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The problem

Suppose that we have a system of n + 1 vectors: x, v/) (1 < j < n) and that the v\9) are predictors
of x, such that the following:
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is as close as possible to x, such that the difference

n—1
d= Y LOVO) v _x
j=1

is as small as possible given the population. We ask the question: what set of regression matrices,
L) achieves this? We may solve the problem using the method of least squares.

Cost function

Define a cost function, J, that is a function of L™, ... L(=1:
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Expanding the notation into its components:
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The minimum of the cost function with respect to the regression matrices

Differentiating J with respect to an arbitrary component of an arbitrary regression operator, L((f ﬁ), and

assuming p < n gives:
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In the first term on the penultimate line we can relabel the dummy variables j* — j, and ¢ — a:
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This is the (a, ) element of the following matrix expression:
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Setting this to zero for the optimum gives:

There are n — 1 such equations (1 < p < n).

Solving for the regression matrices

The outer products are covariance matrices and can be estimated from a population of x and v/
vectors:
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Assembling all n — 1 systems together gives:
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Assuming that different v(/)-vectors are uncorrelated means that v0)v(® " = C(“’)épj, which makes
the above into:

(LO ... Loy [ CHY (cln ... glen-n )
C(n—l,n—l)
If all vectors are of equal size then the regression matrices emerge:
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