A Reduced Rank Kalman Filter

Ross Bannister, October/November 2009

These notes give the detailed workings of Fisher's reduced rank Kalman filter (RRKF), wi
was developed for use in a variational environment (Fisher, 1998). These notes are my
interpretation of the method and an outline of how | would implement it. Fisher's approac
flow-dependent information from a Hessian singular vector (HSV) calculation and | propo
alternative that uses information from an available ensemble, made up of ensemble mem
(EMs).

1. What isareduced rank Kalman filter?

In VAR, theB-matrix used is a static representation of forecast error covariances and as ¢
VAR would be expected to perform poorly in an environment where the actual forecast el
covariance statistics change significantly from case to case (e.g. Fisher, 2007; Bannister,
The RRKF is an attempt to blend-in to the Var. problem flow-dependent aspects in a
mathematically formal manner. Two sources of flow-dependent information are consider:
here: firstly HSV information (as in Fisher's original formulation (Fisher, 1998)) and secon
from EM information.

A RRKF in this context may be regarded as a modification to the exiBtmgtrix in VAR that
allows the dynamical evolution of a subspace of the state vector (where the subspace is «
as that spanned by either the HSVs or by the EMs). Each approach is outlined below.

2. Sour ce A of flow-dependent information to blend with the B-matrix
(Hessian singular vectors)

One way of identifying the subspace that will be treated with explicit flow dependence is t
a HSV calculation. Let the size of the subspack bghich can be chosen arbitrarily, but
restricted in practice by cosk represents the number of singular vectors. The size of the |
model space ibl and in these notes it is recognised #a& N.

Fisher defines the subspace by khmost rapidly growing HSVs. The reason why they are
chosen to be singular vectors of the Hessian will become evident. In order to specify the
problem that must be solved to compute the HSVs, we introduce two norms as follows.

 Let the covariance matriR® be the error covariance of the analysis of the previous cy

In order for Fisher's method to work, it must be possible to act with the rﬁ%ﬁlriéor an
approximation of it).

» Let the matriXW be the norm used to measure the size of a perturbation. It must be
possible to act with the matrig/ .

Let the time of the previous data assimilation cyclet@nd the time of the present analysis |
0. States that have no time label are valid at Grbg default.

Let the tangent linear modélly_ _; act on perturbations at tira¢ and give a perturbation at
time 0

OX = Mg OX(-1). D
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If ox (—t) were known, then the size & according to th&V/-norm would bel,
Ji = XWX = oX' () Mg W Mg OX(-t). 2)

The HSVs are defined as thave(—t) that maximisel; subject to the constraint that (-t) is
distributed according tB?, ie

X" (=t) P o (~t) — const = O, (3)

for an arbitrary constantdnst. The constrained optimisation problem may therefore be pc
as

Vet [Jl — 20X (~t) Pafléx(—t) - consb] = 0, (4)

where/ is the Lagrange multiplier. Differentiating and setting the solutiongte-t) (with
associated Lagrange multiplig) gives

M3 W Mo 0% () = AP % (1), (5
which is a generalised eigenvalue problem. dhé-t) are the HSVs. The set of vectors
P 2% (~t) are eigenvectors eW-Y2M, . P#*)T (WM, P? and are thus the right
singular vectors of the matrW‘”zMo%_tPallz. Letsc = Mg 10X (—t). Thoses, with the
largesti, define the subspace whose background errors are treated explicitly by the RRKI

A general perturbation at tinfi 0x has a pardxs that lies in this subspace, which can be foul
as a linear combination of tisg Identification of this subspace can be simplified by first
constructing an orthogonalized and normalized set of ve&qesg. by the Gramm-Schmidt
procedure, see App. A). Then

OXs = Sav (6)
whereSis theN x K matrix of% vectors ané is theK-element vector of (as yet unknown)
coefficients. Orthogonalization should be done with respect to an inner product that non-
dimensionalizes the components (ke inner product achieves this, so this matrix shall be
used) such that

Sws = |, 7)
(theB™! norm could, in principle be used instead). The benefit of first orthogonalizing the
vectors is to allova to be found easily frorix

a=S'wlx (8
The part ofx that is not within the chosen subspace is the residyal
O%s = OX — OXs, 9

which is orthogonal tdxs under thaV = norm (see App. B).

The way that the HSVs may be used in the RRKF is covered in Sec. 6.

3. Sour ce B of flow-dependent infor mation to blend with the B-matrix
(ensemble members)

Another way of identifying the subspace that will be treated with explicit flow dependence
use information extracted from an ensemble. Let the number of EMsaltech can be chosetr
arbitrarily, but restricted in practice by cost. Fromltlensemble membersKadimensional

subspace can be determin&d € L) that will be used to describe the covariances explicitly.
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The size of the full model spaceNsand in these notes it is assumed Kat < N.

In a similar way to the procedure for the HSVs in Sec. 2, the EMs may be orthogonalized
Gramm-Schmidt procedure (see App. A) and placed in columns of the ®Baiffixe
relationship between a vector in thelimensional space spanned by the EMsnd the model
spacegxs, is given by (6), but where noavis alL-element vector an8 is theN x L matrix of
orthogonalized EMs. Orthogonalization is performed with respect W/ thénner product
described by (7) (Egs. (8) and (9) then follow).

The procedure to use the EMs in the RRKF is a little more involved than the HSV proced
The way that the EMs may be used in the RRKF is covered in Sec. 7.

4. The background cost function in the new subspace

The next task is to outline the way that the flow-dependent information, whether from HS
from EMs, can be combined with static error covariance information in the VAR formulatic
The usual background cost function in VARJjs

Jy = %(6x — )BT (0x - 0xX), (10)

wheredx = x — x9,0x° = x* — x9, x° is the background state axftis a reference (or guess)
state. Thd3-matrix in (10) is static. Equation (10) may be written in terms of the compone
0Xs anddxs by substituting (9) into (10). This gives three parts: (i) a part that involves only
special subspace that has been identified fronKtdanensional subspace introduced in Sec:
and 3, (ii) the part that couples this subspace with the rest of the state, and (iii) the part tF
involves only the rest of the state

Jy = %(axs — X)) B (0% — X)) + (0% — O%) B (% — OX9) +

%(éxs — 0DTB (0% — O%). (11)

This cost function is identical to (10). The RRKF is constructed by imposing a flow deper
error covariance matrix for the first two ter@® — P") but keeping the statB-matrix in the
last term

J — %(5xs = OO (0% — ) + 6 (0% — OR)TP (0% — ) +

%(éxs — 0DTB (0% — O%). (12)

The factora, added by Fisher (1998), is to help ensuredhat convex. The flow dependent
information provided by th& special vectors will be used to determineRhelt will be
introduced into the problem by a modification to the standard control variable transform u
VAR.

5. Control variable transforms stage

It is usual in VAR to make a change of variable from model variablgdd control variables
(often nameg,). The control variable transform used in standard VAR is here delh@rd in
the RRKF there is an additional transform denoteas follows
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X = LXy, (13
where, by desigrX is an orthogonal matrix
XX" =1, (14
(see below) and is the usual control variable transform used in VAR
LX (LX)" = LL" = B. (15
Substituting (13) into (12) gives
1 -1 -1
Jo = 50 = ) XLP LX (s = ) + a (s = 29" X'LPY LX (s = ) +
1 _
5 = 2 XLBLX (7 - 29, (16)

whereys = XTL™20xs, 2 = XTL720x2, 7s = XTLY0%s andy? = XTL%8. The matrixX is
not present in standard VAR, but is introduced in (13) to isolate the special subspace idel
in Secs. 2 and 3 from the remainder of the state space. As it stands, (16) looks complica
treat. Two substitutions are made as follows
X'L'™BILX =1, (17)
-1 -1
X'L'P LX = P}, (18)
where (17) follows from (14) and (15), and (18) is a definition. With these substitutions, (

1 -1 -1
Jo = 5 0ts - 2P (s — 1D+ a(s — 1P, (s — 29 +

1
S s - 79" (s — 79). (19

The part ofP;_1 that is important is derived in Secs. 6 and 7 fronkKtftBmensional subspaces
identified from the HSV or EM calculations respectively. The key to simplifying (19) isin 1
design ofX. LetX have the following properties.

« XT acting on any vector in the subspacédxs (wheredxs is a vector that exists entirely
in the speciaK-dimensional subspace) gives a vector that is non-zero only in thi€ firs
elements

ay

XL 2oxs = OE)K , (20

« andX" acting on a vector in the remaining spaceégx., gives a vector that is non-zero
only in the remainingN — K elements.

It is possible to define a suitab¥ethat satisfies these conditions by using a sequence of
Householder transformations (see App. C). The important observation is that in (19), onl

first K columns ofP)‘;_1 need to be known.

6. Determination of P;;_l for the Hessian singular vectors

The procedure to calculate the fikstolumns 011392_1 using the HSVs is now described.

4
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Following Fisher (1998) let

f_l

Z =P S (21)

whereSis theN x K matrix whose columns are tgeandZ is theN x K result after acting
with the inverse of the flow-dependent error covariance matrix. Equation (21) is now
developed using the definition (18) along the way

-1
Z = P LxX"L?s,

X7z = X"LTPTLXX"L s,

L, Ty -1
= Pl iX'Ls, (22)
T T =1 T -1
X(N X N)L(N X N)Z(N xK) = PX(N X K)I (Kx N)X(N X N)I—(N X N)S(N x K)» (23)

wherel is the following non-square quasi-identity matrix

|(K><N) = (l(KxK)o(KxN—K))- (24)
This matrix is included to remove the superfluous zero-elements foriraws of X'L™S (by
the design oK). In (23) and (24), labels have been added to the matrices to indicate their
dimensions. Equation (22) leads to

A -1
X'L'Z{ixL'g™ = P, (25
where the operator inverted is a calculadble K matrix, which we assume is non-singular.

Note that (25) is for only part of the inverse covariance matrix and so is not symmetric. T
matrix yet known isX"LZ which is now found from the HSVs (Sec. 2).

By the definition ofZ (21),X"L"Z is
X"z = XLP s, (26)

whose right hand side can be found from (5). Let columns of a new n&afrige thos&
vectors at timé that evolve into the columns 8f(the columns o0& are the state® (-t) in

()

S = Mg St (27)
This is useful in the derivation to follow. Write (5) in complete matrix form
—1
Mo W Mo 1St = P7 SUA, (28)

whereA is the diagonal matrix df,. Also important is the propagation of the error covarian
(ignoring the model error contribution)

P’ = Mo PM{ . (29)

These equations can be manipulated to give the matrix in (26) required to complete (25).
Starting from (28)

PPMg. W'SA™ = S,
Mo PMgc AW SA™ = Mo S,
PW?sA™ = s,

WisaA™ = P s

|
X
_‘
=
_‘
n—«
AR
w

X'TL'Wisa™ =
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= X'L'Z by (26)

1 Ty Tinloa-1,5vT) —lov-1
= X'LTWTSA™ (iX'L™s) by (25) (30)
The right hand side of (30) is known and thus all relevant elements of the background co:
function (19) are now calculable given the HSV results.

=

7. Completing the calculation with information from the ensemble

The EMs are now used to determine the frsolumns oiP)E_l. Let the columns df contain
theL raw EMs [ > K). The forecast error covariance matrix in state space is then

1
L-1
which is too large to compute explicitly. The transform between the ensemble from the
orthogonalized ensemble subspace and the state space is

S = SSum (32
whereSis theN x L orthogonalized matrix of EMs, as used in (6), 8ggis theL x L matrix

of EMs in the orthogonalized ensemble representation. The orthogondity specified in
(7). The inverse of (32) is

Sl SS', (3D

Sep = SW'S (33
The ensemble forecast error covariance matrix in EM subspace is
1 T
P=— 34
L=1_ 1Ssubssuba (34

which is easily calculable, as are its eigenvectors and eigenvalues. For reference, the
relationship betweeR' in (31) andP in (34) is, using (32)

P’ = 8PS (39
Interest here is in th¢ eigenvectors o with the largest eigenvalues, whére< K < L.

These are used to define the spe€iaimensional subspace. Firstldt be thel x L matrix
of all L eigenvectors, where

UU. =1 and UWU =1, (36)

and letA, be the diagondl x L matrix of eigenvalues. Equation (34) may be decomposed
R = UAUL (37

Similarly, letUx be theL x K matrix of theK eigenvectors with the largest eigenvalues, whe
UkUg = . (39

The following also holds as long as it acts only on vectors entirely in the column sphce of
UcUk = I (39

TheK largest eigenvalues are assembled into the diagonal matriXheL x L covariance
matrix, but of rank is then (by analogy to (37))

Pl = UxAxUr. (40)
TheseK eigenvectors may be projected back to model space using (6)
U = SUy, (41

where (as explained in Sec.8)s theN x L matrix of orthogonalized ensemble members. -
inverse of (41) makes use of (7)

6
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U = SS'wWu. (42)

The projection of thesk eigenvectors to model space span the special subspace and so tl
columns ofU can be used to define the Householder matrixRecall the two bullet points at
the end of Sec. 5, whedgs is a vector that spans this special space. Appendix C showX hc
can be constructed frobh.

The aim of the following procedure is to use information from the EMs to define thi first
columns oﬂ:’;_l as defined in (18) and used in (19). In a similar fashion to the HSV approz
Sec. 6, let

_ pt
Z =P U, (43
= pLXXTL W,
-1
XLz = X'L'P" Lxx"Luy,
1A
 IXTLT, (44)

wherel is theK x N non-square quasi-identity matrix defined by (24). This has to be inclt
becauseP)‘;_1 is defined only with the firg€ columns. Equation (44) leads to

= Pf

-1 A
Pl = X'L'zdX'L'uy™, (45)
where the operator inverted is a calculdble K matrix, which we assume is non-singular.

Note that (45) is for only part of the inverse covariance matrix and so is not symmetric. T
matrix yet known iX'L'Z which is now found from the EMs (Sec. 3).

TheP' that is of interest exists only in thkedimensional subspace. TRkthat exists in thé-
dimensional subspace is (35). This can be modified to exist K-theensional subspace
replacingP in (35) withP} found from (40).

P' = 5A'S" - &RIST = SUAKULS'. (46)
Equation (46) is developed as follows (steps marked with a * need special note - see belc
~ ~ -1
| = SUAKUKSP'

S'w

UkAULETP ™

~ ~ -1
UrS'wW™ = AULEP

_ ~T JU |
AQURS'W™ = URSTPT,
~ ~ -1

UkAURS'W™ = STP' (47 #)

The following, derived from (7) and (39) holds as long as it acts only on vectors entirely ir
column space db

&s'wt =1, (48 *)
When used with (47) this gives
~ ~ -1
UcAcUrS'W™? = S'wiwp'
~ ~ -1
SUALURS W™ = wp' ™,
~ ~ -1
WBUALULST W = P (49
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The steps marked with a (*) require special attention as these statements are appropriate
under special circumstances. This may require some checking. Equation (49) is used in
definition of Z (43), which is itself used for the definition agrl in (45). This gives

-1 ~ ~ A
Pl = X'L'WBUAlURS'W U (IXTL oy, (50)
which is aN x K matrix as required.

8. Differentiating the cost function

The background part of the cost functidn(19), is now defined, wheul@‘1 is found
depending upon whether the HSV or the EM source of information is used. For the HSV
calculation,P;_1 is found from (30) and for the EM calculatidcj,_l is found from (50). For
VAR, the derivatives o, andJ, (the observation part of the cost function) are required witt
respect to each component of the control vegtoRecall that the control vector comprises tw
parts: one that describes the special subsga¢eon-zero only in the fird components), and
another that describes the remaingefnon-zero only in the ladl — K components)

X = Xst Xs (51)
and the gradient vecta#J/ dy has a similar structure (i.8J/ dys is non-zero only in the first
K components andJ/ dys is non-zero only in the last — K components)J is the total cost
function, which is the sum of the background p3ytn (19) and an observation palf, Let
the three terms defining, in (19) be written separately

J=J+Jd +Jn + (52)

where 3 = ~ (s~ TP (s - D), (59
B = als- D (- D, (54)

and Jy = %()_Cs ~ 719 (s — 7). (55

It is assumed thalJ,/ dox has already been found, e.g. by the conventional adjoint methoi
(e.g. Rodgers, 200x; Bannister 200x). There are eight contributions to the gradient vecto
AL dys, A xs, A1 D xs, AT A%, I 1 Dy , DI | D7 100! Iy, aNdA I,/ A s, Where

each contributes to the total gradient vector in the following way
| | 1l Il 11 11
2:%+8—‘3b+8‘]b+8‘2b+an +a‘]_b +%+8—€°.
dx dxs Ixs  Idxs  Ixs  dxs  Ixs  Ixs  IXs
Note that derivatives with respectjgogive a vector that is non-zero only in the fist
components, and so imply differentiating with respect to theKigtmponents of only.

Similarly derivatives with respect @ give a vector that is non-zero only in the st K
components, and so imply differentiating with respect to théNlastk components of only.

(56)

It will be useful to expand-out the matrix notation in (53)-(55) as follows (in the following,
ignore they2 andz2 terms for simplicity (they can be put back in later with no loss of
generality). Whether we are interestegdmor ys will be controlled by the range of the index (
toK orK + 1toN respectively)
| 1 &l
Jb = > Z (xs)i _Z(Px )i (Xs) =
i=1 j=1

f_l

K K
Do > P i (57)
=1 j=-1

NI
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N K
J{)I = a Z (Xs)i Z(P )Ij (XS)J = a 2 Xi Z(Pf 1)I] Xis (598
i=K+1 j=1 i=K+1 j=1
1 N
=35 > x (59
2i=K+1

Each contribution in (56) is now addressed in turn.

Contribution (i) dJ4/ dys
Differentiating (57) with respect tp(componenti

< k
9% = L 1 s 1
Ik 2 Z E(Px iz + 5 2 2 (B o

h)

NI
||M7< |
'U
E/

5

ZXi(P;_l)ik = Z(P;_l)kj X- (60)
23 o1

Contribution (iiY 935/ d s

Differentiating (57) with respect tp (component& + 1 < k < N) gives
ad,

I (X

= 0. (61)

Contribution (i) dJp / d s
Differentiating (58) with respecttp(componenti < k < K) gives

dJp &t
= P, )ij Ok
8(Xs)k i %1 2( * )J Ik
N 1
= «a 2 % (P, ik (62
i=K+1

Contribution (iv) dJ8 / dxs
Differentiating (58) with respect tp (component + 1 < k < N) gives

i B NG
d (s i=K+1 kj=1 r WA
K 1
=a > P W (63
i=1

Contribution (v) dJ4'/ d xs
Differentiating (59) with respect tp (componentd < k < K) gives
I

= 0. (64)

Contribution (vi) dJ4' / 97
Differentiating (59) with respect tp (componentdN + 1 < k < N) gives

! C
= iéh
d (xs)k i:% 1X “
= Ak (69

Contributions (vii) and (viii)dJ,/ dxs anddJ,/ dxs
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For this term it is not necessary to distinguish between parts of the state vector. Using th
definition of the control variable transform in (13), it can be expanded as

N N
n = D Lm D Xoptp (66)
n=1 p=1
Therefore
axm N N N
== = D Lm > Xnpdpg = 2, LemXng. (67)
an n=1 p=1 n=1

Using the chain rule, and then feeding-in (67) gives
o < IXm I
g mh %q I

— i xT EN: Lr ﬂ (68)
- = an nmo-,éxm-
Equation (68) is equivalent to the matrix operation represented by
dJo 7, 799
— = X'L
dx doxX’
which is the standard result of the adjoint of the control variable transform.

(69
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Appendix A: the Gram-Schmidt procedure

The creation of an orthogonalized set of vectyrsrom a set that is made up of non-orthogol
vectors,s, may be performed by the Gram-Schmidt procedure. The space spanned by e
of vectors is the same, but the orthogonalized set is more convenient to work with. Let
orthogonalization be performed with respect towhe inner product.

Let the first vector of the orthogonalized gt be the first vector of the non-orthogonal set,
but normalized to have unit length (under €' norm).
1

§ = N—lsl, (A1)

gwly = 1, (A.2)

. N = /s[Wls,. (A3

Fori > 1, thei+1th orthogonalized vector is defined as ith&th non-orthogonal vector minus
a linear combination of all previous vectors defined (and normalized)

1 i
S+1 = N_(S+1_ Zaj,i+1S)- (A4
i+1 i=1
The coefficientsg;; . 1, are chosen for orthogonality as follows
WS, = 01 (A.5)
Performing an inner product of (A.4) with(wherel < k < i) gives
_ 1 _ ! _
SIW 1S+l = N (SIW lS+1 - 2 O‘j,i+1§-.<rW lS) =0 (AG)
i+1 j=1

This is set equal to zero by (A.5) and by the factkhati + 1. Further use of (A.5) leads to
S1—W_1S+1 — Okj+1 = 0,
Lodjis1 = STW713+1- (A7)

This determines the coefficients. [get; be the part of (A.4) inside the brackets (i.e. the
unnormalized vector)

1
S+1 = Ni+1fi+1, (A.8
Wherefi+l = S4+1— zaj,i+ls, (AQ)
i=1

which can be calculated now that the coefficients are known (A7), then follows in a
similar way to (A.2) and (A.3)

ST+ lWils 1 =1 (A.10

“ Ny = v i-:|T+ 1W_1fi +1. (All)

Appendix B: Proof of the orthogonality of theresidual in (9)

In these notes a vector in model spaoees divided into a part that is spanned by columr, of
0Xs, and a residuabx, given by (9). Here it is proved that any vector that exists only in the

11
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spanned space M/~ -orthogonal' to one that exists only in the residual. Mathematically, it
be shown that

%W 1oxs = 0. (B.1)
First eliminatedxs using (9)
ORW 0% = (X — OXg)' W X, (B.2)
0Xs can be written in terms @k by combining (6) and (8)
oxs = S8'Wlox. (B.3)

Substituting (B.3) into (B.2) gives
OXAW oxs = (ox — SS'Wlox)" WSSTW o

= oX'WSS'Wlox — ox'WSS'W 1SS W ox. (B.4)
Next use the orthogonality of the subspace (7) which proves that each term in (B.4) is eq
opposite, thus giving zero and proving (B.1)

ORIW ™% = OX'WEST'Wox — ox'WSS'Wox = 0. (B.5)

Appendix C: Design of the sequence of Householder transforms

It is now shown howX can be formulated to achieve property (20). Fisher (1998) states th
this can be achieved with a sequence of Householder transformations. A single Househc
transformationP, (e.g. Press et al. 1986) may be written as follows

!
P=1-2= (C1)

where

Uu=X5%|X| e. (C.2)

The vectorx is arbitrary ana is a vector which is zero valued except for the first element,
which has unit value (the properties of the Householder transformation hold for a general
element being chosen instead, although here we always choose the first eléngengeful
because it has the following useful properties.

» The Householder transformation is orthogonal
T
uu’ uu’
S LR I
u'u u'u
uu’ uu'uu’
| =4+ 4=,
u'u uTuu'u

PP’

uu’ uu’

=1 -4— + 4—

u'u u'u

* When acting on the stakewhich is used to define in (C.1) and (C.2), the result is a
vector with all but the first element zero

T
Px = (I - 2#)&
u'u

= 1. (C.3)

- T
_ (I PTG +T|x| er) )x,
u'u

12
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ux ¥ Ix| ey’
2XTX F 2 | X| X1

)

uX"'x F x| X)
2XTX F 2 |X]| X

= X — U,

= =+ |X| e. (C.4

* When acting on a state which is orthogonal to the statewhich is used to defin@ in
(C.1) and (C.2), the result is a vector with zero in the first element

Note U'Xx = X'X F |X| €[X,
= F |X]| Xq, (C5)
T
uu
then Px = (l - 2?)&
uu
L X X (X F [X] &)
2XX F 2 |X| X~

X2 F [X| XX + [X]| XX — %q | X%ey
XTX F [X] Xq '
Equation (C.6) does not have weight in element 1. To show this, do a scalar prodect witr

(C.6)

IX%Xe F IX] XaXq £ X] XeXq — Xq [XP
XX F |X| X1 Bl

In these equationg; andx; are the first components »fandx respectively. The first property

givesP = PT = PL. These properties can be combined to ¥e the following way.

DefiningR© = L™Sfor the HSV calculation dR® = LU for the EM calculation, let
XTR© pe a vector of two parts

eiPx = 0, (C.7)

0

whereA is aK x K matrix consistent with the required property of (20). In fact, by the wa
thatXT is to be formedA will turn out to be upper triangular. Let

X'"R? = p... R... PR, (C.9)
EachR transformation is Householder-like according to the following, e.g?for

X'R? = (A), (C.8)

;
PR = (I - 2%) RO u=r? - r? &V, (C.10

wherer{? is the first column oR© andefN is theN-element vector with all but the first
element zero (which is unity). This generates a new mattix= P,R© which has the form

r i3 ryorR

0 Y ry ...
0 Y r ... rR
RY = . .. .. (C.11
0 rd r@d ... r
0 ri ri3 rii
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having only the first element non-zero of the first column (sids designed in terms of the
first column ofR®). The aim now is to act withi — 1 x N — 1 element Householder
operator orRY excluding the first row and first column

0

1
P,RY =
? (m-z%

where the partitioned-off (lower right) part®fis aN — 1 x N — 1 matrix,rs? is theN — 1-
element second column BfY (excluding the first component), agff ~ ¥ is theN — 1-element
vector with all but the first element zero (which is unity). This generates a new matrix
R® = P,R™® which has the form

RY, u=r - r§] el 7, (C.12

reyord oo
0 r2 r@ ... r¥
0 0 rgd ... r{

RO = . .. .. . (C.13
0 0 ri@ ... r@
0 0 r&d ... r
Thekth operatorP, has the form
I 0
R(R(k—l) — (ow R(k_l), U = r(kk—l) _ |r(kk—1)| e(lN_k+1), (C.14)
uTu

where the partitioned-off part & is aN — k + 1 x N — k + 1 matrix,r* "V is the

N — k + 1-elementth column ofR* - (excluding the firsk — 1 components) anef™ ~*+?

is theN — k + 1-element vector with all but the first element zero (which is unity). Aftdf al
operators have acted, the resuRi{§ = X"R©

ri ri? rig o R
0 3 rg ... 1R

" 0 0 rg ... r
R =1 .. .. . .. : (C.15

0 0 0 .. r&

O 0 0 .. O
where the top section is the matfixn (C.8), and the bottom section comprises zeros.

It should also be shown thdX™ = |. From (C.9) this is easy to show given that each pair
the property thaBRl = |

Pc... B... RPP/P ... R... P = I. (C.16)
It remains to be shown that the string of Householder opemtarsk... P,P; acting on a
state r@ (which is orthogonal to all columns Bf?) gives a state that is zero in the fist

elements. AlP, are formed in the same way as shown above (ie with respectR&the
matrices).

First letr® = Pr©@. Sincer® is orthogonal ta{? (the latter is the vector used to deffdn
(C.10)), and by property (C.7), the vect8t has zero in the first element. Next, let

14
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r® = prd, By a similar argument, if the vector formed from the fistl components oftV
is orthogonal to the vector formed from the Ist 1 components ofs” (the latter is the vector
used to defin®, in (C.12)), and by property (C.7), the veatGt will have zero in the first two
elements. Because the first elemer®of” is always zero, the remainimg— 1-component
inner product in question is equal to the filltomponent inner product as the first element
contributes zero. The orthogonality test is therefore satisfied if the folld\wcwmponent
inner product is zero

T T
PrO PrY = rOplprd = rrP = o, (C17)

This is satisfied because the veadt8ris orthogonal ta%® by definition. These arguments
continue for alK operators. The final result is a vector of zeros in theKisdbmponents.
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