qj = RH; G, (3.3)
(the relative humidity in the Met Office scheme is between O and
1).
5. The specific humidities from step 4 resemble mixing ratios and so
we can apply the layer averaging as for ozone (the X" operator in
section 2). The results are on observation layers, gy, ; and g;*.

6. Convert the layer-averaged specific humidities back to partial pres-

sures,
mo Gar, il
Csati = t ’ (34
Gsai(1 — &) + ¢
R i (3.5)
gl —¢e) +¢
7. Calculate the model-observation relative humidity on observation
layers,
RH™ = £ (3.6)
€sat,i

Note that there are differences in (i) the definition of relative humidity used
in the calculation on model levels (step 4) and in observation layers (step 7)
and (ii) the relationship between specific humidity and water vapour partial
pressure in the same context (steps 3 and 6 respectively). These reflect the
different definitions/approximations used within the Met Office Var. scheme

and within the observation processing stages of the assimilation.

The adjoint model

Since the calculation of layer average relative humidity is a complicated
multi-stage process, we show here the principle of the adjoint calculation.
The forward process is non-linear and so it is helpful to first show the corre-
sponding linearized model (or perturbation forecast model). This is most
simply done via the chain rule, noting that an increment in RH?* depends ul-

timately on increments of RH" and 67",

Aq]" 9qujdesy; I
ORH + U Tt TCaj T7) som
dqr \JRH dqm,; dem,; AT IO

_ ORHY® Je}° Zaqg'm oq"

RH™ =
der dgmg



Lo, (3.7)

o"RH”“’ € ; O IGsuj O OTT"
aeg';‘;, a9 ; ; dqn,;dew,; ATm IOr
This expression has been derived systematically from the forward model,
starting at step 7 and working backwards and the sum is over model levels.

We prefer to refactorize the expression with the 8 dependencies together,

IRHT” dei™ Y dqi” dqf"

(SRH?W = j
der dq 5 dqr JRHY

Z ARH™ Je® dq dq) N ORH® deyy;; i,
der dqre dqr dq e 9 ; g
aqultj aegnatj aij

del,; AT JOr

which will make the adjoint more straightforward. We note the following

867", (3.8)

formulae for some of the partial derivatives,

JRH™ 1 e, 7
ora® _ 1 (3.9) Lo _ 2 ~,(3.14)
dejr ene; oqia;  (giai(1 — &) + &)
del epl 2G5
L. P - (310) Zhe o E (3.15)
g (g (1 - &) + &) dew; Pl
aq’ den,
= g; is 3.11 ﬂ = -
IRHT q satj (3.11) a1 (from look-up tables),
o™
L -y, (3.12) (3.16)
qsma j m 4
8RH”Z mo QL = (pim) (3.17)
P& - (3.13) 99" \po
dens; €at,i
Putting these terms into the series yields,
1 7 i
6RH:M = 2 5 Z aq QVat,léRH +
esa,i (i (1 — &) + &) 7
1 3 (i
2( - 23‘1 RH;
enai (qr (L — &) + € dqr
ef" epy I\ & O [P
- ”’) ’*’( )60,,(318)
esat i (q?’fm(l - &) + ¢ aqsat,/ o Ty

which we rewrite once more exactly as (using Eqgs. (3.4) to (3.6)),

mo ee;no RHTO (9 lmo m m m08 ° 1 aqsat
RHi - |: mo2 z 1 q‘mt’j(SRHj 2( mo2 qm Hjm mo 2 t)
p? qi j aqf" qi aq; sat,i ath,;
& deyi [pF g m
“”( ’) 66]}.

prare

In vector and matrix notation, the above expression is written as (Vi),

(3.19)

6R;Imo — Ao [BaxomcmaR_}_Im + (BoxomDm _ onam) Fmaém] ,
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5. Total column
ozone
assimilation

where A’, B’ and E’ are diagonal operators in observation layer space, C",
D™ and F" are diagonal operators in model level space, and X" is the non-
diagonal layer averaging operator. This transforms from model level to ob-
servational layer space, and implies the sum over levels. The diagonal oper-
ators are defined as the following,

il (320 D" = RH (3.23)
P o
o B - — (3.24)
BO — l2 , (3.21) ant,i
qi” den - [pmn\*
nm _ £ 9% (P 5o
c” = g™, (3.22) o 9T \po

Once written in this way, it is straightforward to write the adjoint expres-

sion, which propagates gradient information from observation to model var-

iables,
T o r T T
( 2 ) _ (8RIZ ( a ) _ meomTBvo( 9 ) (3.26)
JRH™ JRH™| \QRH™ JRH™
T oo T T T
( 01) _ 8R1L£ ( 84 ) _ (Dmxan,TBo _ XomTEo) Aa( 84 ) .
aom 2a0m | \QrH™ JRH™

(3.27)
Note that diagonal operators are self adjoint, and so the transpose super-

script has been omitted for these.

Special relations apply to the assimilation of temperature data. We have at
our disposal the hydrostatic approximation, dp/dz = —pg, and the Eq. of
state, p = pRT. These can be combined to give an expression for the layer-

mean temperature,

R 0z/c
7= 8% % (4.1)
k0 Inp
where 0z is the layer thickness in height, 0 Inp is the layer thickness in log-
pressure, ¢, is the specific heat capacity of air at constant pressure, and x is

the thermodynamic constant of 0.286. This is the "hypsometric" relation.

Routines to perform the layer average in temperature pre-exist in the Met
Office Var. scheme and so the forward model routine and its adjoint will not
be documented further here.

The forward and adjoint models for total column ozone measurements are a
subset of the layer averaging operators (section 2) in the limit of a single
layer spanning the entire thickness of the model atmosphere. The imple-
mentation described here however is separate.
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The forward model

The calculation of total column ozone has two contributions. The first is the
bulk contribution from all model levels and the second is from the surface
layer. Surface ozone is not a model variable and so we extrapolate linearly
(in log-pressure) to the surface.

TCOR™ = 7' (g + q) (O — plia) /28
T7COY = {(g2 — q) mPZ/P")/ n BB/ P7) + 2q:} (PF — PP/ 28
TCO; = TCOY™ + TCOY™

In this algorithm, p¥ is the surface pressure (this is known as it is a model
variable). For total column ozone, the surface contribution to the total col-
umn will probably be negligible, but it is left in the forward model algorithm
to make the code extendable to other species that may be present here at

higher concentrations.

The adjoint model

The forward model is linear and is, in effect, a 1 X N, matrix. The adjoint
is a N, X 1 matrix that propagates the gradient information from that with
respect to a single model measurement to that with respect to a model ozone
profile. As always it is helpful to derive the adjoint model from the per-
turbation forecast model found beforehand. For this reason each line of the
the adjoint algorithm (below) is accompanied by its corresponding line in

the perturbation forecast model (in red and inside curly brackets).

For each integer (j) between 3 and N,,, — 1

Void, = @1 = Pi1)/28Vrcodo {0TCOs = q; (P — pfi)/2g)
end loop
Contribution of the top ozone level
VonJ, = O,-1 — P,)/28Vrcodo {0TCO3 = gy, (PF,-1 — PN,/ 28}
Contribution of ozone level 2
Voal, = P17 = p5 + @F = p) (Inpl/pt)/ (np3/pi)}/28Vrcodo
{0TCOs = q{pl" — P53 + @ — pi) (npk/p0)/ (np3/pi)}/2g}
Contribution of ozone level 1
Void, = {®F = p1)(1 = (npZ/p)/ (np3/pM) + P& — P3}/28Vrco s
{0TCO3 = q{(P¥ - pH(1 — (Inp¥/p)/ (Inp3/pD)) + pi' — P3'}/2g

The derivative notation is as the adjoint algorithm for layer mean quantities,
additionally with VzcoJ, = dJ,/ 3 (TCOs3).

We make a special note about total column quantities. Total column 'obser-
vations' are not direct measurements, but are highly processed from satellite
measurements. Despite their name, they are not exactly the total column
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amounts of the substance in question (e.g. ozone), but are a weighted total

column (weighted with some averaging kernel) [5]. Although this is strictly

the case, we assume in the above algorithm that the averaging kernel is

unity.

Name Section Module directory Author
Var_LayerAv 2 VarMod_MLS DARC (RNB)
Var_LayerAv_Adj 2 VarMod_MLS DARC (RNB)
Var_RHLayerAv 3 VarMod_MLS DARC (RNB)
Var_RHLayerAv_Adj 3 VarMod_MLS DARC (RNB)
Gen_LayerTemperature 4 GenMod_Utilities Met Office
Gen_LayerTemperature_Adj 4 GenMod_Utilities Met Office
Var_CalcModelTCO3 5 VarMod_GOME DARC (RNB)
Var_CalcModelTCO3_Adj 5 VarMod_GOME DARC (RNB)
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