Approximate 'vertical-only' preconditioning of the PV
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1. The balanced transform
For the balanced GCR solver, the following represents a simplified form of the U-transform

&\ _ (V2 0
1

This is based in (22) of [1]. ygis a 3-d field where (yg) = 0 ({-) is level-by-level global
mean) and {pg) is the level-by-level global mean balanced pressure. All quantities are stored
on y-points. This includes PV, which has the full form (15) of [1].
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where the overbar and hats denote vertical interpolation from 6-levels to p-levels, and a
subscript '0' indicates a reference state quantity. Inserting (1) into (2) gives
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This is the PV given entirely in terms of the balanced control variables. For the bulk PV at
level k, the discretization is as follows (note that all quantities are at horizontal position i, |
unless otherwise stated)
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In writing Eq. (4), for simplicity:
* Horizontal interpolation of reference state quantities to y-points is ignored for

preconditioning. Each value is taken at its 'home' point that has the same horizontal
index as the y-point.

* Some quantities that are part of a compound vertical interpolation can be
approximately 'removed' from the compound and cancel with individual terms
outside. For example (note that both overbar and hat indicate vertical interpolation)
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a; (K) and B, (K) are vertical interpolation coefficients,
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1.1 Diagonal preconditioning of the balanced equation

Diagonal preconditioning involves ignoring terms in the right-hand-side of (4) that are
different from position (i, j, K). This gives
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The extra factors A and B that appear in (7) are unity except in the following circumstances:

* at the top of the domain (K = N), A = 0 and
* at the bottom of the domain (k = 1),B = 0.

This is an application of the Neumann boundary conditions. Equation (7) can be parametrised
in the following way (at each horizontal position)

PV (K) ~ (4 + uf po) y(K) + u<psd (K), (8)

where, from (7)
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The unknowns yg(k) and {pg) (K) are determined (noting the <yg(k)» = 0 requirement) by
multiplying (8) by 1/(4 + ufpo) and then taking the global mean
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1.2 Vertical preconditioning of the balanced equation

Vertical preconditioning involves adding-up vertical terms from neighbouring points of (4) in
the horizontal. Doing this removes the horizontal derivatives. Only the vertical terms remain
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Equation (13) is a tridiagonal system of equations which can be solved for w (k) at each
horizontal position. Once w (K) is known, it is then possible to derive the required fields from
(7
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2. The unbalanced transform
For the unbalanced GCR solver, the following represents a form of the U-transform,
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where the overbar and hats denote vertical interpolation from 6-levels to p-levels. This is
taken from (26) of [1]. All quantities are stored on p-points. This includes PV, which has the
simplified form,

PV =fpf - VP, 1)

(see (25) of [1] and the overbar on PV indicates anti-PV, not vertical interpolation). Inserting
(20) into (21) gives,
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This is the PV entirely in terms of the unbalanced pressure control variable. For the bulk PV
at level K, the discretization is as follows (note that all quantities are at horizontal position i, j
unless otherwise stated),
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In writing (23), the same approximations are used as for (4) - see bullet points after (4). a; (K)
and S (K) are vertical interpolation coefficients given as (5) and (6).

Vertical preconditioning involves adding-up vertical terms from neighbouring points of (23)

in the horizontal. Doing this removes the horizontal derivatives. Only the vertical terms
remain,
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Boxed terms need attention at the vertical boundaries. For Neumann boundary conditions (

0 = 0 (increments) at the top and bottom), terms marked 'A" are zero when K = N and terms
marked 'B' are zero when k = 1.

Given PV, Eq. (24) is inverted for p, with a tridiagonal solver for the preconditioning step.
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