MSc Course: Theory and Techniques of Data Assimilation

Ross Bannister, room 1U11, Dept. of Meteorology, Univ. of Reading, r.n.bannister@reading.ac.uk Version 2007

Section A: List Of Topics And References

A.1: List Of Topics

A. References.
B. Introduction - why do data assimilation?
C. 3-dimensional variational assimilation and operational data assimilation.
D. The gradient and Hessian of the cost function.
E. Example observation operators.
F. Minimization algorithms.
G. Preconditioning.

A.2: Further Reading

- Kalnay E., Atmospheric Modelling, Data Assimilation and Predictability, Ch. 5.
- Daley, Atmospheric Data Analysis, Ch.13.
- ECMWF, Data assimilation course handouts, http://
www.ecmwf.int/newsevents/training/lecture_notes/LN_DA.htm1.
- Schlatter T.W., Variational assimilation of meteorological observations in the lower atmosphere: a tutorial on how it works, Journal of atmospheric and solar-terrestrial physics 62, pp. 1057-1070 (2000).
- Lorenc et al., The Met Office global 3-dimensional variational assimilation scheme, QJRMS 126, pp. 2991-3012 (2000).
- This handout and other notes, http://www.met.rag.ac.uk/ ~ross/DARC/MSc/MSc.html.

B.1: Why do we need to do data assimilation (DA)?

- Bjerknes, 1911: The "ultimate problem in meteorology".
- Leith, 1993: The atmosphere "is a chaotic system in which errors introduced into the system can grow with time ... As a consequence, data assimilation is a struggle between chaotic destruction of knowledge and its restoration by new observations".

Fig. 1a: Two initially similar free-running forecasts (trajectories A and B) showing sensitive dependence on initial conditions ('chaos'). After a point in time the trajectories diverge. After this point, it might be found that neither is close to the true trajectory. Feeding-in observations (dots) using DA (trajectory C) can help keep the model close to the 'truth'.

Data Coverage: Sonde (29/1/2007, 0 UTC, qu00) Total number of observations assimilated: 1553

Data Coverage: SatRad ATOVS (29/1/2007, 0 UTC, qu00)
Total number of observations assimilated 28840

Fig 1b: Example coverage of radiosonde measurements and ATOVS satellite observation locations.

C.1: How is data assimilation used in weather forecasting?

Fig. 2: The intermittent 'data assimilation cycle' showing use of a variational scheme as the data assimilation method.

C.3: What is the 3d-Var. cost function?

$$
\begin{equation*}
J[\vec{x}]=\frac{1}{2}\left(\vec{x}-\vec{x}_{B}\right)^{T} \mathbf{B}^{-1}\left(\vec{x}-\vec{x}_{B}\right)+\frac{1}{2}(\vec{y}-\vec{h}[\vec{x}])^{T} \mathbf{R}^{-1}(\vec{y}-\vec{h}[\vec{x}]), \tag{16}
\end{equation*}
$$

J is minimized for $J\left[\vec{x}=\vec{x}_{A}\right]$.

Fig. 3: The meaning of the state vector. The vector has n elements.

Fig. 4: State space schematic for $n=3$.

$$
\begin{array}{lllllll}
\vec{x}_{B} & & & & \mathbf{B} & & \\
& & \vec{u} & \vec{v} & \vec{\theta} & \vec{p} & \vec{q}
\end{array}
$$

\vec{u} E.ward wind field \vec{v} N.ward wind field $\vec{\theta}$ pot. temp. field \vec{p} pressure field \vec{q} humidity field

Fig. 5: The background error covariance matrix for a forecast given in the state space of Fig. 3. Each square is itself a matrix. Sub-matrices along the diagonal (deep yellow) are called 'self-covariances' and off-diagonal submatrices are called 'multivariate covariances'.

Fig. 6: The observation error covariance matrix (right) shown against the observation vector (left). Often observation errors are taken to be uncorrelated with each other and so \mathbf{R} is diagonal. The diagonal matrix elements are the respective observation variances (equal to the square of the standard deviations) and the off-diagonal elements are zero. There are p observations.

C.4: What is '3d' about 3d-Var.?

Fig. 7: Under the formulation of 4d-Var. (top), observations are used at their correct time. In 3d-Var. (bottom), the observations within a six-hour cycle are taken as though they have been made at the same time. In each case, the analysis time is at $t=0$.

$$
\begin{aligned}
& \text { Observation (this cycle) } \\
& \text { (other cycles) }
\end{aligned}
$$

C.5: How 'large' is an operational 3d-Var. system?

Observations used in global data assimilation in October 2000.

Obs Group	Sub-group	Items used	Daily	\% used
Groumd-based Vertical proffes	TEMP	T. V, PH processed to model layer average	1200	$\frac{97}{}$
	PLIOT	As TEMP Dit V only	900	99
	PROFREF	As TEMP but V only (used from Feb 2001)	300	0 (65)
Satelite-based Ventical proties	Tovs	Radiances directly assimilited wilh channel selection dependent on sumace, instrument and cloudiness	54000	11
	ATOVS		70000	4
Afreraft (manuaid \& automated)	ARREPS	T, V as reported with duplicate checkitry and blacklist	14000	21
	ACARS AubAF ASDAR		67000	60
Sateltite atmospheric motion vectors	GOES 8.10	High es BuFm'ta winds	55000	24
	Meteosat 5, 7	If. VIS and WV winds	9200	98
	GMS 5	IP. VIS and WV winds	5200	93
Satclite besed surface	ERS 2	wind vector retrievals lamiliguous winds from Feb 20011	170000	0
	5sml-13	in house 10VAR wind speed retrieval (no moisture yet)	1450000	1
Ground-based sufface	Land Synop	Pressure only (processed to model surface)	27000	80
	Ship Synop	Pressure and wind	6000	9095
	Bupy	Pressure	9000	75

Typical coverage maps are available at
htf: $/ /$ whw, metofficecom/reseamh/nwnotservations/data_coverage/indexhtm

 o the watational analysis. For comparison, the mew Met Office model has about 4.357 degrees of treenom
 fariabies.

Fig. 8: Typical observations assimilated in Met Office Var. (A. Lorenc, Oxford RAL Spring School Lecture, 2001.)

1993-1999 VAR coding took 42 person-years from 35 diferent pecple.
March 2001
Subroumes modules etc. Lines

	3D-Var	976	338976
PF \& adioint models (converting 3D-Var to 4D-Var)	156	8741	
Obs processing \& general utilites	1085	277600	
Unified Model (vn5.1)	2037	522624	

The current global 3D-Var system uses -8 times more computer resources to assimilate 1 days' data, than to do a 1 day forecast.
-60% scales with resclution, -40% scales with number of observations.
For the ECMWF 4D-Var system the ratio is $-20-40$.
Fig. 9: The amount of computer code written for the Met Office Var. system is comparable to that of the Met Office forecast model. (A. Lorenc, Oxford RAL Spring School Lecture, 2001.)

C.6: How many iterations are required to minimize J?

$$
\begin{equation*}
J\left[\vec{x}=\vec{x}_{A}\right] \sim \frac{p}{2} . \tag{2}
\end{equation*}
$$

Met Office Operational Forecast 14/01/03

Fig 10: Value of the cost function and its components as a function of iteration for Met Office 3d-Var.

C.7: How is Var. related to the optimal interpolation formula?

$$
\begin{align*}
& \text { Let } \vec{x}=\vec{x}_{B}+\delta \vec{x}, \\
& \text { then } \vec{h}\left[\vec{x}_{B}+\delta \vec{x}\right] \approx \vec{h}\left[\vec{x}_{B}\right]+\mathbf{H} \delta \vec{x} \text {. } \\
& \mathbf{H}=\left.\frac{\partial \vec{h}}{\partial \vec{x}}\right|_{\vec{x}_{B}}, \\
& \mathbf{H}_{i j}=\frac{\partial h_{i}}{\partial x_{j}}(1 \leqslant i \leqslant p, \quad 1 \leqslant j \leqslant n) . \tag{5}\\
& J=\frac{1}{2} \delta \vec{x}^{T} \mathbf{B}^{-1} \delta \vec{x}+\frac{1}{2}\left(\vec{y}-\vec{h}\left[\vec{x}_{B}\right]-\mathbf{H} \delta \vec{x}\right)^{T} \mathbf{R}^{-1}\left(\vec{y}-\vec{h}\left[\vec{x}_{B}\right]-\mathbf{H} \delta \vec{x}\right), \\
& =\frac{1}{2} \delta \vec{x}^{T} \mathbf{B}^{-1} \delta \vec{x}+\frac{1}{2}\left(\mathbf{H} \delta \vec{x}-\left\{\vec{y}-\vec{h}\left[\vec{x}_{B}\right]\right\}\right)^{T} \mathbf{R}^{-1}\left(\mathbf{H} \delta \vec{x}-\left\{\vec{y}-\vec{h}\left[\vec{x}_{B}\right]\right\}\right) . \\
& \nabla_{x} J\left[\delta \vec{x}=\delta \vec{x}_{A}\right]=\mathbf{B}^{-1} \delta \vec{x}_{A}+\mathbf{H}^{T} \mathbf{R}^{-1}\left(\mathbf{H} \delta \vec{x}_{A}-\left\{\vec{y}-\vec{h}\left[\vec{x}_{B}\right]\right\}\right)=0, \\
& \left(\mathbf{B}^{-1}+\mathbf{H}^{T} \mathbf{R}^{-1} \mathbf{H}\right) \delta \vec{x}_{A}=\mathbf{H}^{T} \mathbf{R}^{-1}\left(\vec{y}-\vec{h}\left[\vec{x}_{B}\right]\right), \\
& \delta \vec{x}_{A}=\vec{x}_{A}-\vec{x}_{B}=\left(\mathbf{B}^{-1}+\mathbf{H}^{T} \mathbf{R}^{-1} \mathbf{H}\right)^{-1} \mathbf{H}^{T} \mathbf{R}^{-1}\left(\vec{y}-\vec{h}\left[\vec{x}_{B}\right]\right) . \tag{7}\\
& \left(\mathbf{B}^{-1}+\mathbf{H}^{T} \mathbf{R}^{-1} \mathbf{H}\right) \mathbf{B} \mathbf{H}^{T}=\mathbf{H}^{T} \mathbf{R}^{-1}\left(\mathbf{R}+\mathbf{H B} \mathbf{H}^{T}\right), \tag{8}\\
& \left(\mathbf{B}^{-1}+\mathbf{H}^{T} \mathbf{R}^{-1} \mathbf{H}\right)^{-1} \mathbf{H}^{T} \mathbf{R}^{-1}=\mathbf{B} \mathbf{H}^{T}\left(\mathbf{R}+\mathbf{H B} \mathbf{H}^{T}\right)^{-1}, \\
& \vec{x}_{A}-\vec{x}_{B}=\mathbf{B H}^{T}\left(\mathbf{R}+\mathbf{H B H}^{T}\right)^{-1}\left(\vec{y}-\vec{h}\left[\vec{x}_{B}\right]\right) . \tag{9}
\end{align*}
$$

C.8: Why is 3d-Var. favoured over optimal interpolation?

Level	Temperature		Feight or PMSL		Vector Wind		$\begin{array}{cc}\text { Relative } \\ \mathbf{T}+0 & \mathrm{~T}+\mathbf{0}\end{array}$	
	T+ ${ }^{\text {a }}$	「 $1+6$	I +U	$T+6$		$T+6$		
100tiPa	-5.5	-3.3	-0.1	-3.2	15,2	5.3		
$250 h \mathrm{~Pa}$	0.8	0.0	4.8	2.5	16.8	4.9		
500 hPa	5.5	2.7	35	5.4	14.4	3.7	5.5	2.9
700 PPa	7.2	3.4	2.1	5.2	15.4	2.8	3.7	2.5
8501 Pa	6.6	1.4	1.4	3.7	9	1.8	2.5	1.5
Surface	-1.5	-0.7	6.8	-0.2	1.2	0.6		

Fig. 11: Performance of the Met Office 3d-Var. scheme for operational weather forecasting vs. the old Analysis Correction (AC) scheme. The AC scheme is a flavour of OI. Taken from Lorenc et al., 2000.

C.9: Why do we need to worry about the error covariance matrices?

Errors are a fundamental consideration in data assimilation: all models are wrong and all observations are inaccurate.

MIGHT RAIN A BIT-

$$
\begin{array}{rlr}
\vec{x}_{A}=\vec{x}_{t}+\vec{\varepsilon}_{A}, & \mathbf{P}_{A}=\left\langle\vec{\varepsilon}_{\overrightarrow{2}} \vec{\varepsilon}_{A}^{T}\right\rangle, \\
\vec{x}_{B}=\vec{x}_{t}+\vec{\varepsilon}_{B}, & \mathbf{B}=\left\langle\vec{\varepsilon}_{B} \vec{\varepsilon}_{B}^{T}\right\rangle, \\
\vec{y}=\vec{h}\left[\vec{x}_{t}\right]+\vec{\varepsilon}_{y}, & \mathbf{R}=\left\langle\left\langle\vec{\varepsilon}_{y} \vec{e}_{y}^{T}\right\rangle,\right. \\
& \mathbf{P}_{A}=(\mathbf{I}-\mathbf{K H}) \mathbf{B} \\
& =\left(\mathbf{B}^{-1}+\mathbf{H}^{T} \mathbf{R}^{-1} \mathbf{H}\right)^{-1} \\
& =\mathbf{A}^{-1} &
\end{array}
$$

Fig. 12: Analysis increments in Var., $\delta \vec{x}_{A}$.

Section D. The Gradient And Hessian Of The Cost Function

D.1: What is the gradient vector?

$$
\nabla_{x} J=\frac{\partial J}{\partial \vec{x}}=\left(\begin{array}{c}
\partial J / \partial x_{1} \tag{16}\\
\partial J / \partial x_{2} \\
\ldots \\
\partial J / \partial x_{n}
\end{array}\right) .
$$

D. 2 How can the gradient vector be calculated?

$$
\begin{align*}
\nabla_{x} J & \approx\left|\begin{array}{c}
\left(J\left[x_{1}+\delta_{1}\right]-J\left[x_{1}-\delta_{1}\right]\right) / 2 \delta_{1} \\
\left(J\left[x_{2}+\delta_{2}\right]-J\left[x_{2}-\delta_{2}\right]\right) / 2 \delta_{2} \\
\cdots \\
\left(J\left[x_{n}+\delta_{n}\right]-J\left[x_{n}-\delta_{n}\right]\right) / 2 \delta_{n}
\end{array}\right| . \\
& =\mathbf{B}^{-1}\left(\vec{x}-\vec{x}_{B}\right)-\mathbf{H}^{T} \mathbf{R}^{-1}(\vec{y}-\vec{h}[\vec{x}]) . \tag{22}
\end{align*}
$$

D.3: What is the Hessian matrix?

$$
\mathbf{A}=\frac{\partial^{2} J}{\partial \vec{x}^{2}}=\left(\begin{array}{cccc}
\partial^{2} J / \partial x_{1}^{2} & \partial^{2} J / \partial x_{1} \partial x_{2} & \ldots & \partial^{2} J / \partial x_{1} \partial x_{n} \tag{23}\\
\partial^{2} J / \partial x_{2} \partial x_{1} & \partial^{2} J / \partial x_{2}^{2} & \ldots & \partial^{2} J / \partial x_{2} \partial x_{n} \\
\ldots & \ldots & \ldots & \ldots \\
\partial^{2} J / \partial x_{n} \partial x_{1} & \partial^{2} J / \partial x_{n} \partial x_{2} & \ldots & \partial^{2} J / \partial x_{n}^{2}
\end{array}\right) .
$$

D.4: How can the Hessian be derived?

$$
\mathbf{A}=\mathbf{B}^{-1}+\mathbf{H}^{T} \mathbf{R}^{-1} \mathbf{H}
$$

Why is this useful?

How is the gradient vector used in the Var. algorithm?

Section E: Example Observation Operators

E.1: Interpolation of temperature in a single column

Fig. 13: The model levels and the observations.

E.2: Non-linear forward operator (radiative emission)

Fig. 14: Two grid boxes making up a layer of the atmosphere whose thermal radiation is being monitored by a satellite instrument.

Section F: Minimization (or Descent) Algorithms

F.1: What is a minimization (or descent) algorithm and what is the geometric interpretation of the gradient vector?

Fig. 15: The gradient vector (red), and its negative (blue) in state space.

F.2: What is the method of steepest descent?

THE METHOD OF STEEPEST DESCENT

$$
\begin{aligned}
\vec{x}_{i+1} & =\vec{x}_{i}+\lambda_{i} \vec{g}_{i} \quad \text { (line } \\
\vec{g}_{i} & =-\nabla_{x} J\left(\vec{x}_{i}\right) \quad \text { minimization) }
\end{aligned}
$$

Fig. 16: Schematic of the method of steepest descent.

F.3: What is the Newton algorithm?

$$
\begin{gather*}
J\left[\vec{x}_{i+1}\right]=J\left[\vec{x}_{i}\right]+\left(\nabla_{x} J\left[\vec{x}_{i}\right]\right)^{T}\left(\vec{x}_{i+1}-\vec{x}_{i}\right)+\frac{1}{2}\left(\vec{x}_{i+1}-\vec{x}_{i}\right)^{T} \mathbf{A}\left(\vec{x}_{i+1}-\vec{x}_{i}\right) .(\tag{27}\\
\nabla_{x} J\left[\vec{x}_{i+1}\right]=\nabla_{x} J\left[\vec{x}_{i}\right]+\mathbf{A}\left(\vec{x}_{i+1}-\vec{x}_{i}\right), \tag{28}
\end{gather*}
$$

$$
\begin{equation*}
\vec{x}_{i+1}=\vec{x}_{i}-\mathbf{A}^{-1} \nabla_{x} J\left[\vec{x}_{i}\right] . \tag{29}
\end{equation*}
$$

F.4: What is the conjugate gradient algorithm?

$$
\left.\left.\begin{array}{rl}
\vec{x}_{i+1} & =\vec{x}_{i}+\lambda_{i} \vec{h}_{i} \text { (line } \\
\vec{g}_{i+1} & =-\nabla_{x} J\left(\vec{x}_{i+1}\right) \\
\vec{h}_{i+1} & =\vec{g}_{i+1}+\gamma_{i} \vec{h}_{i} \\
\gamma_{i} & =\frac{\vec{g}_{i+1}^{T} \vec{g}_{i+1}}{\vec{g}_{i} \vec{g}_{i}} \\
\vec{g}_{i} \vec{g}_{j} & =0 \\
\vec{h}_{i}^{T} \overrightarrow{\mathbf{A}}_{j} & =0
\end{array}\right\} i \neq j, \text { A Hessian }\right)
$$

Fig. 17: Schematic of the conjugate gradient algorithm.

Section G: Preconditioning And Control Variable Transforms

G.3: What is meant by 'better conditioned'?

BADLY CONDITIONED
WELL CONDITIONED $\underset{\text { number }}{\text { condition }}>1$ condition number

Fig. 18: Contours of J illustrating a high conditioning number (left) and a low conditioning number (right).

