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1. Thegradient and Hessian of the 3d-Var. cost function derived from first principles

(&) The background term
The background term of the 3d-Var. cost function in matrix notation is the scalar

1 _
Jp = (X~ Xg) B (X — Xg).
This is a matrix expression (matrix algebra has implied summations).

(i) Derive the first derivativdg

Expand-out this matrix expression as a double summation (indaces), each
running over th& components of.

Find the partial derivative afz with respect to one componentofsayx).

Arrange the derivatives with respect to egclil < k < n)into a column vector
(ie letdJg/ dx, be thekth element in the vector).

Given that the matriB* is symmetric, show that the matrix expression
B_l (y( - y(B)a
evaluates to the same column vector. This expression is often den®tgd. as

(if) Derive the second derivative 8

Differentiate again your expanded expressiordfiy/ Jx,, with respect to a
different component df (sayx). Show that by arranging the components in a
matrix (ie letd?Jg/ Ixd% form the(k, Ith matrix element), that the resultBs".

(b) The observation term
The observation term of the 3d-Var. cost function in matrix notation is the scalar

1., 7.9, o
Jo =50 -MRG- M,
whereh is a function ofk and maps from-elemeni space tg-elementy space.

() Derive the first derivative alg
Expand-out this matrix expression as a double summation (inglenedr), each
running over thgp components oy andh.

Find the partial derivative afp with respect to one componentFo{sayhi).

Arrange the derivatives with respect to ebgctl < 1 < p) into a column vector (ie
let dJo/ dh; be theith element in the vector).

Given that the matriR™ is symmetric, show that the matrix expression
Ry - h),

evaluates to the same column vector.

The vector functiom is a function oi. Let it be linearized abou
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-

AX] ~ R[%] + H & - %),

HX + constant

whereH is the Jacobian matrix

H = ag;)q o comprising elements  Hi. = agikx ] %

The generalised chain rule relates partial derivatives of a scalar with resgeict to
derivatives of the scalar with respechias follows

o _ Il
X & ox oh’
Apply this result to the partial derivatives with respedt tmund above.

Arrange the derivatives with respect to ea&¢cfil < k < n)into a column vector
(ie letdJo/ I be thekth element in the vector). Show that the matrix expressic

~H'R™(y - h),
evaluates to the same column vector. This expression is often den®tgd.as

(if) Derive the second derivative 3§

Differentiate again your expanded expressiorvfiy/ Jdx,, with respect to a
different component df (sayx). Show that by arranging the components in a
matrix (ie letd?Jo/ Ixdx form the(k, 1)th matrix element), that the result is
H'RH.

2. Proof that theanalysiserror covariance matrix istheinver se Hessian
Let X represent the unknown 'true’ state of the atmosphere. The analys&skgroundys
and observationg,may then be defined as the true state plus unknown 8gr@esandz,
respectively, which have error covariance matrge8 andR respectively

Xpn = X + €a, Pr = <§A§X>,
Xg = X + s, B = (535@,
y = h[X] + _éy, R = (é’yé’}),

where angled brackets denote the mean value. The optimal interpolation (Ol) formula,
which approximates the variational analysis, is

% = X + K (Y — hxal),
whereK = BHT(R + HBH') ™.
The observation operatBr[fB] may be linearized abowt
hiXel ~ hiX] + H® — %) = hIX] + HZ.
(a) Substitute this linearization into the Ol formula and derive an expressiég for

(b) Show that the matrii, (as defined above) has the form
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Prn = (I - KH)B,
wherel is the identity matrix.

(c) Use the definition oK and the Sherman-Morrison-Woodbury identity shown in Q5 t
show thatP, can have the form

Pa= (B'+HR™H™,
which is the inverse of the Hessian matBxt + H'R*H.

3. Finding theinverse of a symmetric matrix
The formula for the inverse ofzax 2 symmetric matrix is

! c -b
ac - b?\-b a

ab
bc

(@) Confirm that this result is the inverse matrix.

(b) Under what circumstance can the inverse not be evaluated?
(c) Is the matrix said to b&ngular or non-singular under this circumstance?

(d) Interpret the meaning of the case when the Hessian matrix is singular.

4. Forward model example and its adjoint - total column amount

In chemical data assimilation, the aim is to assimilate observed chemical concentratior
a chemical transport model (CTM) of the atmosphere. A common observation product
produced from nadir viewing (downward looking) satellites is a so-called 'total column'
amount. This is a non-local quantity and requires a forward model. Variational assimil
can use the information contained in such a measurement via the forward model and i
adjoint.

A transport model may represent ozone concentrations on arseexical height levels.
The level heightz;, the air density;, and the ozone mass mixing raggare stored on each
level. Level 1 is the Earth's surface and levisl well above the ozone layer.

(a) Given that the amount of ozone per unit horizontal area in one of-thg layers of the
model is approximated y; + pi) (¢i + ¢in) (Z.1 — Z)/ 4 (ie average density
average ozone mixing ratiolayer thickness), write down the total column ozone per
unit area according to the model state.

(b) A particular nadir viewing satellite contains two separate instruments from which tr
total column ozone can be deduced. One measurement from each instrument is n
the same time. These measurements have the following characteristics:

MeasurementValue Standard deviation

1 Y1 o1
2 ) 02
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(©)

(d)

(€)

(f)

(9)

(h)

Given that errors of the two measurements are uncorrelated, write down the invers
the observation error covariance matRx>.

The two measurements are to be used to improve the model's representation of o
via the '3d-Var.' procedure. Given that the background model ozone valgég are
i = 1, n), write down the two-element innovation vector.

The Jacobiart] says how sensitive the model observations are to changes in mode
values. Give expressions for the following six matrix elemenits of

dhyl d¢y dhil dg, ... dhyl Iy,
Iyl dpy Il Ay ... Ihpl Iy ||,
whereXg is the vector representing model background ozone values, ie

X)B = (¢i ¢g’ tee (p%T
(Note that the two rows & are identical as both measurements are of the same thi

Write down the gradier¥,J. Explain why the background term does not contribute 1
the gradient on the first iteration of 3d-Var.

Write down the Hessian for this problem. Let the inverse of the background error
covariance matrix be:

ﬁll ﬁlZ ﬁln
Bfl — ﬁZl ﬁ22 ﬂZn

ﬁnl ﬁnz ﬁnn
Check that the observation component of the Hessiannsan matrix.

How can we use the Hessian, evaluated at the cost function minimum, to estimate
analysis errors?

What property of the Hessian implies that the cost function is convex (has a minim
with respect to all variables)?

Proof of matrix identity

Prove that the following matrix identity (called the Sherman-Morrison-Woodbury formu
holds

(B'+ H'R'™H)BH" = H'R™(R + HBH).

Assimilation of a single observation in Var. to probe the background error covariance

structure
By using the equivalence between the optimal interpolation formula and Var., show the

assimilation of a single direct observation results in analysis increments that are propo
to a column of the background error covariance matrix.



