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Section A: List Of Topics And References

A.1: List Of Topics

A. References.
B. Introduction - why do data assimilation?
C. 3-dimensional variational assimilation and operational

data assimilation.
D. The gradient and Hessian of the cost function.
E.  Example observation operators.
F.  Minimization algorithms.
G. Preconditioning.

A.2: Further Reading

• Kalnay E., Atmospheric Modelling, Data Assimilation
and Predictability, Ch. 5.

• Daley, Atmospheric Data Analysis, Ch.13.
• ECMWF, Data assimilation course handouts, http://

www.ecmwf.int/newsevents/training/lecture_notes/LN_DA.html.

• Schlatter T.W., Variational assimilation of
meteorological observations in the lower atmosphere:
a tutorial on how it works, Journal of atmospheric and
solar-terrestrial physics 62, pp. 1057-1070 (2000).

• Lorenc et al., The Met Office global 3-dimensional
variational assimilation scheme, QJRMS 126, pp.
2991-3012 (2000).

• This handout and other notes, http://www.met.rdg.ac.uk/

~ross/DARC/MSc/MSc.html.
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Section B: The Need To Do Data Assimilation

B.1: Why do we need to do data assimilation (DA)?

• Bjerknes, 1911: The "ultimate problem in meteorology".
• Leith, 1993: The atmosphere "is a chaotic system in which

errors introduced into the system can grow with time ... As a
consequence, data assimilation is a struggle between chaotic
destruction of knowledge and its restoration by new
observations".

Fig. 1a: Two initially similar free-running forecasts (trajectories A and B)
showing sensitive dependence on initial conditions ('chaos').  After a point in
time the trajectories diverge.  After this point, it might be found that neither

is close to the true trajectory.  Feeding-in observations (dots) using DA
(trajectory C) can help keep the model close to the 'truth'.
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Fig 1b: Example coverage of radiosonde measurements and ATOVS
satellite observation locations.
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Section C: 3-d Var. And Operational Data Assimilation

C.1: How is data assimilation used in weather forecasting?
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Fig. 2:  The
intermittent 'data

assimilation cycle'
showing use of a

variational scheme as
the data assimilation

method.
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C.3: What is the 3d-Var. cost function?
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Fig. 4: State space schematic for .n � 3
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Fig. 6: The observation error covariance matrix (right) shown against the
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C.4: What is '3d' about 3d-Var.?

4d-Var.

3d-Var.

t � 0t ��� 3 t � � 3 t � � 6

time window

time window

Trajectory of
model quantity

Fig. 7: Under the formulation of 4d-Var. (top), observations are used at their
correct time.  In 3d-Var. (bottom), the observations within a six-hour cycle

are taken as though they have been made at the same time.  In each case, the
analysis time is at .t � 0

Observation (this cycle)
(other cycles)
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C.5: How 'large' is an operational 3d-Var. system?

Fig. 8: Typical observations assimilated in Met Office Var.  (A. Lorenc,
Oxford RAL Spring School Lecture, 2001.)

Fig. 9: The amount of computer code written for the Met Office Var. system
is comparable to that of the Met Office forecast model.  (A. Lorenc, Oxford

RAL Spring School Lecture, 2001.)
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C.6: How many iterations are required to minimize J?
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Fig 10: Value of the cost function and its components as a function of
iteration for Met Office 3d-Var.

- 9 -



C.7: How is Var. related to the optimal interpolation formula?
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C.8: Why is 3d-Var. favoured over optimal interpolation?

Fig. 11: Performance of the Met Office 3d-Var. scheme for operational
weather forecasting vs. the old Analysis Correction (AC) scheme.  The AC

scheme is a flavour of OI.  Taken from Lorenc et al., 2000.
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C.9: Why do we need to worry about the error covariance
matrices?

Errors are a fundamental consideration in data assimilation: all models are
wrong and all observations are inaccurate.
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Section D. The Gradient And Hessian Of The Cost Function

D.1: What is the gradient vector?
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D.2 How can the gradient vector be calculated?
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D.3: What is the Hessian matrix?
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D.4: How can the Hessian be derived?

A � B� 1 
 HTR � 1H

Why is this useful?
How is the gradient vector used in the Var. algorithm?
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Section E: Example Observation Operators

E.1: Interpolation of temperature in a single column
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Fig. 13: The model levels and the observations.

E.2: Non-linear forward operator (radiative emission)
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Fig. 14: Two grid boxes making up a layer of the atmosphere whose thermal
radiation is being monitored by a satellite instrument.
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Section F: Minimization (or Descent) Algorithms

F.1: What is a minimization (or descent) algorithm and what is the
geometric interpretation of the gradient vector?
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Fig. 15: The gradient vector (red), and its negative (blue) in state space.

F.2: What is the method of steepest descent?
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Fig. 16: Schematic of the method of steepest descent.
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F.3: What is the Newton algorithm?
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F.4: What is the conjugate gradient algorithm?
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Fig. 17: Schematic of the conjugate gradient algorithm.
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Section G: Preconditioning And Control Variable Transforms

G.3: What is meant by 'better conditioned'?

BADLY CONDITIONED WELL CONDITIONED

��� 1condition
number

condition
number O
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Fig. 18: Contours of  illustrating a high conditioning number (left) and a
low conditioning number (right).
J
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