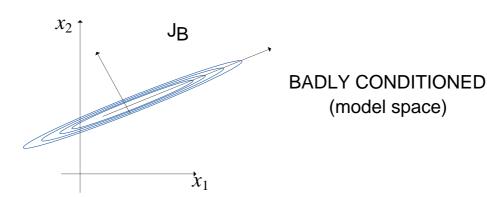
The Implementation of Potential Vorticity as a Leading Control Variable in Var.

Ross Bannister, Ian Roulstone, Mike Cullen, Nancy Nichols


Why not use model variables as control parameters?

$$J[\vec{x}] = J_B + J_O$$

$$= \frac{1}{2} \vec{x}'^T \mathbf{B}^{-1} \vec{x}' + \frac{1}{2} (\vec{H} [\vec{x}' + \vec{x}_B] - \vec{y})^T \mathbf{R}^{-1} (\vec{H} [\vec{x} + \vec{x}_B] - \vec{y})$$

where $\vec{x}' = \vec{x} - \vec{x}_B$

- **B** (in \vec{x} -space) contains > 10^{14} elements and cannot be represented explicitly.
- **B** (in \vec{x} -space) is badly conditioned max e.v./min e.v. ~ 10^{10} .

Solution: for variational data assimilation vary weights of the eigenvectors of B (instead of components of \vec{x}).

$$\vec{v}' = \mathbf{U}^{-1}\vec{x}'$$

$$\mathbf{U}^{-1} = \mathbf{\Lambda}^{-1/2}\mathbf{L}^{T}$$

$$\mathbf{B} = \mathbf{U}\mathbf{U}^{T}$$

 Λ diagonal matrix of e.values, columns of L are e.functions.

$$J[\vec{v}'] = \frac{1}{2} \vec{v}'^T \vec{v}' + \frac{1}{2} (\vec{H} [\mathbf{U} \vec{v}' + \vec{x}_B] - \vec{y})^T \mathbf{R}^{-1} (\vec{H} [\mathbf{U} \vec{v}' + \vec{x}_B] - \vec{y})$$

This problem is much better conditioned.

But, this can't be done directly

$$\vec{v}' = \mathbf{U}^{-1}\vec{x}'$$

$$= \mathbf{U}_h^{-1}\mathbf{U}_v^{-1}\mathbf{U}_p^{-1}\vec{x}'$$

$$\uparrow \quad \text{parameter transform}$$

1 vertical transform

↑ horizontal transform

The role of \mathbf{U}_p^{-1} is to 'block-diagonalize' the multi-variate correlations.

What parameters?

Existing scheme (pragmatic/engineering approach)

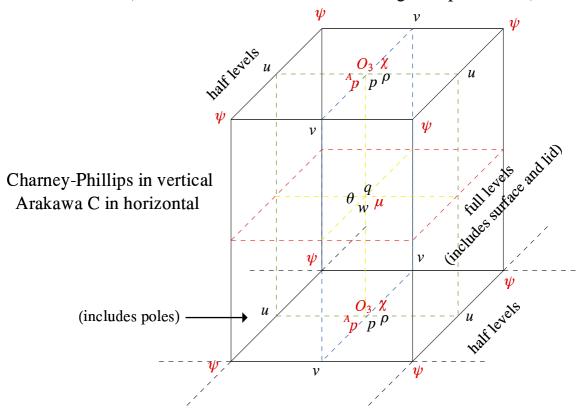
Subspace	Parameter	
\vec{v}_1	ψ	Captures most of the flow
\vec{v}_2'	χ	Captures most of the rest of the flow
\vec{v}_3'	^{A}p	Captures most of the rest of the flow

These are orthogonal but not uncorrelated

Proposed scheme (physics approach)

Subspac	ce Paramete	r
\vec{v}_1'	S	"Balanced" / "slow manifold" (PV)
\vec{v}_2'	^{U}p	Captures most of the rest of the flow
\vec{v}_3'	χ	Captures most of the rest of the flow

- These are orthogonal, but are expected to be only weakly correlated.
- The new parameters are thought to evolve independently, each occupying a separate region in normal mode space.


Why not assimilate using only the leading parameter?

What grid staggering for new parameters?

$$PV$$
, \overrightarrow{PV} , $\nabla \cdot \overrightarrow{v}$, s , ^{U}p , χ

Met Office Var. Grid Staggering (black: model variables; red: existing Var. parameters)

There is one more full level than half levels