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1. The gradient and Hessian of the 3d-Var. cost function derived from first principles

(a) The background term
The background term of the 3d-Var. cost function in matrix notation is the scalar

JB =
1
2

(xå − xå B)T B−1 (xå − xå B) .

This is a matrix expression (matrix algebra has implied summations).

(i) Derive the first derivative JB

Expand-out this matrix expression as a double summation (indices  and ), each
running over the  components of .

i j
n xå

Find the partial derivative of  with respect to one component of  (say ).JB xå xk

Arrange the derivatives with respect to each   into a column vector
(ie let  be the th element in the vector).

xk (1 ≤ k ≤ n)
∂ JB / ∂ xk k

Given that the matrix  is symmetric, show that the matrix expressionB−1

B−1 (xå − xå B) ,
evaluates to the same column vector.  This expression is often denoted as .∇xJB

(ii) Derive the second derivative of JB

Differentiate again your expanded expression for , with respect to a
different component of  (say ).  Show that by arranging the components in a
matrix (ie let  form the th matrix element), that the result is .

∂ JB / ∂ xk

xå xl

∂ 2JB / ∂ xk∂ xl (k, l) B−1

(b) The observation term
The observation term of the 3d-Var. cost function in matrix notation is the scalar

JO =
1
2

(yå − hå )T R−1 (yå − hå ) ,

where  is a function of  and maps from -element  space to -element  space.hå xå n xå p yå

(i) Derive the first derivative of JO

Expand-out this matrix expression as a double summation (indices  and ), each
running over the  components of  and .

q r
p yå hå

Find the partial derivative of  with respect to one component of  (say ).JO hå hi

Arrange the derivatives with respect to each   into a column vector (ie
let  be the th element in the vector).

hi (1 ≤ i ≤ p)
∂ JO / ∂ hi i

Given that the matrix  is symmetric, show that the matrix expressionR−1

−R−1 (yå − hå ) ,
evaluates to the same column vector.
The vector function  is a function of .  Let it be linearized about hå xå x0
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hå [xå ] ≈ hå [xå 0] + H (xå − xå 0) ,

= Hxå + constantå ,
where  is the Jacobian matrixH

H =
∂ hå [xå ]
∂ xå |

x0

,   Hik =
∂ hi [xå ]
∂ xk

|
x0

.comprising elements

The generalised chain rule relates partial derivatives of a scalar with respect to  to
derivatives of the scalar with respect to  as follows

xk

hi

∂ JO

∂ xk
= ∑

p

i = 1

∂ hi

∂ xk

∂ JO

∂ hi
.

Apply this result to the partial derivatives with respect to  found above.hi

Arrange the derivatives with respect to each   into a column vector
(ie let  be the th element in the vector).  Show that the matrix expression

xk (1 ≤ k ≤ n)
∂ JO / ∂ xk k

−HTR−1 (yå − hå ) ,
evaluates to the same column vector.  This expression is often denoted as .∇xJO

(ii) Derive the second derivative of JO

Differentiate again your expanded expression for , with respect to a
different component of  (say ).  Show that by arranging the components in a
matrix (ie let  form the th matrix element), that the result is 

.

∂ JO / ∂ xk

xå xl

∂ 2JO / ∂ xk∂ xl (k, l)
HTR−1H

2. Proof that the analysis error covariance matrix is the inverse Hessian

Let  represent the unknown 'true' state of the atmosphere.  The analysis, , background, 
and observations,  may then be defined as the true state plus unknown errors ,  and 
respectively, which have error covariance matrices ,  and  respectively

x0 xå A xå B

yå εå A εå B εå y

PA B R

,xå A = xå t + εå A ,PA = 〈εå Aεå T
A〉

,xå B = xå t + εå B ,B = 〈εå Bεå T
B〉

,yå = hå [xå t] + εå y ,R = 〈εå yεå T
y 〉

where angled brackets denote the mean value.  The optimal interpolation (OI) formula,
which approximates the variational analysis, is

xå A = xå B + K (yå − hå [xB
å ]) ,

K = BHT (R + HBHT)−1 .where 

The observation operator  may be linearized about hå [xB
å ] xt

hå [xå B] ≈ hå [xå t] + H (xå B − xå t) = hå [xå t] + Hεå B.

(a) Substitute this linearization into the OI formula and derive an expression for .εå A

(b) Show that the matrix  (as defined above) has the formPA
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PA = (I − KH) B,
where  is the identity matrix.I

(c) Use the definition of  and the Sherman-Morrison-Woodbury identity shown in Q5 to
show that  can have the form

K
PA

PA = (B−1 + HTR−1H)−1 ,
which is the inverse of the Hessian matrix, .B−1 + HTR−1H

3. Finding the inverse of a symmetric matrix

The formula for the inverse of a  symmetric matrix is2 × 2

( )−1

=
1

ac − b2 ( ) .a b
b c

c −b
−b a

(a) Confirm that this result is the inverse matrix.

(b) Under what circumstance can the inverse not be evaluated?

(c) Is the matrix said to be singular or non-singular under this circumstance?

(d) Interpret the meaning of the case when the Hessian matrix is singular.

4. Forward model example and its adjoint - total column amount

In chemical data assimilation, the aim is to assimilate observed chemical concentrations into
a chemical transport model (CTM) of the atmosphere.  A common observation product
produced from nadir viewing (downward looking) satellites is a so-called 'total column'
amount.  This is a non-local quantity and requires a forward model.  Variational assimilation
can use the information contained in such a measurement via the forward model and its
adjoint.

A transport model may represent ozone concentrations on a set of  vertical height levels.
The level height, , the air density , and the ozone mass mixing ratio,  are stored on each
level.  Level 1 is the Earth's surface and level  is well above the ozone layer.

n
zi ρi φi

n

(a) Given that the amount of ozone per  unit horizontal area in one of the  layers of the
model is approximated by  (ie average density ×
average ozone mixing ratio × layer thickness), write down the total column ozone per
unit area according to the model state.

n − 1
(ρi + ρi+1) (φi + φi+1) (zi+1 − zi) / 4

(b) A particular nadir viewing satellite contains two separate instruments from which the
total column ozone can be deduced.  One measurement from each instrument is made at
the same time.  These measurements have the following characteristics:

Measurement Value Standard deviation

1 y1 σ1

2 y2 σ2
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Given that errors of the two measurements are uncorrelated, write down the inverse of
the observation error covariance matrix, .R−1

(c) The two measurements are to be used to improve the model's representation of  ozone
via the '3d-Var.' procedure.  Given that the background model ozone values are  (

), write down the two-element innovation vector.
φB

i

i = 1, n

(d) The Jacobian,  says how sensitive the model observations are to changes in model
values.  Give expressions for the following six matrix elements of 

H
H

( ) |
xB

,
∂ h1 / ∂φ1 ∂ h1 / ∂φ2 … ∂ h1 / ∂φn

∂ h2 / ∂φ1 ∂ h2 / ∂φ2 … ∂ h2 / ∂φn

where  is the vector representing model background ozone values, iexå B

xå B = (φB
1, φB

2, … , φB
n)T .

(Note that the two rows of  are identical as both measurements are of the same thing!)H

(e) Write down the gradient .  Explain why the background term does not contribute to
the gradient on the first iteration of 3d-Var.

∇xJ

(f) Write down the Hessian for this problem.  Let the inverse of the background error
covariance matrix be:

B−1 = ( ) .

β11 β12 … β1n

β21 β22 … β2n

… … … …
βn1 βn2 … βnn

Check that the observation component of the Hessian is an  matrix.n × n

(g) How can we use the Hessian, evaluated at the cost function minimum, to estimate the
analysis errors?

(h) What property of the Hessian implies that the cost function is convex (has a minimum
with respect to all variables)?

5. Proof of matrix identity

Prove that the following matrix identity (called the Sherman-Morrison-Woodbury formula)
holds

(B−1 + HTR−1H) BHT = HTR−1 (R + HBHT) .

6. Assimilation of a single observation in Var. to probe the background error covariance
structure

By using the equivalence between the optimal interpolation formula and Var., show that the
assimilation of a single direct observation results in analysis increments that are proportional
to a column of the background error covariance matrix.
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