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1. The balanced transform
For the balanced GCR solver, the following represents a simplified form of the -transformU������� �	��
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This is based in (22) of [1].   is a 3-d field where  (  is level-by-level global
mean) and  is the level-by-level global mean balanced pressure.  All quantities are stored
on -points.  This includes PV, which has the full form (15) of [1].
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where the overbar and hats denote vertical interpolation from -levels to -levels, and a
subscript '0' indicates a reference state quantity.  Inserting (1) into (2) gives
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This is the PV given entirely in terms of the balanced control variables.  For the bulk PV at
level , the discretization is as follows (note that all quantities are at horizontal position 
unless otherwise stated)
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In writing Eq. (4), for simplicity:

• Horizontal interpolation of reference state quantities to -points is ignored for
preconditioning.  Each value is taken at its 'home' point that has the same horizontal
index as the -point.

��
• Some quantities that are part of a compound vertical interpolation can be

approximately 'removed' from the compound and cancel with individual terms
outside.  For example (note that both overbar and hat indicate vertical interpolation)
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 and  are vertical interpolation coefficients,� 1 � k 
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1.1 Diagonal preconditioning of the balanced equation
Diagonal preconditioning involves ignoring terms in the right-hand-side of (4) that are
different from position .  This gives� i 8 j 8 k 
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The extra factors  and  that appear in (7) are unity except in the following circumstances:A B

• at the top of the domain ,  and� k � N � A � 0
• at the bottom of the domain , .� k � 1 � B � 0

This is an application of the Neumann boundary conditions.  Equation (7) can be parametrised
in the following way (at each horizontal position)
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The unknowns  and  are determined (noting the  requirement) by
multiplying (8) by  and then taking the global mean
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1.2 Vertical preconditioning of the balanced equation
Vertical preconditioning involves adding-up vertical terms from neighbouring points of (4) in
the horizontal.  Doing this removes the horizontal derivatives.  Only the vertical terms remain
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Equation (13) is a tridiagonal system of equations which can be solved for  at each
horizontal position.  Once  is known, it is then possible to derive the required fields from
(17)
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2. The unbalanced transform
For the unbalanced GCR solver, the following represents a form of the -transform,U&(' �*) + p�u � � 20 �, �
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where the overbar and hats denote vertical interpolation from -levels to -levels.  This is
taken from (26) of [1].  All quantities are stored on -points.  This includes , which has the
simplified form,
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(see (25) of [1] and the overbar on  indicates anti-PV, not vertical interpolation).  Inserting
(20) into (21) gives,
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This is the  entirely in terms of the unbalanced pressure control variable.  For the bulk 
at level , the discretization is as follows (note that all quantities are at horizontal position 
unless otherwise  stated),
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In writing (23), the same approximations are used as for (4) - see bullet points after (4).  
and  are vertical interpolation coefficients given as (5) and (6). � 1 � k �� � k �
Vertical preconditioning involves adding-up vertical terms from neighbouring points of (23)
in the horizontal.  Doing this removes the horizontal derivatives.  Only the vertical terms
remain,
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Boxed terms need attention at the vertical boundaries.  For Neumann boundary conditions (
 (increments) at the top and bottom), terms marked 'A' are zero when  and terms
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Given , Eq. (24) is inverted for  with a tridiagonal solver for the preconditioning step.PV
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