.. ‘_: : 5" %;_*' e
_;‘,? 3 Mational Centre for o I =2 4 vili -* ¥ PrOJeCt
'J Earth Observation FRANC

——
=&

__ ™ "_.”: "-W;:ﬂ_"* i -'iLi; N ‘--.J_ -, . __::.--. . i - '
e -" b :
T -a .

Ross "Bann}stér TR S b == T NERC-
.Q,.Thanks to David Livings, Marek Wlag,ak ﬁc“a:r Martinez ﬁlvm




Non-Gaussianity of (Moisture) Errors in DA

e PDF ~ possible values of a quantity realisable.

e Normal (Gaussian) distribution used widely. A
| | o _ 2
— Mathematically convenient. S 0—\/<(X_<X>) )
. >
— Compact representation. ~
— Many quantities are Gaussian. =
— Many are not!

— Most data assimilation systems as- _
sume Gaussianity. <x> X
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Potential shortcomings assuming Gaussian stats in DA

(for the bg errs)

e Suboptimal analyses.
e Multi-modalities will be ignored.

e Can lead to unphysical values (e.g. neg con-
centrations). How can this happen?

— For direct obs, the analysis is a linear
combination of the b/g and the obs.

— Can still get neg concentrations in un-
observed quantities via correlations.

— Conceivable when state is to be in-
ferred. E.g. radiance assimilation
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How to incorporate non-Gaussian stats in DA

1. The particle filter

e \ery general. Unsuitable for operational use (currently ... ).

2. Transform (1) between 'non-Gaussian' and 'Gaussian’ perts

ox = T(ox)
T T

ox : errors that have  dx : (model space) errors that have
Gaussian bg errors  non-Gaussian bg errs

e Example: log-normal transformation.



How to incorporate non-Gaussian stats in DA

1. The particle filter

e \ery general. Unsuitable for operational use (currently ... ).

2. Transform (1) between 'non-Gaussian' and 'Gaussian’ perts

0y : errors that have

(Gaussian bg errors

e Example: log-normal transformation.

ox = T(ox)

T

dx . (model space) errors that have

non-Gaussian bg errs

e More generally: "Gaussian anamorphosis'.
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How to incorporate non-Gaussian stats in DA (cont.)

3. Method a la HAIm

e In DA, op (the background error standard e In the Holm method the standard deviation

deviation) modulates how much we are al- is conditioned on the RH value averaged be-
lowed to modify zp. tween the background and analysis values:
e op can be a function of RH.
A dr = op(|lzs + xal/2) dx,
Op where rp = g+ ox,

leading to the implicit non-linear Hélm
transform:

dx = op(ap + 0x/2) 0.

>
I

e [ he allowed increments reduce closer to the
0 RH (%) 100

boundaries.



Monte-Carlo experiments

e Background error PDFs are computed from 35 pairs of forecasts from the MetO UKV model.

— NMC method.
— T"— 6 minus T" — 3 forecast error proxy.

— Dry (RH 2%), medium (RH 61%) and moist (RH 99%) scenarios.
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— Tests: Non-Gaussian DA.

e Assimilation performed with Hélm:

— Controls: Gaussian DA with op found from non-Gaussian distribution.

— Tests: 'Gaussian’ DA with Hélm conditioning.



Anamorphosis results

Dry

Medium

Moist

Anamorphosis: DA Gaussian, xt = 2.01%

Runs using Gaussian data assimilation
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Anamorphosis: DA Gaussian, xt = 61%

Anamorphosis: DA Gaussian, xt = 99%

pa(r < 0) = 0.002
skew(pa) = 2.044

skew(pa) = 0.008
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HAlm results

Dry Medium Moist

pb(x), pa(x), po(ylxt)

Runs using data assimilation with constant op
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Conclusions

e Non-Gaussianity of errors should be considered in many real-world circumstances . ..

— Avoids ‘out-of-bounds’ in DA.

e ... but most operational DA schemes rely on Gaussianity.

e Non-Gaussianity can be accounted for using many methods:

— Particle filters.
— Transform methods:

* Gaussian anamorphosis.

* (Special example log-normal).
— Non-linear conditioning:
x As Holm.

e We consider non-Gaussian background errors, but observations can also be non-Gaussian.

e Gaussian anamorphosis uses the correct non-Gaussian distribution.

e Holm attempts to control analysis increments based on a variable op conditioned on the
average of the background and the analysis.

e Gaussian anamorphosis is more successful than Holm in our experiments (proportion of points
out-of-bounds and skewness measures).
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