

Non-Gaussianity

oi<mark>l</mark>

(Moisture) Errors

in

Data Assimilation

Project

FRANC

Ross Bannister

Thanks to David Livings, Marek Wlasak, Oscar Martinez-Alvarado

Non-Gaussianity of (Moisture) Errors in DA

- ullet PDF \sim possible values of a quantity realisable.
- Normal (Gaussian) distribution used widely.
 - Mathematically convenient.
 - Compact representation.
 - Many quantities are Gaussian.
 - Many are not!
 - Most data assimilation systems assume Gaussianity.

Non-Gaussianity of (Moisture) Errors in DA

- ullet PDF \sim possible values of a quantity realisable.
- Normal (Gaussian) distribution used widely.
 - Mathematically convenient.
 - Compact representation.
 - Many quantities are Gaussian.
 - Many are not!
 - Most data assimilation systems assume Gaussianity.

Potential shortcomings assuming Gaussian stats in DA (for the bg errs)

- Suboptimal analyses.
- Multi-modalities will be ignored.
- Can lead to unphysical values (e.g. neg concentrations). How can this happen?
 - For direct obs, the analysis is a linear combination of the b/g and the obs.
 - Can still get neg concentrations in unobserved quantities via correlations.

Conceivable when state is to be inferred.
 Ferred.
 Fig. radiance assimilation

Horiz. modelled wind too strong

Measured region
(y^{model} > y^{meas})

Source

How to incorporate non-Gaussian stats in DA

1. The particle filter

• Very general. Unsuitable for operational use (currently . . .).

2. Transform (T) between 'non-Gaussian' and 'Gaussian' perts

```
\delta\chi=T(\delta x)
\uparrow
\delta\chi: errors that have \delta x: (model space) errors that have Gaussian bg errors non-Gaussian bg errs
```

• Example: log-normal transformation.

How to incorporate non-Gaussian stats in DA

1. The particle filter

Very general. Unsuitable for operational use (currently . . .).

2. Transform (T) between 'non-Gaussian' and 'Gaussian' perts

$$\frac{\delta \chi}{\uparrow} = T(\delta x)$$

 $\delta \chi$: errors that have δx : (model space) errors that have Gaussian bg errors non-Gaussian bg errs

- Example: log-normal transformation.
- More generally: 'Gaussian anamorphosis'.

How to incorporate non-Gaussian stats in DA (cont.)

3. Method à la Hólm

- In DA, $\sigma_{\rm B}$ (the background error standard deviation) modulates how much we are allowed to modify $x_{\rm B}$.
- \bullet $\sigma_{\rm B}$ can be a function of RH.

 In the Hólm method the standard deviation is conditioned on the RH value averaged between the background and analysis values:

$$\delta x = \sigma_{\rm B}([x_{\rm B} + x_{\rm A}]/2) \, \delta \chi,$$
 where $x_{\rm A} = x_{\rm B} + \delta x,$

leading to the implicit non-linear Hólm transform:

$$\delta x = \sigma_{\rm B}(x_{\rm B} + \delta x/2) \, \delta \chi.$$

 The allowed increments reduce closer to the boundaries.

- Background error PDFs are computed from 35 pairs of forecasts from the MetO UKV model.
 - NMC method.
 - -T-6 minus T-3 forecast error proxy.
 - Dry (RH 2%), medium (RH 61%) and moist (RH 99%) scenarios.

- Background error PDFs are computed from 35 pairs of forecasts from the MetO UKV model.
 - NMC method.
 - -T-6 minus T-3 forecast error proxy.
 - Dry (RH 2%), medium (RH 61%) and moist (RH 99%) scenarios.
- Run an ensemble of data assimilations (10^6 samples).
 - Obs sampled from a Gaussian with $\sigma_{\rm O}=2\%$ (allowed to go 'out of bounds').
 - Bgs sampled from the relevant non-Gaussian (allowed to go 'out of bounds').

- Background error PDFs are computed from 35 pairs of forecasts from the MetO UKV model.
 - NMC method.
 - -T-6 minus T-3 forecast error proxy.
 - Dry (RH 2%), medium (RH 61%) and moist (RH 99%) scenarios.
- Run an ensemble of data assimilations (10^6 samples).
 - Obs sampled from a Gaussian with $\sigma_{\rm O}=2\%$ (allowed to go 'out of bounds').
 - Bgs sampled from the relevant non-Gaussian (allowed to go 'out of bounds').
- Assimilation performed with anamorphosis:
 - Controls: Gaussian DA with $\sigma_{\rm B}$ found from non-Gaussian distribution.
 - Tests: Non-Gaussian DA.

- Background error PDFs are computed from 35 pairs of forecasts from the MetO UKV model.
 - NMC method.
 - -T-6 minus T-3 forecast error proxy.
 - Dry (RH 2%), medium (RH 61%) and moist (RH 99%) scenarios.
- Run an ensemble of data assimilations (10^6 samples).
 - Obs sampled from a Gaussian with $\sigma_{\rm O}=2\%$ (allowed to go 'out of bounds').
 - Bgs sampled from the relevant non-Gaussian (allowed to go 'out of bounds').
- Assimilation performed with anamorphosis:
 - Controls: Gaussian DA with $\sigma_{\rm B}$ found from non-Gaussian distribution.
 - Tests: Non-Gaussian DA.
- Assimilation performed with Hólm:
 - Controls: Gaussian DA with $\sigma_{\rm B}$ found from non-Gaussian distribution.
 - Tests: 'Gaussian' DA with Holm conditioning.

Anamorphosis results

Dry

Medium

Moist

Runs using Gaussian data assimilation

$$p_{\rm A}(x < 0) = 0.019$$

skew $(p_{\rm A}) = 1.004$

$$skew(p_A) = 0.003$$

$$p_{\rm A}(x > 100) = 0.056$$

skew $(p_{\rm A}) = -1.739$

Runs using non-Gaussian data assimilation

$$p_{\rm A}(x < 0) = 0.002$$

skew $(p_{\rm A}) = 2.044$

$$skew(p_A) = 0.008$$

$$p_{\rm A}(x > 100) = 0.008$$

skew $(p_{\rm A}) = -2.684$

Hólm results

Dry

Medium

Moist

Runs using data assimilation with constant $\sigma_{\rm B}$

$$p_{\rm A}(x < 0) = 0.022$$

skew $(p_{\rm A}) = 1.030$

$$skew(p_A) = 0.006$$

 $p_{\rm A}(x > 100) = 0.156$ skew $(p_{\rm A}) = -0.183$

Runs using data assimilation with σ_{B} according to Hólm

$$p_{\rm A}(x < 0) = 0.004$$

skew $(p_{\rm A}) = 1.306$

$$skew(p_A) = 0.006$$

$$p_{\rm A}(x > 100) = 0.192$$

skew $(p_{\rm A}) = 0.096$

Conclusions

- Non-Gaussianity of errors should be considered in many real-world circumstances . . .
 - Avoids 'out-of-bounds' in DA.
- ... but most operational DA schemes rely on Gaussianity.
- Non-Gaussianity can be accounted for using many methods:
 - Particle filters.
 - Transform methods:
 - * Gaussian anamorphosis.
 - * (Special example log-normal).
 - Non-linear conditioning:
 - * As Hólm.
- We consider non-Gaussian background errors, but observations can also be non-Gaussian.
- Gaussian anamorphosis uses the correct non-Gaussian distribution.
- ullet Hólm attempts to control analysis increments based on a variable $\sigma_{
 m B}$ conditioned on the average of the background and the analysis.
- Gaussian anamorphosis is more successful than Hólm in our experiments (proportion of points out-of-bounds and skewness measures).